ass3: Wrap up the set and hand it in

Hoi Roos,

In de bijlage vind je de pdf van mijn uitwerkingen en de code voor taak
12 (die ook in de appendix staat). Door tijdgebrek ben ik niet overal
aan toegekomen. Het was erg veel werk.

Met vriendelijke groet,
Kees van Kempen
This commit is contained in:
2022-03-18 10:00:49 +01:00
parent b26c5c1f92
commit dc5d73a9d2
3 changed files with 17 additions and 5 deletions

14
ass3-12-a-weak-junction.py Normal file → Executable file
View File

@ -5,15 +5,16 @@ from scipy.integrate import odeint
from matplotlib import pyplot as plt
import pandas as pd
#phi_dot = lambda phi, t, I_DC, I_RF, I_J, omega_RF, hbar, e, R: 2*e*R/hbar*( I_DC + I_RF*np.cos(omega_RF*t) - I_J(np.sin(phi)) )
def phi_dot(phi, t, I_DC, I_RF):
R = 10.e-3 #Ohm
I_J = 1.e-3 #A
omega_RF = 2*np.pi*.96e9 #rad/s
hbar = 1.0545718e-34 #m^2kg/s
e = 1.60217662e-19 #C
return 2*e*R/hbar*( I_DC + I_RF*np.cos(omega_RF*t) - I_J*(np.sin(phi)) )
# I attempted to solve it without the constants, as I suspected overflows
# were occurring. The next line did not improve the result.
#return R*( I_DC + I_RF*np.sin(omega_RF*t) - I_J*(np.sin(phi)) )
# We need an initial value to phi
@ -28,15 +29,20 @@ e = 1.60217662e-19 #C
df = pd.DataFrame(columns=['I_DC','I_RF','V_DC_bar'])
# For testing:
#phi = odeint(phi_dot, phi_0, t, (.5e-3, .5e-3))[:, 0]
#for I_DC in [1e-4, .5e-3, 1.e-3, 1.5e-3, 2.e-3, 2.5e-3]:
for I_DC in np.arange(0, 1e-3, 1e-5):
for I_RF in [0., .5e-3, 2.e-3]:
# The individual solutions for phi do seem sane, at least, the ones
# I inspected.
phi = odeint(phi_dot, phi_0, t, (I_DC, I_RF))
# I initially thought to average over the tail to look at the asymptotic behaviour.
#N_asymp = N_points//2
I_DC_bar = np.mean(phi[N_asymp:]/t[N_asymp:])
#V_DC_bar = hbar/(2*e)*np.mean(phi[N_asymp:]/t[N_asymp:])
# Then I choose to just take the last point to see if that gave better results.
V_DC_bar = hbar/(2*e)*phi[-1]/t[-1]
#V_DC_bar = I_DC_bar
print("For I_DC =", I_DC, "\t I_RF = ", I_RF, "\twe find V_DC_bar =", V_DC_bar)
df = df.append({'I_DC': I_DC, 'I_RF': I_RF, 'V_DC_bar': V_DC_bar}, ignore_index = True)

View File

@ -114,7 +114,6 @@ Equating these expressions and rewriting yields
v_L = \frac{U}{B\ell} = \SI{3.75e5}{\meter\per\second}.
% https://www.wolframalpha.com/input?i=1.5*10%5E-5+%2F+%285*+.08%29
\]
\todo{Direction?}
\textbf{(b)}
The vortices are aranged in a lattice with separation $r_{sep} = \sqrt{\frac{\Phi_0}{B}}$.
@ -156,9 +155,16 @@ Solving for $J_{max}$, this yields the beautiful expression
J_{max} = \frac{6B_c\lambda R}{\mu \left[ 4\lambda^3 - 9\lambda^2R + 3\lambda R^2- 3\lambda R + 3R^3 -3R^2 \right]}.
% https://www.wolframalpha.com/input?i=R*B+%3D+m*x%2Fl*%28%28R%5E3-%28R-l%29%5E3%29%2F3+-+%28R%2Bl%29*%28R+-+%28R-l%29%5E2%29%2F2%29
\]
\textbf{(b)}
\section{A weak junction}
See the code in appendix \ref{appendix:program-task-12}.
It unfortunately does not seem to produce any useful results.
In the code, I left many comments as it is mostly in a debugging state.
\bibliographystyle{vancouver}
\bibliography{references.bib}