Compare commits
14 Commits
ass2-final
...
ass4-final
| Author | SHA1 | Date | |
|---|---|---|---|
| f520bfa2ad | |||
| dc5d73a9d2 | |||
| b26c5c1f92 | |||
| b884a9a9de | |||
| 8c1d9c2632 | |||
| a5eea861df | |||
| 72a12920d2 | |||
| 1a6cb9891f | |||
| b37fe06683 | |||
| cf406fc4da | |||
| d9adf54595 | |||
| c59f7eb6e9 | |||
| b050c4849d | |||
| 2e4e903521 |
3
.gitignore
vendored
3
.gitignore
vendored
@ -47,3 +47,6 @@ superconductivity_assignment1_kvkempen.pdf
|
||||
|
||||
# Assignment 2
|
||||
superconductivity_assignment2_kvkempen.pdf
|
||||
|
||||
# Assignment 3
|
||||
superconductivity_assignment3_kvkempen.pdf
|
||||
|
||||
60
ass3-12-a-weak-junction.py
Executable file
60
ass3-12-a-weak-junction.py
Executable file
@ -0,0 +1,60 @@
|
||||
#!/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
from scipy.integrate import odeint
|
||||
from matplotlib import pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
def phi_dot(phi, t, I_DC, I_RF):
|
||||
R = 10.e-3 #Ohm
|
||||
I_J = 1.e-3 #A
|
||||
omega_RF = 2*np.pi*.96e9 #rad/s
|
||||
hbar = 1.0545718e-34 #m^2kg/s
|
||||
e = 1.60217662e-19 #C
|
||||
|
||||
return 2*e*R/hbar*( I_DC + I_RF*np.cos(omega_RF*t) - I_J*(np.sin(phi)) )
|
||||
# I attempted to solve it without the constants, as I suspected overflows
|
||||
# were occurring. The next line did not improve the result.
|
||||
#return R*( I_DC + I_RF*np.sin(omega_RF*t) - I_J*(np.sin(phi)) )
|
||||
|
||||
# We need an initial value to phi
|
||||
phi_0 = 0
|
||||
|
||||
# Let's try it for a lot of periods
|
||||
N_points = 10000
|
||||
t = np.linspace(0, 100, N_points)
|
||||
|
||||
hbar = 1.0545718e-34 #m^2kg/s
|
||||
e = 1.60217662e-19 #C
|
||||
|
||||
df = pd.DataFrame(columns=['I_DC','I_RF','V_DC_bar'])
|
||||
|
||||
# For testing:
|
||||
#phi = odeint(phi_dot, phi_0, t, (.5e-3, .5e-3))[:, 0]
|
||||
#for I_DC in [1e-4, .5e-3, 1.e-3, 1.5e-3, 2.e-3, 2.5e-3]:
|
||||
|
||||
for I_DC in np.arange(0, 1e-3, 1e-5):
|
||||
for I_RF in [0., .5e-3, 2.e-3]:
|
||||
# The individual solutions for phi do seem sane, at least, the ones
|
||||
# I inspected.
|
||||
phi = odeint(phi_dot, phi_0, t, (I_DC, I_RF))
|
||||
# I initially thought to average over the tail to look at the asymptotic behaviour.
|
||||
#N_asymp = N_points//2
|
||||
#V_DC_bar = hbar/(2*e)*np.mean(phi[N_asymp:]/t[N_asymp:])
|
||||
# Then I choose to just take the last point to see if that gave better results.
|
||||
V_DC_bar = hbar/(2*e)*phi[-1]/t[-1]
|
||||
print("For I_DC =", I_DC, "\t I_RF = ", I_RF, "\twe find V_DC_bar =", V_DC_bar)
|
||||
df = df.append({'I_DC': I_DC, 'I_RF': I_RF, 'V_DC_bar': V_DC_bar}, ignore_index = True)
|
||||
|
||||
## Plotting the thing
|
||||
plt.figure()
|
||||
|
||||
plt.xlabel("$\\overline{V_{DC}}$")
|
||||
plt.ylabel("$I_{DC}$")
|
||||
|
||||
for I_RF in df.I_RF.unique():
|
||||
x, y = df[df.I_RF == I_RF][["V_DC_bar", "I_DC"]].to_numpy().T
|
||||
plt.plot(x, y, label="$I_{RF} = " + str(I_RF) + "$")
|
||||
|
||||
plt.legend()
|
||||
plt.show()
|
||||
BIN
lec4-vortexlattice.png
Executable file
BIN
lec4-vortexlattice.png
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 37 KiB |
3
makefile
3
makefile
@ -6,3 +6,6 @@ ass1:
|
||||
|
||||
ass2:
|
||||
latexmk -xelatex superconductivity_assignment2_kvkempen
|
||||
|
||||
ass3:
|
||||
latexmk -xelatex superconductivity_assignment3_kvkempen
|
||||
|
||||
BIN
superconductivity_assignment3_kvkempen.pdf
Normal file
BIN
superconductivity_assignment3_kvkempen.pdf
Normal file
Binary file not shown.
176
superconductivity_assignment3_kvkempen.tex
Executable file
176
superconductivity_assignment3_kvkempen.tex
Executable file
@ -0,0 +1,176 @@
|
||||
\documentclass[a4paper, 11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
|
||||
\usepackage[
|
||||
a4paper,
|
||||
headheight = 20pt,
|
||||
margin = 1in,
|
||||
tmargin = \dimexpr 1in - 10pt \relax
|
||||
]{geometry}
|
||||
|
||||
\usepackage{fancyhdr} % for headers and footers
|
||||
\usepackage{graphicx} % for including figures
|
||||
\usepackage{booktabs} % for professional tables
|
||||
\setlength{\headheight}{14pt}
|
||||
|
||||
|
||||
\fancypagestyle{plain}{
|
||||
\fancyhf{}
|
||||
\fancyhead[L]{\sffamily Radboud University Nijmegen}
|
||||
\fancyhead[R]{\sffamily Superconductivity (NWI-NM117), Q3+Q4}
|
||||
\fancyfoot[R]{\sffamily\bfseries\thepage}
|
||||
\renewcommand{\headrulewidth}{0.5pt}
|
||||
\renewcommand{\footrulewidth}{0.5pt}
|
||||
}
|
||||
\pagestyle{fancy}
|
||||
|
||||
\usepackage{siunitx}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{float}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{todonotes}
|
||||
\setuptodonotes{inline}
|
||||
\usepackage{mhchem}
|
||||
\usepackage{listings}
|
||||
|
||||
\newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}}
|
||||
|
||||
\title{Superconductivity - Assignment 3}
|
||||
\author{
|
||||
Kees van Kempen (s4853628)\\
|
||||
\texttt{k.vankempen@student.science.ru.nl}
|
||||
}
|
||||
\AtBeginDocument{\maketitle}
|
||||
|
||||
% Start from 8
|
||||
\setcounter{section}{7}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\section{\ce{Nb3Sn} cylinder}
|
||||
Consider a cylinder of \ce{Nb3Sb}.
|
||||
From lecture 4, we have the following properties for \ce{Nb3Sn}:
|
||||
$T_c = \SI{18.2}{\kelvin}$,
|
||||
$\xi = \SI{3.6}{\nano\meter}$,
|
||||
$\lambda = \SI{124}{\nano\meter}$,
|
||||
$\kappa = \frac{\lambda}{\xi} = 34 > \frac{1}{\sqrt{2}}$,
|
||||
which means we are indeed dealing with a type-II superconductor.
|
||||
As $B_{c1} < B_E < B_{c2}$, the cylinder is in the vortex state.
|
||||
From the previous set of assignments, we know what the currents in the cylinder look like.
|
||||
From free energy considerations, we have found in lecture 4 that for type-II superconductors, it is favorable to allow flux quanta inside the superconductor in this vortex state.
|
||||
In this derivation, the contribution of one flux quantum is considered, but the consideration holds for many vortices, until they start to interact and repel eachother.
|
||||
At that point, the vortex-vortex interaction orders the vortices in a lattice.
|
||||
When the vortex cores start to overlap, there are no superconducting regions left, thus the material enters the normal conducting state.\footnote{I wanted to paint a complete picture althought it is not needed to answer the question.}
|
||||
Minimizing the free energy over the flux shows the energy is lowered for determined thresholds $B_{c1} < B_E < B_{c2}$.
|
||||
|
||||
Let's start with the result from said free energy considerations.
|
||||
The average field inside the cylinder is given by the following self-consisting equation as
|
||||
\[
|
||||
B = B_E - \frac{\phi_0}{8\pi\lambda^2}\ln{\frac{\phi_0}{4\exp{(1)}\xi^2B}}.
|
||||
\]
|
||||
Plugging in the values for \ce{Nb3Sn}, $B_E = \SI{1}{\tesla}$, and $\phi_0 = \SI{2.0678}{\weber}$, $B$ is found as $B = \SI{.986}{\tesla} \approx B_E$ by intersection.
|
||||
%https://www.wolframalpha.com/input?i=B+%3D+1+-+%282.0678*10%5E-15%29%2F%288*pi*%28124*10%5E-9%29%5E2%29+*+ln%282.0678*10%5E-15%2F%284*exp%281%29*%283.65*10%5E-9%29%5E2+*+B%29%29
|
||||
This is in the range as provided in the assignment ($B = \SI[separate-uncertainty]{.981\pm.019}{\tesla}$).
|
||||
|
||||
To investigate the inhomogenity of the field inside the cylinder, we look at the gradient $\nabla B$ inside the material.
|
||||
As we assume a vortex lattice that fully fills the cross section of the cylinder,
|
||||
and we assume that the fields due to each vortex die out quickly enough to not overlap,
|
||||
it suffices to calculate the gradient over just one vortex.
|
||||
These assumptions coincide with slide 15 of lecture 4, from which I took figure \ref{fig:lec4-vortexlattice}.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\label{fig:lec4-vortexlattice}
|
||||
\includegraphics[width=.4\textwidth]{lec4-vortexlattice.png}
|
||||
\caption{The vortices are arranged in a lattice to maximize their distance, as this lowers their repulsive interaction and thus the energy.}
|
||||
\end{figure}
|
||||
|
||||
On slide 19 from the same week, we find an expression $B(r)$ for the field at distance $r$ from the vortex core as
|
||||
\[
|
||||
B = \frac{\phi_0}{2\pi\lambda^2} K_0(r/\lambda) = B_0 K_0(r/\lambda),
|
||||
\]
|
||||
where $K_0$ is the modified Bessel function of the second kind.
|
||||
For small $r$ (i.e. $r << \lambda$), we can approximate this and find that
|
||||
\[
|
||||
K_0 \propto - \ln{(r/\lambda)},
|
||||
\]
|
||||
and notice a singularity at $r = 0$.
|
||||
For the gradient we thus find
|
||||
\[
|
||||
\nabla B \propto \pfrac{K_0}{r}(r/\lambda) \propto \pfrac{-\ln{(r/\lambda)}}{r} = -\lambda/r.
|
||||
\]
|
||||
The size of the supercurrent density has the same relation, $J_S \propto 1/r$.
|
||||
|
||||
\section{Superconducting wire}
|
||||
\textbf{(a)}
|
||||
The voltage $U = \SI{1.5e-5}{\volt}$ across the wire of length $\ell = \SI{.08}{\meter}$ induces a current $J_t$. % through the resistive wire with unknown resistivity $\rho$ according to Ohm's law.
|
||||
Due to the presence of the magnetic field $B = \SI{5}{\tesla}$, if the vortices move with velocity $v_L$, a Lorentz force $f_L$ per vortex acts on the vortices.
|
||||
This results in a power input $P_L = f_Lv_L = J_tBv_L$ per vortex.
|
||||
%$\epsilon = Bv_L$
|
||||
This power should come from the current induced by the voltage, thus $P_L = \epsilon J_t = \frac{U}{\ell}J_t$.
|
||||
Equating these expressions and rewriting yields
|
||||
\[
|
||||
v_L = \frac{U}{B\ell} = \SI{3.75e5}{\meter\per\second}.
|
||||
% https://www.wolframalpha.com/input?i=1.5*10%5E-5+%2F+%285*+.08%29
|
||||
\]
|
||||
|
||||
\textbf{(b)}
|
||||
The vortices are aranged in a lattice with separation $r_{sep} = \sqrt{\frac{\Phi_0}{B}}$.
|
||||
They move along the wire with velocity $v_L$ as determined above.
|
||||
The expected frequency is then given by their velocity over the separation, as that is the period of the changing fields due to the vortices:
|
||||
\[
|
||||
f = \frac{v_L}{r_{sep}} = \frac{U}{B\ell}\sqrt{\frac{B}{\Phi_0}} = \frac{U}{\ell\sqrt{B\Phi_0}} = \SI{1.84}{\kilo\hertz},
|
||||
% https://www.wolframalpha.com/input?i=1.5*10%5E-5+%2F+%28.08%29+%2Fsqrt%285+*+2.067*10%5E%28-15%29%29
|
||||
\]
|
||||
where we used that $\Phi_0 = \SI{2.067e-15}{\volt\second}$.
|
||||
This is very close to what is written in the assignment, but not precisely the same, so maybe I used a different value for $\Phi_0$.
|
||||
|
||||
\section{Fine type-II superconducting wire}
|
||||
|
||||
\section{Critical currents}
|
||||
\textbf{(a)}
|
||||
Silsbee's rule states that the supercurrents through the wire must not generate magnetic fields in excess of $B_c$ at the surface of the wire.
|
||||
We assume that the supercurrent is maximal at the surface with a maximum value of $J_{max}$, and that the supercurrent decays linearly from the surface to zero at a penetration depth $\lambda$ deep.
|
||||
We thus find a relation for the supercurrent as function of the cylindrical radius $r$ as
|
||||
\[
|
||||
J_s(r) = \frac{J_{max}}{\lambda} \left[ r - R + \lambda \right].
|
||||
\]
|
||||
|
||||
Now we can use the Maxwell-Amp\`ere law to find this value for $J_{max}$.
|
||||
\[
|
||||
\oint \vec{B}\cdot d\vec{\ell} = \mu_r\mu_0\iint\vec{J_s}\cdot d\vec{S}
|
||||
\]
|
||||
Using $\vec{B} = \vec{B_c}$, $\mu_r = 1$ as we're calculating the field outside the sc, $J_s = J_s(r)$, the area over which $d\vec{S}$ runs to be the small ring from $r = R - \lambda$ to $r = R$, and the path along which $d\vec{\ell}$ runs to be the loop $2\pi R$ along the surface of the wire.
|
||||
This gives us
|
||||
\[
|
||||
2\pi R B_c = \mu_0 \int_{\phi = 0}^{2\pi}\int_{r=R-\lambda}^R \frac{J_{max}}{\lambda}\left[ r - R + \lambda \right] rdr d\phi.
|
||||
\]
|
||||
Solving the integral over $\phi$ results in
|
||||
\[
|
||||
R B_c = \mu_0 \int_{r=R-\lambda}^R \frac{J_{max}}{\lambda}\left[ r - R + \lambda \right] rdr = \frac{\mu_0J_{max}}{\lambda} \left[ \frac{r^3}{3} - \frac{(R + \lambda)r^2}{2} \right]_{r = R-\lambda}^R.
|
||||
\]
|
||||
Solving for $J_{max}$, this yields the beautiful expression
|
||||
\[
|
||||
J_{max} = \frac{6B_c\lambda R}{\mu \left[ 4\lambda^3 - 9\lambda^2R + 3\lambda R^2- 3\lambda R + 3R^3 -3R^2 \right]}.
|
||||
% https://www.wolframalpha.com/input?i=R*B+%3D+m*x%2Fl*%28%28R%5E3-%28R-l%29%5E3%29%2F3+-+%28R%2Bl%29*%28R+-+%28R-l%29%5E2%29%2F2%29
|
||||
\]
|
||||
|
||||
\textbf{(b)}
|
||||
|
||||
|
||||
\section{A weak junction}
|
||||
See the code in appendix \ref{appendix:program-task-12}.
|
||||
|
||||
It unfortunately does not seem to produce any useful results.
|
||||
In the code, I left many comments as it is mostly in a debugging state.
|
||||
|
||||
\bibliographystyle{vancouver}
|
||||
\bibliography{references.bib}
|
||||
|
||||
\appendix
|
||||
\section{Program to task 12}
|
||||
\label{appendix:program-task-12}
|
||||
\lstinputlisting[language=python,breaklines=true]{ass3-12-a-weak-junction.py}
|
||||
|
||||
\end{document}
|
||||
BIN
superconductivity_assignment4_kvkempen.pdf
Normal file
BIN
superconductivity_assignment4_kvkempen.pdf
Normal file
Binary file not shown.
Reference in New Issue
Block a user