590 lines
222 KiB
Plaintext
590 lines
222 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "4ec40081b048ce2f34f3f4fedbb0be10",
|
|
"grade": false,
|
|
"grade_id": "cell-98f724ece1aacb67",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"# CDS: Numerical Methods Assignments\n",
|
|
"\n",
|
|
"- See lecture notes and documentation on Brightspace for Python and Jupyter basics. If you are stuck, try to google or get in touch via Discord.\n",
|
|
"\n",
|
|
"- Solutions must be submitted via the Jupyter Hub.\n",
|
|
"\n",
|
|
"- Make sure you fill in any place that says `YOUR CODE HERE` or \"YOUR ANSWER HERE\".\n",
|
|
"\n",
|
|
"## Submission\n",
|
|
"\n",
|
|
"1. Name all team members in the the cell below\n",
|
|
"2. make sure everything runs as expected\n",
|
|
"3. **restart the kernel** (in the menubar, select Kernel$\\rightarrow$Restart)\n",
|
|
"4. **run all cells** (in the menubar, select Cell$\\rightarrow$Run All)\n",
|
|
"5. Check all outputs (Out[\\*]) for errors and **resolve them if necessary**\n",
|
|
"6. submit your solutions **in time (before the deadline)**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "raw",
|
|
"metadata": {},
|
|
"source": [
|
|
"team_members = \"Koen Vendrig, Kees van Kempen\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "d9d583d5ec524054533e809d7a5a63c1",
|
|
"grade": false,
|
|
"grade_id": "cell-b934b1147294eedc",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"## Parabolic PDEs: 1D Schrödinger Equation with Potential\n",
|
|
"\n",
|
|
"Here we aim to solve the 1D (parabolic) Schrödinger equation (SEQ) for a particle exposed to some potential $V(x)$\n",
|
|
"\n",
|
|
"\\begin{align*}\n",
|
|
" i \\hbar \\frac{\\partial}{\\partial t} \\Psi(x, t) = \\frac{-\\hbar^2}{2m} \\frac{\\partial^2}{\\partial x^2} \\Psi(x, t) + V(x) \\Psi(x, t).\n",
|
|
"\\end{align*}\n",
|
|
" \n",
|
|
"For simplicity we will set $\\hbar = 1$ and $m=0.5$ in the following. First you will analyze the stationary solutions of the SEQ for a given potential, using finite differences to approximate all involved derivatives. Then you will need to derive and apply the Crank-Nicolson approach for this PDE to study the dynamics of the SEQ."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "f6fc23db350d1d6030229baabd0468a6",
|
|
"grade": true,
|
|
"grade_id": "cell-06b9782094f1febb",
|
|
"locked": false,
|
|
"points": 0,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from matplotlib import pyplot as plt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "72c8dcfe08e449643bf3d6ba29e64d19",
|
|
"grade": false,
|
|
"grade_id": "cell-90c08182ba33b740",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"### Task 1\n",
|
|
"\n",
|
|
"The stationary SEQ\n",
|
|
"\n",
|
|
"\\begin{align*}\n",
|
|
" H \\Psi(x) = \\frac{-\\hbar^2}{2m} \\frac{\\partial^2}{\\partial x^2} \\Psi(x) + V(x) \\Psi(x) = E \\Psi(x)\n",
|
|
"\\end{align*}\n",
|
|
"\n",
|
|
"can be numerically studied by discretizing the spatial coordinate $x$ as $x_i = ih$ and approximating the second derivative with finite differences. This results in an eigenvalue problem of the form $H \\vec{\\Psi} = E \\vec{\\Psi}$, where $\\Psi$ is now a vector in the discretized positions $x_i$. By diagonalizing the matrix $H$ we simultaneously get both the eigenenergies $E_i$ and the corresponding eigenfunctions $\\vec{\\Psi}_i$. \n",
|
|
"\n",
|
|
"Derive the matrix representation of the Hamiltonian $H$ and write your final result in the cell below. (Double click on \"YOUR ANSWER HERE\" to open the cell, and ctrl+enter to compile.) \n",
|
|
"\n",
|
|
"Implement a simple Python function $\\text{SEQStat(x, V)}$ which takes the discretized grid $x_i$ and the potential $V(x)$ as arguments and which returns all eigenvalues $E$ and eigenfunctions $\\vec{\\Psi}$."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "d005d991061648519880d606f6a8d768",
|
|
"grade": true,
|
|
"grade_id": "cell-65fbcafec53fde9d",
|
|
"locked": false,
|
|
"points": 1,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"The potential $V(x)$ is a scalar quantity, and will therefore only occur on the diagonal of the matrix $H$.\n",
|
|
"The second derivative operator will however be matrix valued, and we will determine it by looking at the finite differences approximation.\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\frac{\\partial^2\\Psi}{\\partial{}x^2}(x_i) = \\frac{\\Psi(x_{i+1}) - 2\\Psi(x_i) + \\Psi(x_{i-1})}{h^2} - \\frac{h^2}{12} \\frac{\\partial^4\\Psi}{\\partial x^4}(x_i)\n",
|
|
"$$\n",
|
|
"\n",
|
|
"For small $h$, we can ignore the latter term, which we will indeed do.\n",
|
|
"We can encode this in a tridiagonal matrix, as each step depends on the step before and after it and not on anything else.\n",
|
|
"\n",
|
|
"Our beautiful hamiltonian now has elements like\n",
|
|
"\n",
|
|
"$$\n",
|
|
"H_{ij} = \\frac{-\\hbar^2}{2m} \\left[ \\delta_{i,j-1} - 2\\delta_{ij} + \\delta_{i,j+1} \\right] + V(x) \\delta_{ij} = -\\left[ \\delta_{i,j-1} - 2\\delta_{ij} + \\delta_{i,j+1} \\right] + V(x) \\delta_{ij}\n",
|
|
"$$\n",
|
|
"\n",
|
|
"with $\\delta_{ij} = 1 \\iff i = j$, and using the approximations $\\hbar = 1$, $m = 0.5$.\n",
|
|
"\n",
|
|
"\n",
|
|
"finite differences for second derivative to get a tridiagonal matrix (one lower and one higher than diagonal)\n",
|
|
"then plot eigenvalues\n",
|
|
"no time component -> not complex?\n",
|
|
"energy should be real\n",
|
|
"eigenvectors squared should be normalized"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "b667798e88cf9611e65b3d37ed1a2f15",
|
|
"grade": true,
|
|
"grade_id": "cell-768b5f6973f4bf18",
|
|
"locked": false,
|
|
"points": 3,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def SEQStat(x, V):\n",
|
|
" \"\"\"\n",
|
|
" Numerically solves the stationary Schrödinger equation over\n",
|
|
" the grid of x values, in a potential given by V, using\n",
|
|
" the approximations ℏ = 1, 𝑚 = 0.5.\n",
|
|
" \n",
|
|
" Args:\n",
|
|
" x: array of evenly spaced space value vectors x\n",
|
|
" V: function that takes in a location x and returns a scalar potential value\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" A tuple of the eigenvalues E and eigenfunctions \\Psi of the hamiltonian H.\n",
|
|
" \"\"\"\n",
|
|
" \n",
|
|
" # TODO: Is n the dimensionality of Psi?\n",
|
|
" n = len(x)\n",
|
|
" h = x[1] - x[0]\n",
|
|
" \n",
|
|
" # In the stationary case, \n",
|
|
" H = 1/h**2*(np.eye(n, n, -1) - 2*np.eye(n) + np.eye(n, n, 1)) + np.eye(n)*V(x) \n",
|
|
" \n",
|
|
" # In principle, the eigenvalues and eigenvectors could be complex, so\n",
|
|
" # we opt for eigh instead of eig.\n",
|
|
" return np.linalg.eigh(H)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "32c3d809b0a049d1a89854bf66fee90c",
|
|
"grade": false,
|
|
"grade_id": "cell-41993afec1730aac",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"### Task 2\n",
|
|
"\n",
|
|
"Use your function to calculate and plot the first few eigenfunctions for $V(x) = 0.25 x^2$. Add the potential to your plot. Use $-5 \\leq x \\leq +5$ discretized in $100$ steps."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "8d73bb967269698e00749c2208366d7c",
|
|
"grade": true,
|
|
"grade_id": "cell-f39aca43ffd1c97a",
|
|
"locked": false,
|
|
"points": 3,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Eigenstate n = 0 yields total probability mass = 0.9999999999999999\n",
|
|
"Eigenstate n = 1 yields total probability mass = 1.0\n",
|
|
"Eigenstate n = 2 yields total probability mass = 0.9999999999999997\n",
|
|
"Eigenstate n = 3 yields total probability mass = 1.0\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAANYCAYAAADZn0yoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgk15X239Ms5tGAhnk8MybNmDFmTsx2wIkTJ1/i3XwbdDgbxxvb+da7m8TexHE4xjh2zBQzDnk8zChpQMxSQ9X9/ijogls10oykEpzf82jUXbe6+3Z1j7refs95LwkhwDAMwzAMwzAMwxw5oaAnwDAMwzAMwzAMM1pggcUwDMMwDMMwDDNAsMBiGIZhGIZhGIYZIFhgMQzDMAzDMAzDDBAssBiGYRiGYRiGYQYIFlgMwzAMwzAMwzADBAsshrFARDcS0ctBz4NhGIZhGIYZmbDAYsYcRLSbiHqIqNPy8ysAEEI8KIQ4L+D5CSKa1Y/93yCizw/mnAYCIrqBiPYQURcR/YOISoOeE8MwDMMwzEDDAosZq1wqhMi3/Nwa9IRGM0R0FIDfAPgUgEoA3QDuC3RSDMMwDMMwgwALLIaxQEQ3EdE7luvnEdEWImojovuI6E2rW0REnyOiTUTUQkQvEdFUy5ggoi8R0TYiaiWie4mI9LFZ+n21EVEjET2qb39Lv/ka3Vm7lohKiOhZImrQH+dZIqrS978DwGkAfmV14ohoHhG9QkTN+vyv8XnObxDR7UT0LhF1ENHLRFQ+gIcVAG4E8IwQ4i0hRCeAHwD4BBEVDPDjMAzDMAzDBAoLLIbxQBcZjwP4DoAyAFsAnGwZvxzAdwF8AkAFgLcBPOy4m0sALAGwGMA1AM7Xt98O4GUAJQCqAPwSAIQQp+vjR+vO2qPQ/p/+AcBUAFMA9AAwShq/pz/urYYTR0R5AF4B8BCAcQCuA3AfES3webo3APisvn8MwDc8jskUXSx6/dzgcf9HAVhjXBFC7ACQAjDHZ04MwzAMwzAjDhZYzFjlHw5h8AXJPhcB2CCEeEIIkQHwCwAHLONfAvAzIcQmffw/ABxjdbEA3CmEaBVC7AXwOoBj9O1paIJpohCiVwjxDjwQQjQJIf4uhOgWQnQAuAPAGT7P7RIAu4UQfxBCZIQQqwH8HcDVPrf5gxBiqxCiB8Bjlnk657JXCFHs8/OQx/3nA2hzbGsDwA4WwzAMwzCjChZYzFjlCocw+K1kn4kAaowrQggBoNYyPhXA/xgiDUAzAAIwybKPVZB1QxMaAPAtfd/lRLSBiD7nNVEiyiWi3+gBEe0A3gJQTERhj5tMBXCCVUBCK9Eb7/UYPvMcKDoBFDq2FQLoGODHYRiGYRiGCZRI0BNgmGHMfmjlewAAvX+qyjJeA+AOIcSD/b1jIcQBAF/Q7/dUAP8koreEENslu38dwFwAJwghDhDRMQBWQxNoACAc+9cAeFMIcW5/53UoiGgKgI0+u3zR43hsAHC05X5mAIgD2DqwM2QYhmEYhgkWdrAYxpvnACwioiuIKALgK7C7QL8G8B09IQ9EVEREfmV4JkR0tRFUAaAFmkhS9esHAcyw7F4Are+qVY82/5Hj7pz7PwtgDhF9ioii+s8SIprfl7n5oZcI5vv8eInNBwFcSkSn6T1iPwHwhF7yyDAMwzAMM2pggcWMVZ5xrIP1pHMHIUQjtL6luwE0AVgAYCWApD7+JIC7ADyil+6tB3BhHx9/CYBlRNQJ4GkAXxVC7NTHfgzgT3p53zUA/htADoBGAB8AeNFxX/8D4Co9YfAXumg5D1q4xT5o5X93QXOMAkEIsQFaz9qDAOqhicYvBzUfhmEYhmGYwYK0thKGYQ4FEYWg9WDdKIR4Pej5MAzDMAzDMMMPdrAYxgciOp+IiokoDi2SnaC5SAzDMAzDMAzjggUWw/hzEoAd0MrzLoWWPtgT7JQYhmEYhmGY4QqXCDIMwzAMwzAMwwwQ7GAxDMMwDMMwDMMMEKN2Hazy8nIxbdq0oKfBMAzDHAarVq1qFEJUBD2PwYY/qxiGYUYuXp9Vo1ZgTZs2DStXrgx6GgzDMMxhQER7gp7DUMCfVQzDMCMXr88qLhFkGIZhGIZhGIYZIFhgMQzDMAzDMAzDDBAssBiGYRimDxDRBUS0hYi2E9FtPvtdSUSCiKqHcn4MwzDM8IAFFsMwDMMcAiIKA7gXwIUAFgC4nogWSPYrAPBVAMuGdoYMwzDMcGHUhlwwzGikrTuNpKJgXEEi6KkwzFhjKYDtQoidAEBEjwC4HMBGx363A7gLwDeHdnoMMzzIKCo+3NuK7lTG3DazIh+TS3MDnBXDDC0ssBhmmKGoAq3dKZTlx11jdzy/EdvqO/Hkl09xjX3jb2uwdHoprqmePBTTZJixxiQANZbrtQBOsO5ARMcBmCyEeI6IPAUWEd0C4BYAmDJlyiBMlWGGnuauFB5ZsRcPfrAXda09tjEi4Oy54/CZk6fh1FnlCIUooFkyzNAwLAQWEV0A4H8AhAE8IIS4U7LPNQB+DEAAWCOEuGFIJ8kwQ8TTa+rw/SfXY9UPzkUiGraNNXel0NKVkt7utc31IEAqsHpSChLREIj4Q41hBgMiCgG4B8BNh9pXCHE/gPsBoLq6WgzuzBhmcBFC4FevbccvX9+OVEbFSTPK8J2L5mFicY45/uaWBjy0fC8+/fvlmFOZj19efxzmji8IeOYMM3gELrAsde3nQvtGcAURPS2E2GjZZzaA7wA4RQjRQkTjgpktwww+B9qS6Eop6ExmXAIrpQikFfn5WDqjIq2oru2t3Smc+LNXcf+nqnH6nFG/bivDDBZ1AKzfXlTp2wwKACwE8Ib+RcZ4AE8T0WVCCF7oihmV9KYVfONva/Ds2v24eNEEfPWc2ZhT6RZOx08txVfOnoXn1+3Hz57fjCv/9z388vpjcdY8Pp1jRifDIeTCrGsXQqQAGHXtVr4A4F4hRAsACCHqh3iODDOgdKcy+LdHP0JTZ9I1ZogkmVhKZ1SkJNsBIKWoUvHV3JVCb1p1lWwwDNMvVgCYTUTTiSgG4DoATxuDQog2IUS5EGKaEGIagA8AsLhiRi317b249jfv47l1+3HbhfPwqxuOlYorg3gkjI8fW4Wnbj0F08pzcfOfVuCBt3dCCDZxmdHHcBBYsrr2SY595gCYQ0TvEtEHekmhCyK6hYhWEtHKhoaGQZouwxw5m/Z34MnVdfhwb6trzBRYGfeHTlqRu1TGmEx8pXwEG8MwfUMIkQFwK4CXAGwC8JgQYgMR/YSILgt2dgwztDR0JPHx+97DtvpO/OaTx+NLZ8zscwn6hKIcPPbFk3D+UePx0+c24Z5Xtg7ybBlm6BkOAqsvRADMBnAmgOsB/JaIip07CSHuF0JUCyGqKyq4FIoZvqQy3qLHGPMSS8a4FUUVUAWkY4ZQk42t3N2MY37yMlq75X1dDMNkEUI8L4SYI4SYKYS4Q9/2QyHE05J9z2T3ihmNJDMK/s9fV6GpK4mHv3AizjtqfL/vIzcWwb03HIdrqqvwy9e245k1+wZhpgwTHMNBYB2qrh3QXK2nhRBpIcQuAFuhCS6GGZEYwkomevwcp5RHn5WvYFO8BdvOxi60dqdR3+EuVWQYhmEYK0II/PAfG7ByTwt+ftXROHpy8WHfVyhE+OkVi1A9tQTffHwN1te1DdxEGSZghoPA8q1r1/kHNPcKRFQOrWRw5xDOkWEOizN+/joeXLbHtd3PpfITX2m9z8pZs34oUQbISw7NeUgei2EYhmGs/Om93Xh0ZQ1uPWsWLj164hHfXywSwv9+8niU5sbwhT+vRAN/2ceMEgIXWH2sa38JQBMRbQTwOoBvCiGagpkxw/QNVRXY09SNPU3drjFfEaULIWnIhSJsv133Jwm58A3N8HG3GIZhGMZg5e5m3P7cJpwzvxJfO3fOgN1vRUEc93+6Gi3dKXzloQ+hqhx6wYx8AhdYwKHr2oXG14QQC4QQi4QQjwQ7Y4Y5NKnDLQP0ET1eYikbjNE/EeXnYD23dj++/491ru0MwzDM2CKZUfDtv6/F+MIE/uvaowd8oeCFk4rwk8sXYvmuZmnVB8OMNIaFwGKY0UjSL6yiDz1Tssh1T4FlBFkcRsmh1zze3taAZ9bsd21nGIZhxhb3vb4DOxq6cMfHF6IgER2Ux7j6+CqcOqscd724BQfaegflMRhmqGCBxTBHyM6GTuxs6HRt93OH/NytdMbbjfLq3fJzxPoi9KRzzKhIZhTXdoZhGGbssO1gB+57YzsuP2Yizpw7eAsDExHu+PhCZFQVP3xq/aA9DsMMBSywGOYI+eFTG/Cjpze4tvuWCJqix9ul8l/TSt6DJS8RFJ5jxuPL5pj0iIRnGIZhxgaqKnDbE+uQF4/gB5csGPTHm1qWh/97zhy8vPEgXlzPFRTMyIUFFsMcIR29aXT0Zlzb/coADzemPe0hiPoi2Pq95lZGhSqADAdgMAzDjEkeWr4Xq/a04PsXL0B5fnxIHvPzp07HggmF+OFTG9Demx6Sx2SYgYYFFsMcIcmMapbhWTlU+R3gIaI8FgZWVAFFlScMHm5SYEpRDjlH2e1+/84uPM0LQzIMw4xaOnrT+M+Xt+CkGWW48rhJQ/a4kXAId165CPUdSfzmzR1D9rgMM5CwwGKYIySVUZGS9Cr5ukOKdxT7ocoArfftvI2vUJKsg+UXjmHcLpl2jz20fC+eWu1cD5xhGIYZLfz2rZ1o6U7juxfNB9HApgYeisVVxbjs6In43Tu7UN/OgRfMyIMFFsMcIcmMevjuUD/cLet199ihBZtfT5dvEIeH+JK5dgzDMMzIp6EjiQfe2YWLF0/AoqqiQObw9fPmIKMI/OK1bYE8PsMcCSywGKYPPLNmH66//wPpWDIjD4NI9SU6vR/9WVZHy+Vu6ftmVOFapNFcuLi/63H5iMBkRuGEQYZhmFHKr17bhmRGxdcHcEHh/jK1LA/XL52CR5bXYHdjV2DzYJjDgQUWw/SBtbWteH9nE4Rwl9mlMoq8B6sPZXt+a105xZe/g2UZU53lg4r0NtZ5+M3Rq7+MHSyGYZjRx96mbjy0fC+uqZ6MGRX5gc7lXz42C9FwCP/5ytZA58Ew/YUFFsP0gaSP2PB2sA69wK+sd8ur3M96P17rYFlv77ze30WI/QSi13NmGIZhRjb3vLIFISL833NmBz0VjCtI4OZTp+OZNfuwvq4t6OkwTJ9hgcUwfaA3rQkhp8ASQiDlsV6UX1Kgn4OV9LidTUR5xLQ7L1uv+7pUfiEXHgEeMrGZVlSccudrvH4JwzDMCGR7fQeeWrMPN50yDZWFiaCnAwC45YwZKM6N4h52sZgRBAsshukDSQ+xkVYEhJD3PvmGXPi4Q9nIdZ8UQY+QC+d+1ut+DlZakjCY9BBmGUVFRhVIpt3Cq7M3g7rWHmyv73SNMQzDMMOb/31jJ+KREL54+sygp2JSmIjic6dMx2ub67H5QHvQ02GYPsECi2H6gBFV7owsT/mInkMt4us15hlykTm0iJLdri9OmiEG7WOKdI7Gda9ySQDolUS7MwzDMMOXutYePPVRHa5bMgWlebGgp2Pj0ydNRW4sjF+/wetiMSODYSGwiOgCItpCRNuJ6Daf/a4kIkFE1UM5P2ZssOVABxb/+CXsb+txjfVm5CWCVhfHJb78SvMOY2Fge4mgt7vluQixxKUy1uPqj8vmF35hOHy9EneLYRiGGb488PZOAMDnT5se8EzcFOfGcMPSKXhm7X7UNHcHPR2GOSSBCywiCgO4F8CFABYAuJ6IFkj2KwDwVQDLhnaGzFhhZ0Mn2nszqGl2CyzTwXKUCFpFRlKRj/XHpVJVkQ25cMW0D3zIheFSyXrBvISUV7kkkHWuejnCnWEYZsTQ3JXCI8trcNkxE1FVkhv0dKTcfNp0hAj4rS4EGWY4E7jAArAUwHYhxE4hRArAIwAul+x3O4C7APCS3syg0OvjviQ9HCzfcIk+xbQ7RJR6aCdKOmZxp5yPZ4Zm9MOlyigqjJYy75JDAcXRd5Z1sLhEkGEYZqTwp/d2oyet4EtnDJ/eKycTinLw8WMn4dEVNWjsTAY9HYbxZTgIrEkAaizXa/VtJkR0HIDJQojn/O6IiG4hopVEtLKhoWHgZ8qManpSRv+QtzPjLANM+gks/boqNMFiG/MozfNbTNi6r28PVn9CLnRh5hSO1sd2CzbFZ8z7GO5q7MKJ//GqtASTYRiGCYauZAZ/fG83zl1QiTmVBUFPx5cvnjETKUXFH97dFfRUGMaX4SCwfCGiEIB7AHz9UPsKIe4XQlQLIaorKioGf3LMqMIQBb0+vUXOsjjftalsgkgullzlfD73l/YpA0z1oQcrpaiuhZJTHuIrZSt99BaVzuPhFWcPANvrO3GgvRe7GrpcYwzDMEwwPLqiBm09afyfM4eve2UwsyIfFxw1Hn9+fw+6kpmgp8MwngwHgVUHYLLlepW+zaAAwEIAbxDRbgAnAniagy6Ygca/RNCrH+nQIRfOy0DfgizcJYdZceRXquglsISAq6Qv7VE+aO0n83KpZPMwjoHsGPbo23o4AINhGGZYoKgCf3xvN46fWoLjppQEPZ0+8YXTZ6CjN4MnPqwNeioM48lwEFgrAMwmoulEFANwHYCnjUEhRJsQolwIMU0IMQ3ABwAuE0KsDGa6zEgmraj4xH3v4r3tja6x3pTuvviUCHqVAQL+YskZgOGVMOgrlPpYIuhaoNhnjsm+OFg+rp1XyaRzO5AVXSywGIZhhgdvbKnH3uZufPaUaUFPpc8cO7kYR1cV4Y/v7XatP8kww4XABZYQIgPgVgAvAdgE4DEhxAYi+gkRXRbs7JjRRkt3Ch/ubcWa2jbXWK+HS6Vt84hp70MPlmwsu5hwP4IsbDHtPj1YPs6XNQxDCOGZZug3976UCMpSBE2BlWKBxTAMMxz443u7Mb4wgfOPGh/0VPoMEeGmU6ZhR0MX3pF8Wcoww4HABRYACCGeF0LMEULMFELcoW/7oRDiacm+Z7J7xRwuxsm9zEUxxvxLBL1j2v3dKHkPllfyoHa5P2tdWUIpfG5nvf+MKiC8kgL7sHAx4C045UEhvEYWwzDMcGHbwQ68va0RnzppKqLhYXE62GcuWjQB5flx/PG93UFPhWGkjKz/UQxzhHT7iKisALCLBlUV2TWhXCVxivQyYA+H8BIwGVXYShwMh4nI7VIZwikeCblEVEpREdM/IPu6flafywr9+s4cY17H0LpNJm5f31yPL/x5pSuEg2GGE0R0ARFtIaLtRHSbZPxLRLSOiD4iondkazoyzHDhT+/vRiwSwnVLJh9652FGPBLGjSdMwWub67GrkYOTmOEHCyxmTGEILFmZWo+Hw2LrpeqHm+O7RpbV3VLdAigvFvHsi8qLR6T9WbnxsHZZcjuZ+Orr3P3H5I6eb8hFyi2+PtjVhFc2HpRGyTPMcICIwgDuBXAhgAUArpcIqIeEEIuEEMcAuBtaAi7DDDvaetL4+6o6XH70RJTlx4OezmFx44lTEA0T/vz+7qCnwjAuWGAxYwq/oAXDYXH2D1ldq/6UCB5qbapENOS6nXGbvHjYswcrN+YeSykq8mIR1+Ma1w3xlfKYk1/IRb9SBD161QD/Y9/jI3wZZpiwFMB2IcROIUQKwCMALrfuIIRot1zNA8CWLDMseWxFDXrSCm4aQeEWTsYVJHDJ4on428padPSmg54Ow9hggcWMSn767Ebpt1rdPj1YXuVtvT4lcX1dB8t6OaOoUAWQHzcEkXtR37xYRFrqRwTkROXiKzdmiCh3v5chvmRzkt1fso/iy1ky2esT0+7Xg2W8Ll0ssJjhyyQANZbrtfo2G0T0FSLaAc3B+lfZHRHRLUS0kohWNjQ0DMpkGcYLVRX48we7sXRaKY6aWBT0dI6Im06ehs5kBk98WHfonRlmCGGBxYxKXtxwAG9ucZ+4dKe0hQllTomXALA5WB6x5IC8DNB0qSSCJVfiOJkuVTzs2WcVi4TcbllGIC/uFlHG7bJizh28kReP9DNF0KfvzOJgOfupzB4sWXmmvq2bF45kRjhCiHuFEDMBfBvA9z32uV8IUS2EqK6oqBjaCTJjnre2NaCmuQefOmlq0FM5Yo6eXIzFVUV4cNke7uFlhhUssJhRSXdKMV0RK36laL2eUezegsK3V0lRkR+PuvYzgixkgsgsEYzJ+qwEYuEQomF5yEWeRw9WWhHZEkGJcMqPhz0FVjRM/erP8isf9EtwNIQvO1jMMKYOgDUNoErf5sUjAK4YzAkxzOHw4LK9KM+Pjahodj9uPGEKth7sxMo9LUFPhWFMWGAxo5LOZMY8abfiVyLoFdPem/YTFAqItMsykZIvET3GosP50r4ob1cpraiIRkKIhUPS8sGcaBghsj+WogooqvAtR8xPRFxphsZYQSLq23fmlSLovAxkBaxM+Hb7OFh3v7gZP312o2s7wwwxKwDMJqLpRBQDcB0A21IiRDTbcvViANuGcH4Mc0j2t/Xg1U0HcU31ZMQio+MU8NKjJ6IgHsGDH+wJeioMYzI6/ncxjIW0oiKVUaVuiFdSoLatL1HsbscmVxc2UoGVkLlUmpDJlzhYvkmBiopomBCNkMeY4W7JHTHrdcCeWGi9br2cLxF6NoHlLKe0jLl62XyOvfG6yMTXBzub8P7OJtd2hhlKhBAZALcCeAnAJgCPCSE2ENFPiOgyfbdbiWgDEX0E4GsAPhPMbBlGziPLayAAXL90StBTGTByYxF84rhJeH7dATR3pYKeDsMAYIHFjGBUVSAjifXu0l0QmRti9mD5hTD4JgW6SwRjEb0vyhkUkVEPKaIAeQ9WXiwsdZUMESUrA4yGDXfLuuiw/bFkPWPmHCXrduXH5XHxRm+ZS3CmrQLLfqx6fNbByoZcuF+zrqSCTu7NYoYBQojnhRBzhBAzhRB36Nt+KIR4Wr/8VSHEUUKIY4QQZwkhNgQ7Y4bJklFUPLJiL86YU4HJpblBT2dAueGEqUgpKh5fVXPonRlmCGCBxYxY/ufVbfj4fe+5thsn490+J/L9CbkwrhPJSwTjkTDikbDLzbGGS/TVVUo7BJFzjSzPHixdfGlCLzuPtCnm3KWKzseS9mclZA6WYvaW+ferOcWXzxpkKW8HqzOZQWcvCyyGYZgj4dXN9TjYnsSNJ4z8cAsnc8cXYMm0Ejy0bK/ti0mGCQoWWMyIZXtDp3QF92w/j0/IhUMMCSEs5YPykriCeMRVPujnYKX66GDJXKW8mCGIsh8UaUV/LImDlVJUxCKkuVsZ6228AzWsIsq4f+v9AUChVGCpiEfkaYb+DtahSwS7JE5VVyqDDnawGIZhjogHl+3FhKIEzpo7OpMrbzxhKnY3deO9HVxSzgQPCyxmxNLRm0FnMuP6tspwsFJ6L5YVr5P8tCJg3I1X9HhRrjzwIa6LHlnantmDJe1vcosoZ0mfs3dLKxEkeQBGOOTqz3KWAcocrEOJQFnfWTwaQjwSkh4ro3Haywn0SxGUuVtdyQxSGdX1WACwtrYVLVxzzzAM48vepm68tbUB1y2Zgkh4dJ76XbBwPEpyo3hwGYddMMEzOv+XMWOC9h5t5XZn347VBXGesBvuVloRNrHRY0u/c4YzGG5OVCqiYhFNbMjXn3LHtDsdLFmEe66HIIqGCbGIpAcrIw+5yK655S4RdIVcOBZNjoZJ/rwyWqliPBKWpAiqKMrRnnNvH2PaVVWYx9gZTJLKqKYA7Uq6Xcfr7/8AD7yzEwzDMIw3j6zYixAB1yypCnoqg0YiGsaVx1XhlY0H0dCRDHo6zBiHBRYzYuno1QSWMwDBKrCc4ssquKwOi9EflB+PSBYa1h2sHLfA8iqXM+LRZdHprj4rx1g4REjoLpBTmPmFXMjKB539XtKQi4R8zFzUWBLeEY+GNQdLkrhoCixXTLsecpGSlw4CcEXrW19LZx9WUk+K5A9ShmEYbzKKir+tqsVZc8dhQlFO0NMZVK5bOhkZVeDvH9YGPRVmjDMsBBYRXUBEW4hoOxHdJhn/GhFtJKK1RPQqEY2+Dk1Gyq7GLvzrw6ul5WEd+gm388S7M2k9YXc6WHJ3y3BQinM1EWVdEd4QBoWSNaFSGVUPuQhJxUssortKPul9TlfJcKmcY0YPlvP+hBD67dxjbjHnLkeUrdWVdeZkixAriIdDiEdlJYIqiiUCS1EFUhkVIT0oxFrWaX2NnC6VVTx3JNO2sXZdYLf12LczDMMwWV7bXI+GjiSuG0XR7F7MGqeFXTy6osb2Oc4wQ03gAouIwgDuBXAhgAUArieiBY7dVgOoFkIsBvA4gLuHdpZMULy9rQFPr9mHvU3drjHjBNsZgGAVUU5HxHoyb3VOjMvFue50PMOlKcxxh1wYPUdOB8u4bIilpI/ocQozQyhp+9oFkZEUaN2e0cVKzCwfdC8YbKQI2ssR/VMEjecl7TuLepUIZh0s+4LExvGNaftZ7tMqdF0OVsrbwWrv0a6zwGIYhvHmkRU1qCyMj9pwCyfXLZmCXY1d+GBnc9BTYcYwgQssAEsBbBdC7BRCpAA8AuBy6w5CiNeFEMYZ9gcARm8RMWOjpUvuUqQyquk6uR0sS4lg0l2OFtPFi73vShcAOTHbdUATB9EwITfmEfggSRFM6lHpcb0/y+oOJR2ix+lSxSNZgeXsz4qGCdEwScsAzQAMSZ9VIhpGOETyHizZOli2xEL3elxaD5Y72COZUVFoCCxJX1uJLmBtoiptFcT218tWIugQ0h2mgyVPGPyoppW/wWQYZkyzv60Hb2ypx9XHTx614RZOLlo0AQWJCB5ZsTfoqTBjmOHwv20SAOvKcLX6Ni9uBvCCbICIbiGilUS0sqGhYQCnyARFS7eWEOcUWMbJNeDfgyVzsMryNRHVI3GzinKN8jZr3Li1DNBjoWGPMkC/EkFzHSyHu2W4VIB7/axYJIxoOGRbhDjrlrn7sww3yxBfsrECLwfLYx62FEFnv1rGEnJhOYbG8S3RHazulLyM092DlR1zvs7turBulzhYWw924Ip738WbW/nvAMMwY5fHVtRCFcC1SyYHPZUhIycWxsePnYQX1h9AazenzDLBMBwEVp8hok8CqAbwc9m4EOJ+IUS1EKK6omJsWOGjnVZPgeVdOtbl04PVk1JQmqcLLKmDZZS32R2suFkuZ+/PSpo9WGFPgeV0t1xrUzl6nwwxpO3r7s8yywf1RYiN20dlIRfGPHTxZS/b0y7nSBIGkxlNzMUlAsvsO4uGXaWPiiqkIRfG5ZI8t0PYq79GBfGIy3G0iuWOXi8Hyy2w9rf1AgD2tfa6xhiGYcYCiirw2MoanDqrHJNLc4OezpBy3ZIpSGVUPPFhXdBTYcYow0Fg1QGwfrVSpW+zQUTnAPgegMuEEBwbNopo7U7hxP94Fav2tLjGWrrlJ9HWk21nD1ZnMoOQpk9sjogQAt2pjCmwpALA6BFK28VGQk/NE8LeF5X06FUyBEksHJa4W9nEQsC5mHA2DVC77nCwwtkx4z6N28d08eWMWwdgRsm7giz0Uj/juVhvZ9zG+ljafoq0RNC4nB+PIBwiaZ+VWSKYdovgsvyYy8Hq9C0RzJjbM46kQ0OYN3fxnwqGYcYmb29rQF1rD65bOnbcK4MFEwtxdFURHlmxl0vFmUAYDgJrBYDZRDSdiGIArgPwtHUHIjoWwG+giav6AObIDCI7GrpwoL0X62pbXWOtPXKB1W4tEex1lgFmUJoXB2B3s1KKClUAZYaDlbKXAQLZkAun+IrriXrG/Zj3aXG3ZOtZGeJLVpqXq/dgOYWNPeTCfjtr+aBxP2mHW2YXbNmwDVnCoCbm3AEYRlJgTCa+PBYaNo5ZPBpCIhJyiFS7g2XvwdIul+fH/XuwXCEX2fdAu2PMWHy4iRchZhhmjPLoihqU5sVw7oLKoKcSCNctnYKtBzvx4d7WoKfCjEECF1hCiAyAWwG8BGATgMeEEBuI6CdEdJm+288B5AP4GxF9RERPe9wdMwJp7NRchmbJybB3iaC1B8s+1plUMK5AE1iyWHZDfMlTBGUhF7qbE9XFhmNMFnKR0kMujB4sp4gCoIdZuAMrYpYyQGfqn0x82UMuvNIM3UJPK0ckl2AzxgzB5pxH0tKflUy7HaxEJIxENGw7hoaYNRxC27HXXyOpwNKvJ6IhTwcLcL8/DOdT9p5avbcFN/1huSt+nmEYZrTQ2JnEKxsP4srjJplfDo41Lj16InJjYTy2oubQOzPMABMJegIAIIR4HsDzjm0/tFw+Z8gnxQwZxkKxMrfBcCLcDpZ36VhXMoOSvCiiYZKGKZTmucvUnD1YvQ5BYZQIGtcBreTQEFgpRV4uZy7WK+vPMkIpJDHt2XAJSzmioiIaIbM/y7iflGIVUfKkQEPoOd2tWCRkuT+721fs4W5ZY9pt4RdWB8vRn2Uc31KJgDVel/KCGLpSGQghQKTNqSuZQSREKMuLu3qwrC6m8/2RLRF0v6fe2daIN7ZopTPTy/Nc4wzDMCOdJz6sRUYVYyrcwkl+PIJLF0/EM2v34QeXLjDL8hlmKAjcwWLGDt96fA2e+sjdcOrlYGUU1TMpzrhelhdznXh3JTPIjUWQG4t4CCzNwer1WGhYu+5dImgIB7P3yRKAYWANuYi73C3NOSLSy/YkiwmbPVgWMWf2YEWcDpbRgyVJEfQJuXCLOe/+LOP5ZPQgi1g47EoRNI6hEU1vO4bmOljePVjl+XEIYe9/017LMAoSEZdT2RcHq6nTLbAa9PfbgTYOwGAYZvQhhMAjK2pQPbUEs8YVBD2dQLl26WR0pxQ8u2Zf0FNhxhgssJghQVEF/v5hHV7ZeNA15uVgWU+avUIuxhclXA5WZzKD/HgEubGwrYcnWyLojgo3Y9qli+SqiNscLMX2Ox4JI66X5hnNtIYgiUfkoscQUK6yPb3PKhqxpwgqqoAQWaGkjclj2u19VnpMu6QXzFzrSlIG6CwRNJ6rWd4Y1UomZYsJx6NawqAtpt1x7K39bz0pBUTZ8kHb4sJJBfnxCPLjEek6WMZr4hZY3g6WIegPtrPAYhhm9LFyTwt2NnThmjHsXhkcO7kYs8fl4xEuE2SGGBZYzJBQ39ELRRWob3enuhkCy3kybLgQgDzkIj8eQXFuVBJyoSAvHkZuLCxdY6kgEUEsHLK5KEndpUpENZeq1zGWsPVg6aV5mazYcPYxWUvzXCmCurABNMEkc5XcfVZZoeTdg0WukIuUdczR72WudRV2lyN69WBZyxvjkbAttj5pEZWJqCMAQx8rkUTkd6cU5EbDZmy9NQCjK5lBXjyC/EREEnKRwaSSHADu94dxvbkr5UqQMt5vMoF194ubcdMflru2MwzDjBQeWV6D/HgEFy+aEPRUAoeIcO2SyfiophWbD7QHPR1mDMECixlQ6lp7sL2+0729pQcAcEByUutVImj00UwoSkgdrIKE3Nno1E/K8+IRmxtipNXlxMJIRO0lbD1pBYlo2BRYriCLaNhVIujsswKygiblGHOm90VtDpazL8oScuEQbNY1sszHsqyDZZQcOp20mNTd0kSUVqpILhFoLR9MKvbnbKQIWh/fTBGMhJGIhKVrXZVIerB60hnkxCLI09fjsr5mXSldYMUjrjj+9t40Jpdoa7s4S0gNByulqK73hyGwZO/FlXtasGxnM8f6MgwzImnvTeO5dftw6dETzS+txjqfOK4K0TDhUXaxmCGEBRYzoPzoqfW49aEPXdvrWrMCy+Uo6AKrpTsFRc2OteoO1tSyXGmKYGEiivx41NaLk1ZUpDIq8mMRl4NlOCO5sTByYxGbU9KbVpAT1YSXdt0e3mD0FQGWcjmb2LCHQTgXGpatnQVozlLaKXokvU+G8xSzpP6ZY1Yxp4uvjH4c05Z+L1mJoCn0JOmD8Yh7zS27g2UP/TBTBKMhXcC6Qy4KEtoaWc50x9xY2Fzw2Bqt36WXexZIHKyO3gzK8mOIR0LukIuuNAoT2smFsw+rUb8uc1PrWnrQk1bM9yTDMMxI4umP9qE3reI6Lg80Kc2L4byjxuPJ1XW2L/cYZjBhgcUMKJsPdGBnYxdU1S6i9rVqbkEqo9pOhoUQaOxImYv4Gq4VkHUhppXloTet2krO2ns0B0sLP7A4HvrlvLgRcmFxsAyBFY0gJxZ2xLSrujCQlAhmtDHTwUo7HaywZ6+SLKY9rQhTuLhCLvoQxe5chNgatiG7XdTyWLZ5ZIRPL5gmAg3BmTJFlL3PSnY84rKY9rSCSEhz5nKiYVsPVndKE7fGt63W16wrqZV7ypzKdl1kF+VE0WYpJ00rKjqSGcwclw/A3tvXk1LM+3E6WIoqzG01zd1w8sOn1uPxVbWu7QzDMMOFR1fUYN74AiyuKgp6KsOK65ZMRmt3Gi9tOBD0VJgxAgsspt80dSbx3Nr9ru29aQV1rT1IZVTUd9gdgH26gwXYT2y7Ugp60gpmV2onw9YywayDpUVpW4VZRzKNwpyoeeJtuGKdpsDSe7CSVgdLG9NKBMOumPZENIxoOIRwiMzUO2MsHrGKKEcPlp/TY6QIWiPQM0q2B0vmKkW0OYQoK5ScQRaA9zpYznlEPURUUn8s47aukItwNqZdVhbpdPSyJYLGIsRWB0tFji7InMe+J60gJ6a9XoA9fKQzmUFeLIL8eBTdKcV0OFVVoDOZQWEiogksy3vDeN/MrHC/p4xy1HCIXCmCRp8gAOxpsgusjKLikeU1eHI1CyyGYYYn6+vasK6uDdctmWwudcFonDKzHFUlOVwmyAwZLLCYfvOHd3fjKw996AoJ2N3UBaP6b09Tl21sX2sPjL/31hPbRl2IzanUomStbkNLdwqREGFicQKAvc/G7MFKRKCowixHM07O8+IR5MXsPVg9lh6sHEcPliGwAOgR444UQUmJoPFbFgbhWgfLtcCvv7AxxxwiyupSpTLO/ixy94IpwhaoYev3cqQZGrfJKCpU4f+8rD1Y7hJBuYNlOF45sZBrHazcWBh5MYmDlcqGXABZAd2ZykAIoDAnKhFY2nsoK7CyYt8Q/rPH5aO+w16uav0SYK/Dwapt6UFKUbF5fwdk7GjotJW3MgzDDDWPrNiLeCSEjx9bFfRUhh2hEOHa6sl4b0eT6/yEYQYDFliMJ00efShralsBaOWAVnbUZ/9oOU9Q61p7MFcXUdbeF6PXZd54bazZJrDSKM6NolgPRrCeRLf3pM2QC0BztACrgxVBbtyZIqgLrKjW7yPrwQKgL5KrjWUUFRlVaAsNR+UuVdwWZy4JuXAt8JsVPc41stJOQWSIKP23sZiwtq/8sYz7MfbJCjZ3kEXc4qQ5Fy62CyxH31lYUjLpWGjYlcSoHz+tRNAtsHI9erDy4hEUxO0Cy+i7K5A4WC2mg6U5n1bRbgRcLJpUhLQibO+3Or2MNUTAXoeDtbOx07yvBoc7W9vSjXPveRN/W8nfjDIMEwzdqQyeWr0PFy2agCJ9vUHGztXVkxEicGQ7MySwwGKkrK1tRfUd/8TyXc227UIIrK1tAwBscUSe7mzQTkJD5O5hqWvtwbFTSgDYSwSNk9W54wsB2E+GW7tTKM6NmWtTGSfRQgh09GZQmIiiwHA29BNuowcrX3ewulOK6VL0pLSwinCItJN8xyK5hgBIWBwsa/S4Z4pgxJ2ol1JUREKEkN53pKjCdDg0B0sTSa41spTsmOYqKeZ2bRv5lwga4ssSjmG9P2dMuzlmcctkQRbGmNzBUuxjeqR9r7VEMJMVsM5j35PSUgRzHT1YqYyKtCKQHw9nHSzHwtMFCbeDZfTuTSzOQU40jOZOd4ngwklaf8JBi9g3HKwFEwtdXxDsbMh+ebDF8cXC6r2tUAXw7o4mOBFCmAEvDMMwg8Wza/ejI5nhcAsfxhclcPa8cfjbylrbZyHDDAYssMY4q/e2uBLYAOCVjQchBPDW1gbb9prmHnN/Z7nUzsYuTCxKYGJxDvZYTlDbe9Po6M1genkuSvNiNoFlnPDOMXqwOu0lgsV6CRiQFVg9aQUZVaAgETUdLMPZMEMuYlqQhaIK88TfcEoAvQ/IsdBwwuJgGe6LtezNW1BY+rMsa2RZ+6yMbYARIKE9ltVVUlWBjCps5YOGgyXrs3IJLEnIhV85ohHTbszRKwHR+byM5+xMOkymtQWDY+EQEpEwUhnVDDvpSdmPr2wdLEOAGQ6WNbAk+zpr7wHDwSpMRFGYE7WVjxqBF8W5UZTmxWwuVUNHEkTA/AmaoLeWuda19KAoJ4r5490Ca0dDpynAnWuprKvTvnBYscsd7/78ugM47a7XeP0VhmEGlUeW78WMijwsnV4a9FSGNdcvnYLGziRe3XQw6KkwoxwWWGOY/W09uPJ/38N/vrzFNfamLqyW77Y7WEZ54LiCuLtEsKETMyryMaU013aCul8vvZpYnINxBXHUOxysEAHjChIoTERs/TKt3Wm7g9XtOLnOsZx469s6k0YPVthcV8koDdQElra/28HKOizxaNjiYNmDGwBral62B8vlYMkElnXMdJXC0sWJASAayS4MnJIIrGyEu54iaB2ziC+biPLoBbPGtFuduUiIQGR1sCzP2Vh42XK7uL6ulrmeWMZYIysbcpETc/RnpbSQC6ezaC33NBws47Xv6DUcLK1EsCOZMR1Cw8Eqzo2hLD9mLxHsTKI0N2YuUGwV+/taezCxOAdTy3JR35G0CfAdDV1YOLEIFZL3/Vr9/8SB9l7Uttjdqlc2HoAqIA2F+XBvC/7w7i7XdoZhmP6w9WAHPtzbiuuXTOFwi0NwxpwKjC9M4OHlXCbIDC4ssMYAX3nwQ3zjb2tc2/++qhaqAF5Yf8AWq97clcK6ujbkRMP4qKbVFo++rq4NsUgIFy+egO0NncjoJ95CCOxs6MLMijxMLcu1lQgapVcTi3MwvijhcrBK8+IIhwhl+XE0OlIES3Kj5npGbT3Ok+to9sRbPxk3ysu0HixtzHBCtAVtsyf5ToEVNx2WkCUZL1sSF9ETBuUpgu51sMwACWNh4Ixb9FgdrOxaV7KQC2sPlmMRYjNh0L1GVkoRNhEli2IH7OWDxmMaYskqvqzP2VkyaaQtGsfQ2KYde8UUZLkxt3toOIt58bD5ehkBJXkxdw9Wu/4eKLQ4nIaL1dKdRjRMyIuFXQ5WY0cSFQVxjCuIA3A4WK09mFScwORSbfHimpbse3hnQxdmVORh3vgCW4mgqgqsr2vHkmla+esKyxcSqirw9rZGAMDz69wC66fPbsS/P7MRG/e53a2N+9qxq5EbsRmGOTQPL9+LaJjwieMmBT2VYU8kHMI11VV4a1sDalvcy3EwzEAxLAQWEV1ARFuIaDsR3SYZjxPRo/r4MiKaFsA0A0cI4YqWNvj1mztw5f++Z56cGry1tQHPrduPx1fVYnt9p7ldVQUeW1mLvFgYDR1JrNrbYo69va0BQgCfPWUaUhkV6/SeK0D7tn7+hEIsnFiEVEbFbj2Np6Ejic5kBjMq8jG5NBeNnSnzZLhWF1iTinNQWZDAgTZLyIV+wgtoiwE6SwRL8mKIhEPIj0fMEkFDaBUkIiiIayfXWQfL3oMFZNMDrSWCzqAFq8OipQjakwITkeyYV88R4CwD9HCwnAv8SqLYjTH/IAt7n5UhhrRtemmhI5VQFTBFsU0ERuQ9WMaYX9+Z9XgYwkomvmQx7amMFiKSaxG+huPYZXEjnT1YzpALIFtCavTuEZG7RLAzifL8OKLhEMrzYzaBZThYU3SBZUS1t/Wk0diZxMyKfMytLMDWgx2mW7azsQudyQyuOr4KhYmITWBt3N+Opq4UjptSjB0NXdh2MCvMttdr3zgDwG/f3gkrLV0pXHv/+7jmN+/b1vcCtL8BDy7bw+KrHxDRuUT0WyI6Rr9+yxHc16E+q75GRBuJaC0RvUpEU49g6gxzSHrTCp74sA7nHTUeZfnxoKczIrhG71N7bCUvu8EMHocUWET0af3nE8YH1EBCRGEA9wK4EMACANcT0QLHbjcDaBFCzALwXwDuGuh5DAZCCFdPhrF968EOV8w5AOxu7MKPnlqP97Y32rYnMwq+/tganPizV/G7d+xlRa9sPIg7X9iMVXtacPeLm83tqipw5wubMak4B/FICL97J3sit2xXM/Y2d+O2i+YjFgnhhXXZxffe2tqI4twoPnvKdADAit0t5v2tr2vH0VVFmDdBS/0zyqW26wEXMyryzBNUw8Xa19qDaJhQkR9HZVECTV1JUxw0dCRRnq+lBJZZToZ7UgqSGRXFehqSNcjAcLAKLQ6WtQcrHCLEIyFLKp3hbim2MrWktUfIknKXsJYIWhwswBBY7n4kQ4xYFxr26sFyxqPLFgwG7D1T9ph2WZBF9jbW/WXzsCUMSh7L2oNlPD+n+NJ6sOwpgn4OljUGP8fS42aIXGMsLxbJOlgWsezstfMTWC3dKZTo75uyvBiauuSCvrIwYYZcdPSm0d6b0UsEtfRBo8x1p/nezsfc8QVIWr5YWFfXCgA4enIxqqeV2kJhjDLb269YCCLNKTZ4bGUtIiHCZUdPxDNr9tki4u99fTu6khk0d6Xw0+c2wsr/vrkD33tyPa75zfvY7RBZL284gPP/6y08vqrW9Xdne30nnl6zzxaBb2BdfHmU8jkA3wTwSSI6G8Axh3MnffysWg2gWgixGMDjAO4+3EkzTF94cf0BtPWkcf2SKUFPZcRQVZKL02ZX4LEVNeYXjgwz0ET6sM9Z+u9cAPOISAD4vBBi5QDNYSmA7UKInQBARI8AuByA9czicgA/1i8/DuBXRERCpl4GiH9uPIh3tjeiO5VBV0pBb0pBQSKC0rw4yvJjSGZU1LX0oK61G+09GUwvz8OscfmYOS4fdS09+HBvC1bv1crrTptdjjPnjMOiqiK8saUBT66uxdaDneYJ1hdOn4GJxTn41Wvb8Mf3diOtCPzp/T34/KnT8Y3z56I3reCLf1mFZbuaMW98AW5/diNyY2Fcv3QKdjZ04muPfoTFVUU4amIR/vT+Hlxy9EQsmVaKp9bUYeP+dvzPdcdg2a5mPL6qFl87dy4qCuJ4bGUNChIRXH18Fd7cUo8X1+/HDy6ZD0BzsE6dVY6KgjhmVuRhxe5m/B/MNL+tXzSpCLPG5SMcImze34FLFmdT1mZW5KNJd6H2Nndj/oRC7GvtwYSiHIRChPGFCQihnehOLM5BY2cKM8dpARdl+THzW32jj6ZEj2gvtAksI+Aggry4dmKeFVgK8mJhEJFr4dqelIIyXcwZQqs3o5gpf6bDEgnDvXhu2PyddCYMRt3rRdlLBLXbWkWPbIFfa5AFYIgvZ8gFIaz3RcmDLMh8DON2RomltT8rqhBUYX8sWUy79pxD8r4zjx4sICuYei2lltaYdrMvLq29bkZvXK6ldNMacmG4kR2WFEGjTNGIJG6zlAga0f6leXH0plV0pzLIiYbR2GkXWIYjvL8t2ydYkquFp9SYAkt7b8+oyENPSluTbcuBDsysyMfaWq2UdlZFPqqnleC1zfVo6kyiLD+Ot7Y2YMGEQhw1sQjVU0vw/Lr9+NePzUZaUfHEh7U4e944fOuCuXhu3X784d1d+N7FC1DT3I0/v78HVx1fhfL8OO57YwcuPXoiTp9Tgbe2NuD/vbQFZ86twNraNtz4wDI89qWTMLEogd+9swt3PL8JebEIvvG3NXht80HcccUiAMB//3Mr/rpsLxRVoCgnik+dOBWfOmkqthzowJOr6/Di+gNIKSqOn1KCM+ZW4OiqYmw52IHVe1uwtrYNubEwZo3Lx5zKApTkxbCvtQd1LT042N6L/HgEpXkxlObHEAkRupIKupIZdKcU3HXVYlMYB0yHEKIVwDeI6E4ASw7zfg75WSWEeN2y/wcAPnmYj8UwfeKhZXsxtSwXJ88sC3oqI4oblk7Bl/66Cq9vacC5CyqDng4zCjnkp58Q4rPW60R0MYB/ENHRQgh3LnH/mQTA2m1YC+AEr32EEBkiagNQBsBm8+ilH7cAwJQpR/ZtzuqaFvz9w1rkxbT1lBKRMLbWp9HcmUJXSktLqyxIoKokB5WFcazf14bn1+83F9qdVpaL02eXIxwivLWtAc9bHKLjp5bg9suPws7GLjy6ogZPrK5DXiyM7rSCq4+vwlfOmoUH3t6FB97ZhXe2NyKlqKht7sF/X3sMLlo0Abf8ZSW+++Q6AMAf3t2FSJhw343HoSQ3hre3NeDbj6/Fk185Bf/vpa1YNKkIly6eiMVVxXh4+V786b3duOWMGXh+3X5cXV2FRDSMCxZOwD831WNNbRvikRDqO5I4fU4FAGDp9FI8t3Y/VFWY39YvripGPBLG9PI808Ha2dCFnGgY4wsT5smwsZaQVnqlnZhWFmontwfaezGhKOEqEWzpTkFVhUVgGQ5WxOyxsfbfGAl+HZYSwTz9pC7P1YOl2ErRAE10KRHtRUtYerCcMe1m6VvUWiKoiw1bX1RW9MQjDtEjE1+S3qdshDtJyweJSO/PMsIxhNvByrjFl1UExhzb4h4x7cY+ZsiF4ehFQsgoshJBp4Olmsfe6h72pLX4fENoZXuwsg6WtdwzFCLkxyOWHqwMChJZdxOwlwhOL9dcqLI8TWg1daZQnBtFb1o1HdPKwgTW1LQCgBmlPqk4B0SEyaW55mKUOxq0L0OmlOZCUQVCpDm3Fy2agLW1bThqYiEi4RCWTtPSu1bsbsGps8uxak8LPn/aDADABQsn4PZnN2J3Yxe2HOxAY2cK1y6ZjKqSXFy8aAIeXl6Df/nYbNzzylYQAf927hyU5Mbw0oYD+M4T6/D7m5bgXx9ZjdnjCnDfjcdhZ0MXrv/tB7jxtx/gpJlleHh5DS44ajz+85qj8ef39+CeV7Zg5e4W9KY1d+qGE6bgvAXj8dcP9uDeN7bjV69vB6B9SXHFsZNQkhvFG1sa8POXsoE3E4sSOGZKMXrTKj6qacWzelBHJESYUJzA+MIE9rf1YsO+djR1JaEKIC8W1vof9T67YSKwniOiT+uXVwLo9NvZh758Vlm5GcALsoGB/Kxixi5bDnRg+e5mfOfCeQiFONyiP5wzfxwqC+P46wd7WGAxg8IhP/2I6GuSza0A7iKijUKIewZ8VoeJEOJ+APcDQHV19RG5W988fx6+ef486VhvWkGIsoECBj0pBbubulBZmECpfmKnzwub9ndgXV0rTpxRZpYgAcD//dgc/HXZHmyv78TNp0431+e5/YqFOHveOHzz8bXIqCr++vkTzPjVX3/yeNz0h+X4zhPrECLgz587AVUlWlnezz6xCJ/63XJ84r53Udfag59ftRihEGF6eR7OW1CJv3ywB0U5USQzKq6p1uqQz51fiUiI8ML6/SjVv/k/fbYmsKqnluLh5TXYcrADa2r0b+t1x2nu+AIzQW1nYyeml+chFCIU6cEUe80SwV6cMEObe2WhJrTq23vR3ptBSlFRkW8IrDgUVaC9N41WvfekKCem/45id6N2f9byMAAoiEfM+O7uVFZgGSftPZZytJyoNmYIgZ60AkVXxQlLhLszpt1wsGJhe4lgNKytdSV1sByleUmLQ2QtzUsrWimpU9hEwyFTUDjLB639WdpiwqTPU9LvZd4mu0Cxs9/Lr0RQC7nIlj4SaSfZ8pALYy2xsLnN+G2NaRdCu51RIphj6Y0z1kYzhJbxOubHI9l1sHrTKMzRXku3wEqbzqfx/7C5K4WMXg5qCPrxhQk0daWQ0t1oQBNYADC1NBfb6rNfHkwpy9UTHIFp5XnYvL8dGUXFhn1tuH6pdoK8qKoIsUgIK3Y3IxwiZFSB0+eUAwAuWDgetz+7ES+sP4CVu5sxriCOM/QvMW45fQaeXrMPP/zHevzjo334P2fOxIQibR53X7UYV/36fVz6q3cQj4Twm08dj9xYBAsnFeGPn12KT/1uGR5eXoMvnj4D375AO8n6P2fOxGmzy/Htv69FeX4c371oPubqC3mfPqcCOxs68Y+P9mH++AKcNW+c+bp864J5qG/vxcb97Zg3vhDji7T/qwZdyQw6ejOoKNBCaawYxQTDMcFMCPEUEf1Bv2pUYlyFga3EsEFEnwRQDeAMjzkN2GcVM3Z5aNkexMIhXF3Na1/1l0g4hOuWTMEvXtuGvU3dmFKWG/SUmFFGX75eLJBsC0H7oMofgDnUAbD+dajSt8n2qSWiCIAiAAPhnh0WxgmJk5xY2FxfxwoRYcHEQiyY6B4ryo3iK2fNkt7fWfPG4fVvnIGMIlBiEWyJaBgPfGYJvvX4Gpw8sxynzi43x06bXYFrqqvw2MpanDGnAifPyo7dcvoMvLThIO5+aTPmjS/AIl3MFeVGcfKscryw7gAml+ZgbmWBeXJliLoVu5uxrq4NCycVmidX8yoL8Nza/ehMZrCjoRPHTC4xH2tqWR72Nncjo6g40N5rnrga93ugrdc8kTZOeE23oStlCqySPHcPVntP2oz0BoD8RMQW0+52sIyQi4wt5ALQTvwN1zFhKW+zCgMgK1w0ByvrbhliKC4RUYaLk+198kkYVFRbn5U2ZhdRAGylgDaBZRFs1v3Tioq4w93ShKHjsawulVNgRewR7ma6oCu23hJyYTm+qr4WmbUHyxiTOlgpI0VQMbcB+uts6cGSOVhCCDPeHwBK87MCy3he5flGiaD2u76jF/taexAJkflenFKWi9e21ENVBXY2dmJGefZP3bzxBdiwrx3bGzrRm1ZxdFWx9pwjYRwzuRgrdjcjlVGRGwujeqr2/2dScQ6OnlyMR1fsxd7mbnzxjJmI6K/HwklFOGVWGf7x0T4U50bxpTNmmo91/NRS3HTyNPzh3d2474bjMK08zzJWgkdvOQn723pw3lHjYWXhpCI896+nQcaMinx87dw50rFxhQmMK0xIx/LiEfO1cDIchZWVAarE6MtnFYjoHADfA3CGECLpHGeYgaA7lcETH9bhokXjbV/oMn3nuqWT8cvXtuHhFXvx7QvkX6gzzOHSlxLBf7deJ6JzoZU2fFUI0SC/Vb9YAWA2EU2H9mF1HYAbHPs8DeAzAN4HcBWA1waz/2o4YZxEOsmPR3DfjcdLx7538QLEIiF8/tQZtu3HTy3F8VNLsGpPC66pnmw7Kbpo4Xjc9sQ61LR04/OnTje3V5XkYHxhAu/vaMKGfW24YWk2FGueLibX1bahtqUHnzi2yhybUpqLjfvbcbAjCUUVmKgLrNLcGKJhwsGOpLnIcNbByp4MO3uwihw9WIWJiDl/a+lYVzKD/Li9DNBo7HemCAJAT0qFkVBvCIB4JIReR2pedixsc3oMIZENuciOGb1PMYuwUVQBVUAaPOEWUbL+LJKOmbcx7s9YoDgjXCWCaUXN9lmZ63G5e7BMUelIGDSeTzhEiIbJVjJZrIudhKU/y3kMcyzOovHaGK9LbiyMbstCwxE9sATQXucOU2ClzeObiGplou09aXSnFKQU1RZyAWii3RBzZg+WLvYPtiexr7UH44sS5pcHk0tzkcqo2NfWg92N3Thr3jgYzK0sxAvrD2DZTi3QYlFVkTm2ZFoJfv3mTjR0JHHSjDKby33hwvG48wUthObq47P/VwDgi6fPxLvbm/AvZ882BaPBDy5egJtPnW661FYWVRXZHp+RM0CVGIf8rCKiYwH8BsAFQoj6I5s1w3jzzJp96EhmcOOJHFR5uEwoysHH5lfisRU1+Ldz5riqkhjmSOhLiuDv9Z+HiWg1gHsAXDVA4gpCiAyAWwG8BGATgMeEEBuI6CdEdJm+2+8AlBHRdgBfA+CKx2WyFOVE8dMrFtm+7Tb4+rlzMH9CIT5+rH29jHMXVCJEgBAw+68A7ZvpJdNL8c9NB7Vv6ydnT+bm6WVHL204ACG0EACDyaW5qG3pNoMCDIEVChHGFSRw0OJglRfYBVZTZwqt5mKxWZeiJ60glVHR0Zu2Cc/8eMQsG+xKZswesNyokSKoQNFdlJyYW3wZLpV1oeGUnjBoXWjY+G0VFIbYkK0XJUsRlJXmAVrPVCojbNusIRdSV8kUPQJ+IRfRCNnuN6WoZo+WdB0ss1QxbI5ZQy7iFgfXWjLZm1YtaYtZl8o4vtaQC0Ar2TRLBKNZ1zEb066VexpCuiARQWdv1sUstLwHDAHe4njfZEW7W9CPLzQEVi/2tfaa71FAKxEEgPd2NCGlqJhpdbAmFEAI4O8f1qIgHsF0S8nvkmmlUFSB/W29tv9HgCawtH1KMKPCbv6fPqcCz/3rqfjsydPgJBQiqbhi+kWB5KdflRh9/Kz6uX5/fyOij4jo6YF9Ggyj8eCyvZhbWYDqqSWH3pnx5JMnTkVTVwovbThw6J0Zph/0pUTwTf13F4CdAFYPtHskhHgewPOObT+0XO4FcPVAPuZY5eRZ5Xjhq+7SobL8OE6cUYZVe1qwRG/WN1gyrQTPrNkHAGZZIaCVPeXFwnhhvdb8PtNy0ji1LBdpReBDfX2tScXZsqPKwjgOtFtKBPUT3rJ8q4OVRm4sGwVuLQPTAg6yb92CRMRMgetMZszG+khYW6upO50x+7ByLX1WAGyLDTsDGlKKml1o2LIOluGWaQ5W9jsKpwsUi2QFirHNmdAnH5O7VAAQDVnLB7MJg9k+K3c5onVdrew2t9BLKwKqKtylipbnbC2LBDQxahWcCUdMezKtmsfYug6Wceydr0uOvkaWogp0Ju0hCfnxiLm0QYfjPWAILKO01CgRzI9HEAuH0NSVQjSkLRRtuKJGP+CBtl7UtfaY5bAAzKUG3tyifY80c1xWRBlfLKytbcNJM8pszeXHTy1BiADV8UUFoJXNfvP8uThxhv3/l8FRE9mJGiwGqhKjD59V5xzhVBnmkKytbcXa2jb85PKjhn157nDntFnlmFyag79+sAeXHj0x6Okwo4i+lAj+aSgmwgTPjy87CrUt3a4eM0NwFcQjmGb5tj4UIswZX4DVerS61cEyTlDf36G1N1jdgcrCBLYe7EBjZxLRMJniyeo2aGsZZevKCy0CSysPsztYnZa1rnLj2fnnxSPoTmZL0XIkfUDGB1ROzB3QYDpYFmfG2nNkExuREFJKdgHdWNgterLukMNVylhcJdM5svdZRUJknsxHwyFbUqDs/gDvdbCcgRrWcAx5yIWlByvqeM7GmMXBssa0Zx2sbBmgcXzdPVhZ8aU5WNnX0h1y4e1gGe8dc7HhzhRCRCjLi5nHsCQ3ilgkhP1tPTjQ3msmXQLa+zVEwFvbtHNvaw/W5JJcrZQxpWCxozyvIBHF/AmFaO9NY5qkadqr35IZXIjo9/rFHADzoH32DVglBsMMJQ9+sBc50TCucFSiMP0nFCLcsHQq7npxM7Yd7MDsSlnsAMP0Hy44ZUzmVBbg7HnuuNK5lQUoTGjJZc4o2HnjtT6sCUUJcy0jICuwVu5uQUlu1DZmLPDa0JFEWV7cvM94JIz8eMQMuTDKvACHg9Vjdy/sIRcZWyN+TjSMrlTGklbnThg0xrKL5BoCQLXFkgP2mHaZg2UTX47giWRGHmQB2EMurCV91kWIoxYxF3WIL1mflfE75ihHTGUkTppMBJrP2d535hSV9hRB5zHMulSuHqxUNkUwYfZgaa9PdzKDrlTG9r7JT2g9WGndWSyIux2sFiMcxfLeKdUXsG7sTJoBF4AmvioL41hb2wZFFZhUnBVEsUgIE4tz0NGbQUlu1BYyEwqR+SG8WA+4sHLXlYvxi+uO5W+Whxdv6j9/hxafvlgI8X6wU2KY/tPancJTa+pwxbETbV80MofPNdVViIVD+MsHe4KeCjOKGBaLlDDDm1CI8P+uPtrslbJilEtZ3StAE1yREKEnrbjGKgsT6ExmsKep2wwcMDBOhp0OliGw2g0HK8fqYEXNE+9URkW+5aQ8Lx7WHSxHKZrlJD9E9qjw7BpOCnozCmJ6ah5gFxROB8veF6XY+ra0be4eLFnwhFd0utFfZY5ZRJQhKiMhowdLIKOorsWEzcfK6OEWzt6tjHUe2X1siwlbHE6no2c6WBHjGGbLLF09WFYHK2p3sLpTih5YYikF1Z1KYz00Z4ng1oMdlt697HunLD+Gxq4UhBCu91tlQQJra9sAwOZgAdqXBLUtPbbSV4P54wuwpqbV5WABMJdaYIYPXInBjBYeXVGD3rSKz0j6NZnDoyw/jkuOnoC/r6rFN86fy8KVGRDYwWL6xHlHjcdxU9zNtMb6Os6T0Eg4hEklWlmgtTwQAMYXaSe5G/a1mYu+GhgCq607jSIPB8vZf1OQiCCVUc3yMKuDlRvTYr/NPiBJD5azhM0MaMgoSKZVUywYY9akQGNfwF5KJyvNS0kcrGzIhbtszxpyYY1iN26XXaBYmGNG2EZaUc3bygIw3H1WYXMsKZlH9jlnhSOQdfSEEHqEu3Y/kXAIkRBpZZY+PVjd6Qxi4ZAZWW44Vl2pDLqSir1EMBGBENoi1QCkJYLZHqzsWFleDM1dSdui1gaVRQnzvTHJ8T41XFjnFwQAcMWxk3Bt9WRUleS4xhiGYQYDRRX48/t7cOKMUrN6hBkYPnvydHSlFDy+sjboqTCjBBZYzBExf0Ih8mLa+j9OjBNU54mrES7QlVJcJ7xleTE0dRoOlltgtXSn0JHMuFIEAeBgW9J2HdAcEWtaXa6kB8ssUzPXwcq6L27HJmQKBi1RzyPkwuI4WZ2jZMbpUhmiR3EtJmy4VEIIWxkg4A65sDpp0TBpqYRe5Yg+TpoxFgvbXbuUGWSh2gWWLr6yCzK7x7xLBLXSTeM6kHUYu1OKq9wzP6695vtbNYFlfQ8U5kTR0ZtBc1cKBfGI7ViV5sXR1OkuEQSySYIAMMEpsMoMgeV2sE6cUYa7rlrMZYAMwwwZ/9x0EHWtPbiJ3asBZ1FVEY6bUow/v78bqjomVgFiBhkWWMwRUZQTxfvf/RiuOMbdbGsILGfpVaXlpFZWItjYmURbT1oacrGvtUe7nrCnywEwE+asIReag2UtEdT2jYYJ4RChJ6WYa1453S3DfUlEnY6NX8iFapbmGWEVtiALrxTBjHsdLCO4IqMKW+y7cTv7OliW8kF9HuZjSYSe1zyMMkvXYylW187t6DnXujIuazHtjnWwLDHt1rXJAIuDpfdg2VIE9dd8X5v7PWAI8L3N3SjOs5d3lOXH0J3SBKzLwdIXGy7KidoeC8i+f2UlggzDMEPNH9/djYlFCZwz390rzRw5nzl5GnY3dePNbZx9wxw5LLCYI6YwEXWFXwBWB8uepmZ1DZyOQml+DPUdSajC3kcTDYeQFwujptk4ubY4WPqJtlE6Zi8RDKM7lcmmCOon80RkRoJnHSxHxLguHKxlgPFIGBlV629KOdwtI+TC6RxFQgQiR0KfMzpdsbpK9kRAo9wv6nSpjB6sjMzd8llzS+KkGSIsmVGRUhSbwDKSAo0yQOdYMmNJW7SMaQLLHdOe7cFSXQ6WtQerO6nYQi6MUIt9EgfLEFi7m7pQnOMuOzVwCyztvegsYwW0mPXPnjINJ88sc40xDMMMJVsOdOD9nU341EnTzJJqZmC5cOEEjCuI44/v7g56KswogP+XMoPGrHHaN/9THXHVefGIebIsKxE0sJYIAtpJdG2rtnBxYY77xNtwsPKdPVhJS4lgzO6w9FiCLKxphkA2pj3ucHOAbK+SPeQijKQkhc9chNjSF+VyjiQlfc7UP7vAsrhKlnWwzLGMfD0r4/6MecQlY86kwFg4BFVknTSb4IxqotKZtmiM2WPa7aEfWshFxvaaGItEt/WkkVJU5Dt6sABgv+5gOUMuAKCmudvWfwXYBZaz588Q+84yVkAT8T+69CibYGcYhgmCP763G/FICNctmRz0VEYtsUgIN54wFW9ubcDOhs6gp8OMcFhgMYPGWXPH4fEvnSRNVRunl2ZVOB2svOx1a4kgoJUJGg5WgczB0hcbzrOmCMbC6EllzBLBHIvjlBMLaSWCKcUWZGEtEexNq7ayN2sioHNNKCPkwimwbGP6OlkyV8m1mLBFzGl9VmS7P+tiws40Q9v9OWPaLetgZR2ssD4PeTli9jkrjrJIo0TQ3mcFaI5g0hoiogupUIiQiIbMCPfcqCVWX9+nvl3rp8uLu0tBzTLRHLeDlVaE631jFe3jPBysSY4yVoZhmOFCa3cKT66uxeXHTLQtGcEMPNefMBnRMOHP73NkO3NksMBiBo1QiFCtL1LsZHyRdkLrjH63ngw7nQgjKQ6wuxfGifcBmYMVj6A7rbhKBAFNbPWkNBFl3W6IqGRadTlYhnuTlImNqBYGYThLcWeEe8ZdIhgN20WUdTHh7NpU7pALbaFhYY7bI9xJLxG0pwhaQy7caYb2mHZvgeUWlclMts/KXiIY0mPa7SWYgOYsGuEjORIHq77DXe6Z7ygRzI+7HSzA7XzaHSxHyEVRAgWJCOZN4EQuhmGGJw8u24vetIqbTp4e9FRGPeMKErj06Il4bGUN2vRUWoY5HFhgMYFgOAeykAuDYocTYT2JlvVgGa6HPeQiDCGApq4UQmQXADmxiNaDlVZc4QwA9PI2d2oeoIkv50LDcb1sT+pgGQLLLBEk2/2ZpXnWUj99n3RGRTrjv9CwM8LdvpiwO+TC2e+VdcsUyWLC2Qh311g0ZHOw4pKQi560gnCIbCLQ6H/rTik2VzERDYEIaOhwJ0Iaovpgey8K4hGELX1/1veG831Tprui0TDZ9jPm+M63zsY11Vx2wzDM8COZUfDH93bjtNnlWDCRvwgaCr5w2gx0pxT8dRm7WMzhwwKLCYR54wtQWRg3+6cMSg/Rg2VgWwdLj++WOVh5ujvS1JlCbixii9XOiYbMdbCcJ/lAtgfLViJojGUUzc1xuFSykAvjslXYuBIGpUEWFkEk67NSVKiqQEa1385I/cumCGqPFQ4RQmRf1FjWn+UMsojZHD2HqNSFo9GDlXCI0WRGW2g4YVms2TjGhsCy9mAREfJiETR0uksEjcsZVdhef8DfwSrMiSASIlTkx6Wx6kW5UZtYYxiGGS48tXofGjqSuOX0GUFPZcwwf0IhTptdjj++t9v88pBh+gsLLCYQPnfKdLz69TNdJ7xleghBiOBaTd0usLKXE9EQwiFCW08a4RDZHCcjha6pK2krRQM0F6U3rcW0O50XwLIOlqREsDOplRw6UwRlSYFAVhCZfVFOV8kjyAKQO0dGT1datfdSGZfTioq0w6Uy52FdBytkD55I+fRg9aQVKKowBZtxPJIZFb0+DlavwyEEtFLN3pTmbjlfl9xYONuDZRmLhkOm+C1IOJ2okHl8nD0KRISSvJirHJVhGGY4o6oC97+9EwsmFOLUWeVBT2dM8cXTZ6KhI4mnVu8LeirMCCVQgUVEpUT0ChFt03+XSPY5hojeJ6INRLSWiK4NYq7MwBIJh1zrDgGaIMqJhlGU445+NwRWIhqyCQAiMu8rLxa2iTYj9ruxI2VzSgDtJF8WchENa4ItqSfg2WPatf3a9V4wmejxDblw9WDpZYCKQDrjCLKwpf6pZqmfMWbEt8vmkVYEkqaYc7tbKX3tLOMYOxML4465A0BnUnvOTgdLUQW6kh4x7Rl3CSZgLRHMuF6X3FhY6mAB2cWGrSmSgPYeMEIvnCWCgJYSWFXiTgpkGIYZrryxtR7b6ztxy+kzeFHzIeaUWWVYMKEQ97+9kxceZg6LoB2s2wC8KoSYDeBV/bqTbgCfFkIcBeACAP9NRMVDN0VmqCnNi7mS4ACtlAtwuxdAtizQKdoMB6uxM2krAwTsMe1OFyURCZkOVsIhKACgo9dwsJwhFz49WIo7Ot3mUjnDJQ4RcqEKmPHzspCLtMRJM50v59pZPjHtpqjUn7OzB0sbS5vH1DyGeshFMm0/hsZ+XWbAiPs1M46h8/U0SgNl74EiXXQV57jH7r3xOPz7ZQtd2xmGYYYrv3lzJyYWJXDx4glBT2XMQUS45fQZ2F7fide31Ac9HWYEErTAuhzAn/TLfwJwhXMHIcRWIcQ2/fI+APUAKoZqgszQU5YfcyUIAlkHqzDhdr6ME2+n42G4I83dKc8SwZ6UYku4A7Llbcm0vXzQuGwICrt40RYhNhbWdTtYimSBX7tL5dWD5dWfZaQjutfBcq+5ZVxO+4i5VEZxlQj6ikr9uBnpjs5ySiPkQnbsW7pSAOBysPIsISVuB0u7LnsPGO8PmTifVJzjClRhGIYZrqypacWyXc343KnTbX/7maHj4sUTMLEogfvf2hn0VJgRSND/ayuFEPv1ywcAVPrtTERLAcQA7BjsiTHB8dWPzca/fGy2a7tRAubnYOV6OFhCuE/kzZh2iYMV1x2sXldMu7fYMESJ0Z/lXJvKFo+uj4VChEgoG6tuF1F6dLoi68/SxozSPL+QC3d/ltsRyyYMClcqYcx8zm5RmS2ZzNiuA5pITeox7U4BmxMLo0kvA3SXCFqDLexjxussd7D0EsE89xjDMMxI4tdv7kBBPIJreWHhwIiGQ/jcqdOxbFczVu1pCXo6zAhj0AUWEf2TiNZLfi637ieEEAA8C12JaAKAvwD4rBBC9djnFiJaSUQrGxoaBvR5MEPHx+ZX4qy541zbTQdLUgJmRLXnx73dkJyoXXzlxLQSwZ6UvIStozcNISBdaLjddGzsIReAJQBD1vuUsa91ZY5l5EmBgB7T7lxoOGJ3sJw9U7IoduOymRTY10AN43n1uoM9DlUimFJUdKXkDlaXZPFnICu4IiGyzQPIvs7OFEFAe39EQuRKpmQYhhlJbD7QjhfWH8BnT5km/TKJGTquXzoFpXkx/OLVbUFPhRlhDLrAEkKcI4RYKPl5CsBBXTgZAkpa6EpEhQCeA/A9IcQHPo91vxCiWghRXVHBVYSjjSLTwXKfQGdDLuQOlnbZXQaoCk0cOEMY4tGwtOwt5nCw/ISIswQvnXG7Q4A99S8ucYdS+phzrSsApkiRLUIsj4sPm5HwsiCLpM9Cw7LnfKgSQUATo3FJCaZBrsdrlhePuBq7DfEkE9lzxhdgTmUBN4MzDDOi+eVr25EXC+Nzp/LCwkGTF4/g86dNx5tbG/BRTWvQ02FGEEGXCD4N4DP65c8AeMq5AxHFADwJ4M9CiMeHcG7MMKMvPVjukIuw9DKQdU5SGdUlsBLRkK9oMMrlnIl62phbYEUtDpaznt4a4R6N2CPVAcs6WLIeLN0tky1C7CxH1C6THmSh2G4T0hcCTiuSdbDC9hJB2XNu1yPyI5b7NFzB1u6UyyG0vhY5MfuY4TrKUib9HKwvnzkLz3/1NNd2hmGYkcK2gx14ft1+fObkadJEVGbo+fRJ01CcG8Uv2cVi+kHQAutOAOcS0TYA5+jXQUTVRPSAvs81AE4HcBMRfaT/HBPIbJlAKepDD5YzFMFafiZbb8nAFXIRCWfLACUlcXI3x6cHy4hpV4TLwdIW65UkBdpi2t2LCVsfy3etK8ftjNAMmZNmpghaRWXUEJXuckTTperN2KLugaxL1daTdpUB2l6XqJeDZb8NYA254LIZhmFGH796fTtyomF8/rQZQU+F0cmPR3DzKdPx6uZ6rK9rC3o6zAghUIElhGgSQnxMCDFbLyVs1revFEJ8Xr/8VyFEVAhxjOXnoyDnzQRDNBzCN8+fi8uOnugaM9ZHynWclIdCZAop2TpY2ctOceDlYNl7jmwLDYft4ku6/pSjv0l7XhbnSBJk0Z2SpRIaIRcegRq+IReGk2YvpbP2gsUd4hAAOjx6ywC9DFDiAgKA6uhjA+zHXrYOFuAWy4C/g8UwDDOS2dHQiWfW7MOnTpqK0jx2r4YTnzllGgoSEe7FYvpM0A4Ww/SLr5w1CwsnFbm2myEXMfeJt+GIOHt97IEMzhTBbAiDLcgi7O1gZV0ledpeStLfBFhj1e0hF8btu6VrXTl6sGQhF3pMu9TdkswjFg6hO6VACHe0u/ac3cEe1hLBuNPBini7h/YeLLnAkpUIFvikCDIMw4xk7n19O2KREL7A7tWwozARxedOmY6XNx7Exn3tQU+HGQGwwGJGBQUeJYLaNu2E3eWi+Agsa8+Q9TIRIR4JWcoHZf1ZbvFlpPelPZwjs2zPtwxQ0oOVko+pAkimFcTCIVvog7HgsawXLBYJmeIw6hCH1nnYywezjp77GFpLMO2P5Ve6abyGTuEFACX6t7pl/O0uwzCjiG0HO/CP1XX45AlTUZ7Pa/YNRz53ynQUxCO455UtQU+FGQGwwGJGBfkeIRdA9mTer0TQTxw4E/DikRDafR2sDKJhSRS7ZIFfwBFyIXGppEEWhoOlr4Mli1w35mHFcLfSiupynGLhUPb+pCEX3j1YzlRC534Jn2PvThH0LhE8b8F4/OGzSzCtPM81xjAMM1K5+6UtyItF8OWzZgU9FcaDotwovnTmTPxzUz2W72oOejrMMIcFFjMq8Aq5sG7zShF0Xgbc6zlZiUfD2bWuZAsN92ZcfVaxcBiKKtCbVqTOkSxcIqILtC5ZD1bE6M/K2K4D9t6tqEvMkflYsnl0SFwqI2HQcO1sDpbHZe3YeIeI5PiUCBpR+zKxHIuEpGukMQzDjFRW7m7GKxsP4ktnzuTeq2HO506ZjsrCOH72wiZoy7cyjBwWWMyoYHxRQv/tLq0wTuD7J6LcLk32umUsLOnPSmbcLlUkK5bc4iskjWInIt1VkpUcOnqwPEr6XI8VyT6WqwcrEkJnr7t/zLieXUDZ3YMFwDPkQrssP/ZEbmHm52AxTJAQ0QVEtIWIthPRbZLx04noQyLKENFVQcyRGVkIIfCzFzZjXEEcnzuF170a7uTEwvi3c+Zg9d5WvLThYNDTYYYxLLCYUcGcygK88Y0zcfzUUtdYnkfIhS1F0CkArCLCKb4kPUiAw8GSlN9pY2lJiSCZJYKyhEGvxYSBbIqgV3+WdM0tsxfMPSYrETSup/XQDFmEO+AWSglbn5WjB8tIdoyGXQsD58a9HSyGCQoiCgO4F8CFABYAuJ6IFjh22wvgJgAPDe3smJHKyxsPYtWeFvzbuXNc/ajM8OSq46swa1w+7n5pMzJ6Wi/DOGGBxYwavPpyTAfLp0TQlSLo477IUgW17drlnrQiXesK0HqmpK5SRsjXpoqELCLK3tOl3Z+3wOpMuufh1wtmd6nct3M+F/dlv5AL+bGXnVDkecTqM0zALAWwXQixUwiRAvAIgMutOwghdgsh1gLgsy7mkGQUFXe/uBkzK/Jw9fFVQU+H6SORcAjfOn8udjZ04bGVtUFPhxmmsMBiRj3G2lheceCAu0Qw4VEGB2TFlzPIwrY+lEREAZogkjlHvRkFiircfVGWEkFZhLs05CKSDcfwCrmQrcelpQi6e7C055Yt6YtYnnMkRDCuuo+hd8iFl+gFgPL8OGKREKpKcl1jDBMgkwDUWK7X6tv6DRHdQkQriWhlQ0PDgEyOGXk8vKIGOxq68K0L5iES5tOxkcS5CypRPbUE97yy1VwXk2Gs8P9oZtRjlAg6ywBtKXe+KYLycj+nY2MPobCPma5SSlI+aHOp3OLLXGjYL6bdEnIRs4RceK255dWDlb0P+XOLR+yx71psfVgf67uDZYzlRt1lgCV5MXzwnY/hnPkcZsGMToQQ9wshqoUQ1RUVFUFPhwmAps4kfv7iZpw8swznLagMejpMPyEi/PDSBWjqSuK/X+HFhxk3LLCYUU92oWH7ST4RmaLLfx0sZ/mgdt1XoHiMCeEWUdZ4dNkaWfK1rhwJg54x7e55qAJIytbjkkTOO8ecrheQdfT8etVc5Zk+DhYAlObFXL1ZDBMwdQAmW65X6dsYpt/c9eJm9KQV/OTyhfy3boSyuKoYNyydgj+9vxub9rcHPR1mmMECixn1TCrJQX48gsKcqGss5xAJgyFHSRyQFQ5ezhYAxCUiyrwscZV60or0PqNhkgZPWMsAiYBwSN6fJXPEAE3oeblUsjmaDlbULYiM5+Z0qSLhkHnsvMoHuc+KGUGsADCbiKYTUQzAdQCeDnhOzAhk1Z5mPLayFjefOgOzxuUHPR3mCPjm+XNRlBPFD/6xnmPbGRsssJhRz8ePnYS3v3WWy4kCcEgHKx5xp9wZIsgpQiLhkCl0ZGEVztsb2ISTRBAZ4ssWcmGJaY+G7WV7xn1kVPfiv3aR5uNgefSQ9cfBArLHVSa+YuEQCyxmxCCEyAC4FcBLADYBeEwIsYGIfkJElwEAES0holoAVwP4DRFtCG7GzHAko6j4wT82YEJRAv9yNi8qPNIpzo3htgvmYeWeFjzxIRvaTBbOQWZGPeEQocRj8cZEVDvRD7tcqrA57iTbc+Qei4VD6FElKYKS8r7sdW+BZe+Lku/njnb3uT+JSDP3jbhdMHP+EW8R5Xc8EtEQOpPyUsBENIScGP8JYkYOQojnATzv2PZDy+UV0EoHGUbKXz/Yg43723HfjcfxWn+jhKuOr8LDK/biZy9swjnzK1GU666WYcYe7GAxY5qcWNjDeZEHWQBZkeEUIdZtXg6Q7HZW0ROVlA/KLoct6X1+vVR+Ys5d4uiTnBjxOR76mMwhNIWq5HaVhQmML3QvDM0wDDMa2dvUjbtf2oLT51TgwoXjg54OM0CEQoTbL1+Ilu40/v1ZNq0ZjUAFFhGVEtErRLRN/13is28hEdUS0a+Gco7M6CYnGvYVBnLHxltsxDzKB/3KAL1cKud1p/gybucqK4y4ywX7PQ+Px5KJSq+eNCArVBMx99jDt5yIfzt3jms7wzDMaENVBb7xtzUIE+HOTyziYItRxsJJRfjKmTPxxId1eGnDgaCnwwwDgnawbgPwqhBiNoBX9ete3A7grSGZFTNmSETDroALYzsgd14MYSXtR/IQIraSPt8xp+NE0svW28lSCfv2WP0XejIR5RXTbmwjkh+r8vy4mfDIMAwzmvn9u7uwfHczfnTZUZhYnBP0dJhB4NazZ+OoiYX43pPr0NSZDHo6TMAELbAuB/An/fKfAFwh24mIjgdQCeDloZkWM1Yoz4+jVNKflfAJbvDrR/JylXzFyyFCLszHdab+eYgev/4sXwcr7NeD5d1nZRwHWb9aIhpCTtQdFMIwDDNW2F7fgbtf2oJz5lfiyuMOa21qZgQQi4Twn9ccjfaeDL7PqYJjnqAFVqUQYr9++QA0EWWDiEIA/hPANw51Z0R0CxGtJKKVDQ0NAztTZlTy/Yvn474bj3NtNxwsP0Ehc2W8RE+fXSU/QeRytw4t5vrjbvUppt23RFDuBMpKMBmGYcYCaUXF1x9bg7xYGP/xCV7zarQzb3wh/u3cOXhh/QE89dG+oKfDBMig1+cQ0T8ByLo5v2e9IoQQRCST+18G8LwQovZQf5iEEPcDuB8Aqqur+asD5pCU5ctDFhIe8e2AtT/LO/ChXz1Yfn1WPomAhuDyEl7S2/iJOf06Sdb+8u/B8k5cTETD5ppXDMMwY42fPb8Za2rb8L83HodxBYmgp8MMAbecPgOvbjqI7z25DgsnFWLWuIKgp8QEwKCf+QghzhFCLJT8PAXgIBFNAAD9d73kLk4CcCsR7Qbw/wB8mojuHOx5M2Mbv+AGfzdH3p/VlzWmZGNWQeQUPV4OVtSn1M/fpcrO3fllRszHpfJzsIpzoyjOlUfkMwzDjGaeXrMPv393Fz57yjRcuGhC0NNhhohwiPCrG45DTiyML/5lFTqTmaCnxARA0F8tPw3gM/rlzwB4yrmDEOJGIcQUIcQ0aGWCfxZC+IVhMMwRE9XXxuqPS2Xd5utg9TGKXdtXX7hYJnr6UCIYcwVjeCcMGmPS5xX2Lov0W2j4tgvm4V5JCSbDMMxoZtvBDtz297WonlqC7140P+jpMEPM+KIEfnH9sdjV2IVvP76W+7HGIEELrDsBnEtE2wCco18HEVUT0QOBzowZ8yQioUP0HB2ewOrPGllZl8pdHuu15lY01McSwf70WfmIKGP9LFni4rjCBKaX57m2MwzDjFY6etP44l9XITcWwb03Huf6O8yMDU6eWY5vXTAPz63bj9+9syvo6TBDTKAZyUKIJgAfk2xfCeDzku1/BPDHQZ8YwwAozo2hKMe9IrtZBtgPp8da3tefKHYzlVDyWF7iKxQiREKEjCokaYBW8UXSMdnJwOE6WAzDMGOJtKLi1odWY09TNx78/AmoLOS+q7HMF0+fgdV7W/CzFzZjenkePjbfleXGjFL4jIhhPPjT55bgX86e7dpuCop+LDRMRBbHSR637rxsvS4TNn4lfd79WdnrXvHuvosJ+y68zH9OGIYZu6iqwLcfX4s3tzbgjisW4sQZZUFPiQkYIsI91xyDoyYW4isPfYhVe1qCnhIzRPAZEcN4MGtcgXSNLD9B4defFfdwnPpWIth3EWV9DFcqoV+aoUfJoX3MO1WR49gZhhnL3PXiZjyxug5fO3cOrls6JejpMMOEvHgEv79pCcYXJnDzn1Zge31H0FNihgAWWAzTT/wW3fXrY/Jyt/oSq97f4IlsIqB3hLurB8vXwTKi6d1j5fkxxCIh5MUDrThmGIYJjAfe3onfvLUTnzpxKv7l7FlBT4cZZpTnx/Hnz52ASCiET/9uOfa19gQ9JWaQYYHFMP2kTymC/XCc/AUW2X735f60x5eXD/qtq+W31pXf87ri2El45d9ORz4LLIZhxiD3vbEdP31uEy5aNB4/vuwoXkyYkTKlLBd//OwSdPRmcM1v3seepq6gp8QMIiywGKafJMwerL67VNZtztvZy/b6HjxhlP85Fxq2jR1GYqHUEQt792BFwyFMLeOkQIZhxhZCCNz94mbc/eIWXHb0RPzPdcciHGJxxXizcFIRHvrCiehKZnD1r9/H1oNcLjhaYYHFMP2koiCB4twoppfnu8bifiV9XhHuFmHj/OazT31W/XLLLGmGjrG+OHOyYA+GYZixhqoK/PjpDbjvjR24fulk/Ne1x3AcO9MnFlUV4bEvngQAuOY372NtbWuwE2IGBf5rwDD9pCgnio9+eB6WTi91jRkLE/enRNCMYvcpA/RL9vN7LFdcfDgE4wtWr/W4+uvMMQzDjCXaetL4wp9X4k/v78EXTpuO//j4InaumH4xu7IAj3/pZOTHI7jmN+/jqY/qgp4SM8Dw2RLDDCB+QRHeIRfyxD/rNl8R1U9BFA2HEAkRQiG5W9ZfMccwDDNW2HqwA1fc+y7e3NqAn1x+FL570XzuuWIOiylluXjiyydj8aRifPWRj/DTZzcio6hBT4sZIPhsiWEGED9hE/cq2/Nd4PfIQi68Fg2WbvcRUfMnFOKTJ07BiTPcrh3DMMxoRwiBpz6qwxX3vovOZAYP33IiPn3SNBZXzBExriCBB79wAm46eRoeeGcXPvm7ZdjfxgmDowEWWAwzgPSlzM4VcuEbt+7Xg9WXMfeHfywS6rfrlYiG8dMrFqE4170uGMMwzGimvr0Xt/xlFb76yEeYP6EQz/7LqVgyjb9sYgaGaDiEH192FP7z6qPxUU0rzrvnLTy6Yi+EEEFPjTkCOFeZYQaQScU5iEdCKM2Lu8a8Qin8ygpNoSRdB+vw3K1oOAQi9x9uv3kwDMOMNVRV4InVdbj92Y3oTSv47kXzcPOpM7jfihkUrjy+CtXTSvCtx9fi239fh2fX7scdVyzClLLcoKfGHAYssBhmADltdjlWfv8cFCSirrFYJIRwiFwfzqEQIRIi/5CLfvZgGWMyJy0aIYRVibNlPhYnBTIMM7Z5d3sj7nxhM9bVtaF6agnuvmoxZlS4k2MZZiCZWpaHh79wIh5ctgc/e2EzzrnnTXzyxKm49exZKM3jCpKRBAsshhlAiEgqrgAgFglLRRSgCSJfB0smvnzKB/3Wz4qFQ1AkDlYoRMiPR1CQ4D8LDMOMPYQQWLWnBb94bTve2tqAScU5uOeao3H5MZPYtWKGjFCI8KmTpuHcBePxX69sxR/f24W/razBLafPwKdOmsql+iOEQM+kiKgUwKMApgHYDeAaIUSLZL8pAB4AMBmAAHCREGL3kE2UYQaAaJg8U/iiYfIUQ8Ahygf91sjyuF04JK/tfugLJ2BKKZcjMAwzdkgrKp5ftx+/f2cX1tS2oTg3iu9fPB+fPHEqElF29JlgGF+UwF1XLcbnT5uOu17cgv98ZSvufWM7rjyuCp89ZTpmjWNHdTgT9FfVtwF4VQhxJxHdpl//tmS/PwO4QwjxChHlA+AcS2bEUZQTPYS71b+Qi0NFsQPy0sJ4JISMKhdYi6uK5ZNnGIYZRQghsLqmFU+trsNz6/ajsTOFGeV5uP2KhbjyuEnIjQV9esQwGrMrC/DAZ6qx5UAHfv/OLvxtVS0eXLYX1VNLcPkxE3Hx4olcPjgMCfovyOUAztQv/wnAG3AILCJaACAihHgFAIQQnUM4P4YZMG49axauXzpFOhbzcLcMJ0qaMGiOeZcPevVuhTwcLIZhmNFKVzKDD3Y24c2tDXh9Sz1qmnsQj4RwzvxKXHV8Fc6YU+FaH5BhhgtzxxfgrqsW41sXzMWjK2vwj9V1+MFTG/Dvz2zEiTPKcMacCpw+pwJzKvN5+YBhQNACq1IIsV+/fABApWSfOQBaiegJANMB/BPAbUIIxbkjEd0C4BYAmDJFfiLLMEFRlh9HWb47XRDwjk7vWxS7d2lhNOL+Izu7sgCKyiYwwzCjFyEEalt6sLa2Dav3tmB1TSvW1bYhpajIiYZx0swyfPVjc3D+UZWelQUMMxwpy4/jy2fOwpfPnIXNB9rx1Ef78Oqmg7jj+U244/lNqCyM47gpJTh2SjGOnVKC+RMKkR8P+nR/7DHoR5yI/glgvGToe9YrQghBsuxobY6nATgWwF5oPVs3Afidc0chxP0A7geA6upq/oqeGTHkxiLIiblr/Q9/HSzvhYZ/9olFRzRXhhmrENEFAP4HQBjAA0KIOx3jcWgl7ccDaAJwLfcLDx4ZRUVTVwr7WntQ09KDmuZu7GnqwtaDndh2sANdKe172HgkhEWTivDZU6fhjNkVOH5aCeIR7q1iRj7zxhdi3gWF+PYF87C/rQdvbW3AezuasHpvK15Yf8Dcb1JxDuaOL8DMijxMLs3F5JJcTC7NQWVhAvnxCDteg8CgCywhxDleY0R0kIgmCCH2E9EEAPWS3WoBfCSE2Knf5h8AToREYDHMSOXuqxYjT/INU9THifITWDnRMCJ6/DvDMEcOEYUB3AvgXGifSyuI6GkhxEbLbjcDaBFCzCKi6wDcBeDaoZ9t8AghoApAUQVUIaCoAooQUBSBtKoiowikFRVpRUUyo/2kMip60gp6UtpPVyqDjt4MOpMZdPSm0dKdRmt3Ci1daTR0JtHUmYSznbQ8P4bZ4wpwdfVkzK7Mx6JJRZg3vpDX92NGPROKcnDtkim4dolWwdXYmcRHe1ux+UA7th7sxNaDHXhneyNSGXsFS040jHGFcZTlxVCSG0NRbhTFOTEUJLRU4bx4BLmxMHKiYeTEwkhEw4jrVTexcAhR/ScSJkRDIYRCQET/HSZCiGhMlt4G7Rk+DeAzAO7Ufz8l2WcFgGIiqhBCNAA4G8DKoZsiwww+CycVSbfnxsLIi4UxriDhGotHvUMubjhhKhZXFfO3UgwzcCwFsN3yZd8j0PqIrQLrcgA/1i8/DuBXRERCiEGpqOhOZXDqXa/3aV+/KThHrLsatxP6P8KyXej7qvplCEARmqAayGccCREKEhHz5G98UQKLJhVhXGEc4woTmFCYwOTSXFSV5Ei/qGKYsUh5fhznLKjEOQuy3TeqKtDQmURNczdqW3pwsL0X9R1J1Hck0dyVxP62Xmza347WnjS6U65OnCMiRNDEFhGIoP1AvwxtmRsCtCvZX7bzGOspjd/ZTV/Pfa48bhK+d/GCfjyLvhP0X6I7ATxGRDcD2APgGgAgomoAXxJCfF4IoRDRNwC8StoRWwXgt4HNmGGGkEQ0jDe+eRZKct09AifNKMN3LpyHo6vc4mx8UQLji9yijGGYw2YSgBrL9VoAJ3jtI4TIEFEbgDIAjdadBqpfOBwiXLxoQp/39zvncA7JTlCsJ0TGbUKh7EmRdvKUPYkKESEc0u4roi+yHg4RIuEQYmFCJBRCVP8WPB4NIR4OISemfUueEw0jLx5BfjyCeCTEXxYxzAAQChEqCxOoLEygepr/vooq0JXKoLM3k3WW9d+pjIqUopq/M4pARnemTbdaFVD1y6qqfQmjudnWL2i0L2OML2v0r2qkX9BYvyTy+/6mP1/ueH25PRAEKrCEEE0APibZvhLA5y3XXwGweAinxjDDhooCeTBGIhrGF8+YOcSzYRjmSBmofuF4JIzbr1g4YPNiGIYxCIcIhYkoCjkE5rDgomSGYRiGOTR10Ba7N6jSt0n3IaIIgCJoYRcMwzDMGIIFFsMwDMMcmhUAZhPRdCKKAbgOWh+xFaOvGACuAvDaYPVfMQzDMMOXoHuwGIZhGGbYo/dU3QrgJWgx7b8XQmwgop8AWCmEeBpauu1fiGg7gGZoIoxhGIYZY7DAYhiGYZg+IIR4HsDzjm0/tFzuBXD1UM+LYRiGGV5wiSDDMAzDMAzDMMwAQaO1PJyIGqBFv48GyuGI+R3D8LHIwsciCx+LLKPlWEwVQlQEPYnBZhR9Vo2W991AwMciCx+LLHwssoymYyH9rBq1Ams0QUQrhRDVQc9jOMDHIgsfiyx8LLLwsWCCgN93WfhYZOFjkYWPRZaxcCy4RJBhGIZhGIZhGGaAYIHFMAzDMAzDMAwzQLDAGhncH/QEhhF8LLLwscjCxyILHwsmCPh9l4WPRRY+Fln4WGQZ9ceCe7AYhmEYhmEYhmEGCHawGIZhGIZhGIZhBggWWAzDMAzDMAzDMAMEC6wRBhF9nYgEEZUHPZcgIKKfE9FmIlpLRE8SUXHQcxpqiOgCItpCRNuJ6Lag5xMURDSZiF4noo1EtIGIvhr0nIKGiMJEtJqIng16LszYZax/TgH8WQXwZ5UBf1a5GQufVSywRhBENBnAeQD2Bj2XAHkFwEIhxGIAWwF8J+D5DClEFAZwL4ALASwAcD0RLQh2VoGRAfB1IcQCACcC+MoYPhYGXwWwKehJMGMX/pwy4c8q/qwy4M8qN6P+s4oF1sjivwB8C8CYTSYRQrwshMjoVz8AUBXkfAJgKYDtQoidQogUgEcAXB7wnAJBCLFfCPGhfrkD2h/rScHOKjiIqArAxQAeCHouzJhmzH9OAfxZBf6sMuHPKjtj5bOKBdYIgYguB1AnhFgT9FyGEZ8D8ELQkxhiJgGosVyvxRj+Q21ARNMAHAtgWcBTCZL/hnZiqwY8D2aMwp9TnvBnFX9WAeDPKp3/xhj4rIoEPQEmCxH9E8B4ydD3AHwXWtnFqMfvOAghntL3+R402/3BoZwbM/wgonwAfwfwf4UQ7UHPJwiI6BIA9UKIVUR0ZsDTYUYx/DmVhT+rmP7An1Vj67OKBdYwQghxjmw7ES0CMB3AGiICtFKDD4loqRDiwBBOcUjwOg4GRHQTgEsAfEyMvYXc6gBMtlyv0reNSYgoCu0D60EhxBNBzydATgFwGRFdBCABoJCI/iqE+GTA82JGGfw5lYU/q3zhzyoL/FllMmY+q3ih4REIEe0GUC2EaAx6LkMNEV0A4B4AZwghGoKez1BDRBFoDdMfg/ZhtQLADUKIDYFOLABIO4v7E4BmIcT/DXg6wwb9W8FvCCEuCXgqzBhmLH9OAfxZxZ9VWfizSs5o/6ziHixmpPErAAUAXiGij4jo10FPaCjRm6ZvBfAStEbZx8biB5bOKQA+BeBs/b3wkf6tGMMwTNDwZxV/VhnwZ9UYhB0shmEYhmEYhmGYAYIdLIZhGIZhGIZhmAGCBRbDMAzDMAzDMMwAwQKLYRiGYRiGYRhmgGCBxTAMwzAMwzAMM0CwwGIYhmEYhmEYhhkgWGAxDMMwDMMwDMMMECywGIZhGIZhGIZhBggWWAwzwiCi14noXP3yT4nol0HPiWEYhmEM+HOKGetEgp4AwzD95kcAfkJE4wAcC+CygOfDMAzDMFb4c4oZ05AQIug5MAzTT4joTQD5AM4UQnQEPR+GYRiGscKfU8xYhksEGWaEQUSLAEwAkOIPLYZhGGa4wZ9TzFiHBRbDjCCIaAKABwFcDqCTiC4IeEoMwzAMY8KfUwzDAothRgxElAvgCQBfF0JsAnA7tDp3hmEYhgkc/pxiGA3uwWIYhmEYhmEYhhkg2MFiGIZhGIZhGIYZIFhgMQzDMAzDMAzDDBAssBiGYRiGYRiGYQYIFlgMwzAMwzAMwzADBAsshmEYhmEYhmGYAYIFFsMwDMMwDMMwzADBAothGIZhGIZhGGaAYIHFMAzDMAzDMAwzQLDAYhiGYRiGYRiGGSBYYDEMwzAMwzAMwwwQLLAYhmEYhmEYhmEGCBZYDMMwDMMwDMMwAwQLLIaxQEQ3EtHLQc+DYRiGYRiGGZmwwGLGHES0m4h6iKjT8vMrABBCPCiEOC/g+QkimtWP/d8gos8P5pyOFCKaQERPE9E+/flNC3pODMMwDMMwgwELLGascqkQIt/yc2vQExrlqABeBHBl0BNhGIZhGIYZTFhgMYwFIrqJiN6xXD+PiLYQURsR3UdEb1rdIiL6HBFtIqIWInqJiKZaxgQRfYmIthFRKxHdS0Skj83S76uNiBqJ6FF9+1v6zdfoztq1RFRCRM8SUYP+OM8SUZW+/x0ATgPwK6sTR0TziOgVImrW53+Nz3N+g4huJ6J3iaiDiF4movIBPKwQQhwUQtwHYMVA3i/DMAzDMMxwgwUWw3igi4zHAXwHQBmALQBOtoxfDuC7AD4BoALA2wAedtzNJQCWAFgM4BoA5+vbbwfwMoASAFUAfgkAQojT9fGjdWftUWj/T/8AYCqAKQB6ABgljd/TH/dWw4kjojwArwB4CMA4ANcBuI+IFvg83RsAfFbfPwbgGx7HZIouFr1+bvB5DIZhGIZhmFEPCyxmrPIPhzD4gmSfiwBsEEI8IYTIAPgFgAOW8S8B+JkQYpM+/h8AjrG6WADuFEK0CiH2AngdwDH69jQ0wTRRCNErhHgHHgghmoQQfxdCdAshOgDcAeAMn+d2CYDdQog/CCEyQojVAP4O4Gqf2/xBCLFVCNED4DHLPJ1z2SuEKPb5ecjnMRiGYRiGYUY9LLCYscoVDmHwW8k+EwHUGFeEEAJArWV8KoD/MUQagGYABGCSZR+rIOsGkK9f/pa+73Ii2kBEn/OaKBHlEtFviGgPEbUDeAtAMRGFPW4yFcAJVgEJ4EYA470ew2eeDMMwDMMwTD+IBD0BhhnG7IdWvgcA0PunqizjNQDuEEI82N87FkIcAPAF/X5PBfBPInpLCLFdsvvXAcwFcIIQ4gARHQNgNTSBBgDCsX8NgDeFEOf2d16HgoimANjos8sXD+d4MAzDMAzDjBbYwWIYb54DsIiIriCiCICvwO4C/RrAd4joKAAgoiIi8ivDMyGiq42gCgAt0ESSql8/CGCGZfcCaH1XrURUCuBHjrtz7v8sgDlE9Ckiiuo/S4hofl/m5odeIpjv8+MprogoASCuX43r1xmGYRiGYUYVLLCYscozjnWwnnTuIIRohNa3dDeAJgALAKwEkNTHnwRwF4BH9NK99QAu7OPjLwGwjIg6ATwN4KtCiJ362I8B/Ekv77sGwH8DyAHQCOADaHHnVv4HwFV6wuAv9D6t86CFW+yDVv53F7LiJih6AHTqlzfr1xmGYRiGYUYVpLWVMAxzKIgoBK0H60YhxOtBz4dhGIZhGIYZfrCDxTA+ENH5RFRMRHFokewEzUViGIZhGIZhGBcssBjGn5MA7IBWnncptPRBLm1jGIZhGIZhpHCJIMMwDMMwDMMwzADBDhbDMAzDMAzDMMwAMWrXwSovLxfTpk0LehoMwzDMYbBq1apGIURFEI9NRBdAS+cMA3hACHGnY/xL0JZtUKAlY94ihNioj30HwM362L8KIV7yeyz+rGIYhhm5eH1WjVqBNW3aNKxcuTLoaTAMwzCHARHtCehxwwDuBXAutNTQFUT0tCGgdB4SQvxa3/8yAPcAuICIFkBbHuEoABOhLSA+RwiheD0ef1YxDMOMXLw+q7hEkGEYhmGyLAWwXQixUwiRAvAIgMutOwgh2i1X86AtFA59v0eEEEkhxC4A2/X7YxiGYcYQo9bBYhiGYZjDYBKAGsv1WgAnOHcioq8A+BqAGICzLbe1LuNQq29z3vYWALcAwJQpUwZk0gzDMMzwgR0shmEYhuknQoh7hRAzAXwbwPf7edv7hRDVQojqiopA2swYhmGYQYQFFsMwDMNkqQMw2XK9St/mxSMArjjM2zIMwzCjEC4RZEY9qYyKA229mFKW6xr71WvbUNPcg7uuWhzAzMYWe5u68enfL8OjXzwJlYUJ21hvWkFjZxJVJe7XiGGGmBUAZhPRdGji6DoAN1h3IKLZQoht+tWLARiXnwbwEBHdAy3kYjaA5UMya2bUkMwo+PHTG/Hk6lqoKiAgEAuH8K0L5uEzJ08LenqjmsbOJG596EOs3N0CIoCIUJ4Xw8+vPhqnzCoPenrMCIIFFjPqeeLDWvz4mQ1Y/YPzkBML28Y+qmnFrsaugGY2ttje0IHdTd3Y3djlElh/eX8PfvHaNqz90XkgooBmyDCAECJDRLcCeAlaTPvvhRAbiOgnAFYKIZ4GcCsRnQMgDaAFwGf0224goscAbASQAfAVvwRBhnHS0JHEl/66Cqv2tODK46pQURBHiIB1dW340dMbUNPcje9eNB+hEP+dHGh2NnTipj+sQH1HL246eRqikRBUIfDapnp8+vfL8cNLFuDTJ03lzyimT7DAYkY9TV0p9KZV9KQVl8BKKQJpRUhv98DbO7FwUhFOnFE2FNMcFQgh8POXtuATx03CrHEFtrFURjvOsuPd1JVCR28GGVUgGuYPLyZYhBDPA3jese2Hlstf9bntHQDuGLzZMaOV9XVtuOXPK9HcncK9NxyHixdPMMcUVeD2ZzfigXd2oa61B/917TFIRMM+98b0h+W7mnHLX1YiTISHv3Aijp1SYo7detYs/NujH+FHT2/A5gMd+PfLjkIswh02jD/8DmFGPWlFtf22jWVUpDLu7QBw7+vb8Y/V3D7RHzqSGdz3xg68srHeNZbyex18xhiGYUY7B9p6cf1vP4AA8PiXTraJKwAIhwg/vuwo/OCSBXhxwwH868Org5noKGTrwQ588nfLUJoXw5NfPsUmrgCgIBHF/Z+qxpfPnImHl+/Fvz+zIaCZMiMJFljMqGB/Ww+O/cnL2F7f4RozBJRMSKUU1fOkPq0IUxQwfSOd8RezAJCUvA7G/rLX6IdPrce3H187kNNkGIYZNggh8P1/rEdaUfHwF07EwklFnvvefOp0fPP8uXh540G8va1hCGc5OhFCcwYTkRAe++JJ0l5tAAiFCN+6YB5uPnU6Hly2Fx/sbBrimTIjDRZYzKigprkHLd1p7Grsdo35OliK6imiUoq3u8XIOVyXyhRYkrHN+zuw+aBbODMMw4wGnlu3H//cdBBfO3cOppXnHXL/m0+djsmlObjjuU1QVHmJO9M33tjSgLe3NeJfPzYb5fnxQ+7/9fPmYHJpDr7zxDr0prm9kvGGBRYzKkj5OSd6z4/s5D2VkTtYQgikfdwtRk46432s/QRW0nz93CcLLHQZhhmttHSl8KOnNmBxVRE+d8r0Pt0mHgnjOxfOx+YDHXh0Rc2hb8BISSsqfvrcRkwvz8OnT5rWp9vkxiK48xOLsauxC//9z22HvgEzZmGBxYwK/ErMTFcl4z5510SUe3tGFRBCfn8AUN/eCyHG7jeH7b1pdKcyru0pRftGT/46GCEX3iI4LbudhwhmGIYZ6dz+7Ea09aRx15WLEQn3/ZTswoXjsXRaKe55ZQs6etODOMPRy0PL9mJHQxe+c+G8foVWnDKrHNdWT8Zv396JdbVtgzhDZiTDAosZFRgOiJdL5TWWVgQUVbjKLLJui1tENXYmccpdr+GNLWO3/v2Lf16Ff396o2t7NinQrwxQInR9XyN2sBiGGX28t6MRT6yuw5fPnIn5Ewr7dVsiwvcvmY/GzhTufX3HIM1w9NLWncZ//XMrTppRhnMXVPb79t+9eD7K8mL4zpNrx/SXrYw3LLCYEcW/PfoR3trqFjYpHwerL70/zjGz1E1yfy1dKaQVgYPtvf2c/ejhYHsvDna4n7+vW2iUAfYz5MKvRPAbf1uD1zYf7PvEGYZhhgm/em07xhXE8eWzZh3W7RdXFeMTx03C79/ZhXrJ32PGm9++vRNtPWl8/5L5h7WuVVFOFN84fy7W17XjDck5CcOwwGJGDIoq8OTqOrwvSe/xTa87jHCFpFHqJnPEfAIZxgpJj7I9v7AKvwAM33AMnxLBJ1fX4b3tnObEMMzIYm1tK97b0YSbT51+ROtZfeWsWUgpKp78kJcU6SsZRcVjK2tw1txxOGqid2LjobjimEmYUJTAr99gB5FxwwKLGTEcKm4d8Dh59ylbS3m4KmmffiG/eYwVvFwlv1K/viUMykIuhPSxjNJOWew7wzDMcObXb+5AQSKCG06YckT3M7MiH8dNKcbfVtVyqVofeXtbI+o7krimuuqI7icWCeHmU6dj2a5mrN7bMkCzY0YLLLCYEYOvwOqD+PIXZo4erD481lg+sU95LNCcVOSCVdvmXXbp/9oq5v329TYMwzDDlV2NXXhh/QF88sSpKEhEj/j+rqmejO31nVhd03rkkxsDPLayBqV5MZw9r/+9V06uWzoFhYkIfv0mu1iMHRZYzIgh6ZNQ17cABVmKoNyp8i8r9BYKY4VURvU91v0OuThEwmBaUV3fzvqFlzAMwwxX7n9rJ6LhED57yrQBub+LF09AIhrC31bWDsj9jWaau1L456aDuOKYSf1KDvQiPx7BZ06ehpc3HsT2+s4BmCEzWmCBxYwY/E6ok304sXe6Ktb0QFcPlq8jptj2GYskMwpSGfcii379aYe70LAmrrTofNscfAQ3wzDMcKS+vRd/X1WLq46vwriCxIDcZ0EiiosWTcCza/ahJ8WL3/rx1Ed1SCsC1yw5svJAK585eRpi4RDuf4tdLCYLCyxm2FHX2oN9rT2u7X6ixy+FzjMp0HLda0zmtoz10rSMokIVhxBRkhTBwwm5UFVhCivnWLZUU35CsWpPC1SVexIYhhk+/OG93cioKm45bcaA3u/Vx09GRzKDFzfsH9D7HW08trIWiyYVYd74/sXi+1GeH8c11ZPx5Oq6MZ0uzNgZFgKLiC4goi1EtJ2IbvPZ70oiEkRUPZTzY4aW2/6+Ft97cp1ru1/vU8rHwfJyt6zXnWIpWwboPnnPrrnlHutOZfDs2n2u7SORmuZuvL/DndDn29PWh/XIfB0sx32mfF4jv/fD9vpOXPm/7+Gd7Y2uMYZhmCBIZVQ8tqIG5y6oxLTyvAG97xOml2JKaS6XCfqwvq4Nm/a3H3G4hYzPnzYdaUXgbytrBvy+mZFJ4AKLiMIA7gVwIYAFAK4nogWS/QoAfBXAsqGdITPUtHan0dbjXpne7wTdz1XycqOswRbePVje/UKyx3p5w0Hc+tBq1DR3u8ZGGr99eyf+5eHVru3Z10Ge+KeN+YkoWe+Wh0vVJxHsfqy2nhQAoFXyPmIYhgmC1zbXo6krheuWHFlyoIxQiHDV8VV4b0fTqPj8GQweX1WLWCSEy46eNOD3PbUsDyfNKMNjK2u5coIBMAwEFoClALYLIXYKIVIAHgFwuWS/2wHcBYD911FOMqPIXao+lAHKy9bkJ+J2B6vvAQp+Yq4rlbH9Hsl0JjPokTyPw01z9I2+9xLBlvtxvha+PXlp3d1Kcz8C0z8OVVFBRF8joo1EtJaIXiWiqZYxhYg+0n+eHtqZM8Odv62sQWVhHKfNLh+U+7/y+CoQAf9YzWtiOckoKp76qA7nLahEUe6RJzfKuGZJFfY2d2P57uZBuX9mZDEcBNYkAFZPtVbfZkJExwGYLIR4zu+OiOgWIlpJRCsbGnhl7ZFKMqP6lgH6r7Ekc5zkzpdVBHg5J9YgjOztvBchNk7se9Mjvz8rmZa/Dn3phev3gs+HWI9M9ngpn5ALY45jOYiE6T99rKhYDaBaCLEYwOMA7raM9QghjtF/LhuSSTMjgoPtvXh9Sz2uPK4KkfDgnHpNKs7B4qpivLq5flDufySzuqYVLd1pXLhwwqA9xgVHTUBBPILHuEyQwfAQWL4QUQjAPQC+fqh9hRD3CyGqhRDVFRUVgz85ZlBIpj3WWMp4n1CnMt49U16lhVaB1L8ADO/SNPPEfhQ4J8mMgoxMYFrcQmd0ejamvX/hIF7pg3YR7EgR9BFRLLCYw+SQFRVCiNeFEEYN1gcABr6hgxl1PPFhHVQBXF09eVAf5+y547CmthVNnclBfZyRxmub6xEJEU6bMzjuIQDkxMK49JiJeH7dfnT0cnn6WGc4CKw6ANa/OFX6NoMCAAsBvEFEuwGcCOBpDroYvWglgt5CqT8LBlvHnCfvfUkRlN3OuO7nsvWOghN7w4XzCpcA3Mfb79gcKoodcDtYfQm58BPjXgmDDOPBISsqHNwM4AXL9YReRfEBEV0xCPNjRiBCaOEHS6aVYPoAh1s4OXveOAgBvLGFq3isvL65HtXTSlA4AAs7+3H18VXoTat4di2nOY51hoPAWgFgNhFNJ6IYgOsAmLXrQog2IUS5EGKaEGIatG8MLxNCrAxmusxAIITbGTFIZrwcLL++qEMvQuyMDrdedwoCm4hwjPmVyJkn9qPEwbL+NrA+by/x2Z8odkUVMN4KfmWcztTGvvSCJSWlmn7vPYbpK0T0SQDVAH5u2TxVCFEN4AYA/01EMz1uy+XsY4hVe1qws7Fr0N0rADhqYiEqCuJ4bQuXCRrUtfZg84EOnD1v3KA/1jGTizF7XD6nCTLBCywhRAbArQBeArAJwGNCiA1E9BMi4hr2UcpfPtiDs//zDenYIXuwfAIU/EIu/EsEnU6MkO5nffzRXprm9Vys171cJXmflfE6ONMcrSLKZ8wZROLjiPm9Di9vPIjjbn+FF+RkZByqogIAQETnAPgetC/7zFosIUSd/nsngDcAHCt7EC5nH1s8trIGubEwLl40eP0/BqEQ4ay5FXhra4P07/BY5HW9J20oBBYR4Zrqyfhwbyu213cM+uMxw5fABRYACCGeF0LMEULMFELcoW/7oRDClcIkhDiT3auRz67GLuxp6nbFmaYVFYoq+i1evE7srSEVfimCrhJBm4MlP+n3c056R4GDZTwH/xJB+THtT8iFn2DzLdX06XdL+rwOuxu70NaTRqse5c4wFnwrKgCAiI4F8Bto4qresr2EiOL65XIApwDYOGQzZ4Yl2tqI+3HJ4gnIi0eG5DHPnjcOHb0ZrNzdMiSPN9x5bXM9JpfmYGZF/pA83hXHTkIkRLwm2RhnWAgsZuxhnrx7nGwrqkDGK5Zb1p/lIXr62mfl34PlUZomdU6MsrqR/81hVtA6nr/leHg7WMIlng/nNfIr1fTr6eqLy8gOFuOkjxUVPweQD+Bvjjj2+QBWEtEaAK8DuFMIwQJrjPPPTfXoTin4xHFDl4Vy6uwKRMOE17lMEL1pBe/taMTH5lWCiIbkMSsK4jhjTgWeWbOP18QawwzN1ykM46A3nXUYEtGwud3qRqQU1RZn6xtk0YekQL+QCz+XxnONLJ+T99HkYPn1pznHbIs3qyriobBlTP4a+QqsPjhYhpgLhbIfnn4hF8bzGg1R+szAI4R4HsDzjm0/tFw+x+N27wFYNLizY0Yaz67Zh3EFcSyZVjpkj5kfj+CE6WV4bXM9vnvR/CF73OHI+zua0JtWcdYQlAdaueToCXh1cz1W17Tg+KlD99ozwwd2sJhA8DrJtZ6wOwMKDmfxX1upXz8iwP1K0/pSIji6HCzv16h/x1TeJ2ctwfSLaXceb1tpoYcTKnsdTHHPCYMMwwwiHb1pvLG1ARctmoBwaGjcE4Oz5o3D9vpO1DR3H3rnUcxrm+uREw3jhOlDK3LOmV+JWCSEZ9ZwmuBYhQUWEwg9psCyn+T6nTQbJ9iyxX/THu5Wn4MsXPHgFifGefJ+mOEKb25twC9e3ebaHiS1Ld34xt/WyN24tGr7beAnemzH26t80COsQnZ/ab+wkT71Z0kEli6serlEkGGYQeSVjQeRyqi49OjBD7dwYgQ6vDaGFx0WQuC1zfU4ZVa5rVJmKChIRHHW3Ao8t24/p9aOUVhgMYHgVX5mLelynhxbx7xO7P3cEd8gC7+ytcNZf0lSIvjsmn343Tu7XNuD5L3tTXh8VS32NHXZtgshTCHSH2HTl/XDDrsXzq9U0eO9IisRTLKDxTDMEPDs2v2YWJTAsZNLhvyxp5fnYXp5Hl4dwwJrW30n6lp7hiQ9UMYliyeioSOJ5buaA3l8JlhYYDGDRlt3Gv/+zAZpP1KPpQfLivVE2StcwnnZet3PUTnccIWkx1h/SwR7M+qwC1boTmUAuEs104qA0LWpUyz25XVwXhZCeIZSpP1cxr4+ltNlTPu9Dtrz6Um5x97e1oDHVvD6JQzDHBlt3Wm8va0BFy+eYOsPHUrOmFOB5buapJ9VY4G3tzUCAM6YG8xSCB+bPw450TCeXbsvkMdngoUFFjNovL+zEX94dzc27Gt3jSX7UCLoPOm3nkQnHeKrLwEK/XFb/Bwsq1AQwi4I/EIuelIKUorqSkcMkm59nj2O+VrdHb+QC3+xlL2sqFnB5t+35VNy2I/+LON20hRBj/ceADy0bC9++frwKuNkGGbk8dKGA0grApcsnhjYHE6cUYretIq1ta2BzSFIlu1swuTSHEwqzgnk8XNjEZw9fxxeXH9gWH3uM0MDCyxm0OhOeZ/I9niUCFr37c8Ct0kvB0u/TiQ7edfO+KNhOqz0OukcfZwTo1ytexglDPZ4vEY2J/EwFhoG5P1v2rGW92ARHULM9cOdzPaPea+R5RSVgPaeHW4uI8MwI49n1u7DlNJcLK4qCmwOS6eXAQCWjcESNVUVWL67GSfoxyAoLl08AU1dKby/synQeTBDDwssZtDoShmlWH5R2T4hF/04sTcEUka1r79kbM+Nhj0XDM6LR9zBCxkVRlVHv8SX4u9gWX8PBwwR7HKwfISuv+gR2eMmSQfMi0dcISWG4MqNhg+7P8vZa+W3HpnXew/QjkNXcvi8PgzDjDyaOpN4b0cTLl48YcjWXpJRmhfD3MoCfDAGT+631negtTuNE2cEK7DOnDsOebEwnuU0wTEHCyxm0OjR+3tkTkE2KlseTuC8DPiXptkEkereLzce8Qy5yItJxhQVebGI63Fd83A5Jz4n9oaDNQwFlp/QdS807OdgKdnjJhFHxpisBFP6GunXQ+TuhfN10owSQZ/3npf46kkrvDgkwzCHzUsbDkJRBS5ZPPTpgU5OmFGKVXtaXH9bRzsf7NBE5VDHsztJRMM4d0ElXtxwYMy9BmMdFljMoOHljli3+ZWm+TknVncko6hQheaOuPbT3ZH8eETqNhEB8WjIdfKeVkT2/nyi371cNll6neFcdSUzrrGgyIZcyB0gwF9gugVR9rjJEgBzY1pUrkx85Xs4idrtIv0Uuv4iCpA7iWbJJCcMMgxzmLywfj+mleViwYTCoKeCE6aXoTulYF1dW9BTGVKW7WrGpOIcTC7NDXoquGjRBLT1pMekkziWYYHFDBpeJXGqKjzT9vre35O9T6uIsl633iYv7i4/SykqouEQYuGQNMgiLx72nIfhlnnN0RnQYd0mE5xBkXWwnL1wPn1m1ucvcRJlxy1tcRIBe3BItnwwLBHBArFICLFIqH9Jj34hFz5BJMbxGE4uI8MwI4e2njTe39GE8xeOD7Q80GCp7uAs2zl2+rCEEFi+qzlw98rg9DkVyImG8dKGA0FPhRlCWGAxR8xTH9WhuSvl2t7lUSJoS6jzcU5cDpaiIqKf2cuEmNzB8nZA0hmBWFh+8p7MqBbBJhMR7jI467xkDpZxQj+cTt57PFzGQ5Vqyo41oB0r2XHLlgiG9etuEezlUsV0ESwrAzTeD94OlvfrIC9d1V8jSR/W29sasL2+07WdYRjG4LXNB5FRBc4/anzQUwEAVBTEMWtcPpbtGjvuyfb6TjR1pQLvvzJIRMM4c24FXt5wkMvPxxAssJgjorkrha8+8hGeXF3nGuv2cLCs7kh/en+SGQX5CfeJvTVAAfA+sXem16UVFdEwIRoOScdyY263xRgrTERd81BVYQm58CtNGwElgj4pginr85c4R7mSPquUXvonGzOOvfYauY91LBJCNCJJH8yo5vvBa8HqtGIP1LA+V9lrZIiu7rT7NfrW42vxv2/scG1nGIYxeGn9QVQWxnFMVXHQUzE5YXopVuxqHjNR4UYp3gkzhoeDBQAXLByP+o4kVte0Bj0VZohggcUcEe09aQBAZ6/7hNQrAtzqHLhL0/x7f/Ilzolxkp8fd/f3WN0t2ZpNRomgbCwnFgaRfxlcUjIPbbv9OQshsifvw8jB8uqT83USM4pv+aSsdy3t8xrZ0hylrxHJHSyP94PzuvO1MIJVnO/LQ71GHb0ZtPemXdsZhmEA7TPvja31OG/B+MAWF5ZxwowydKUU6ZqUo5EPdjVjfGECU4ZB/5XBWfPGIRomLhMcQ7DAYo6ITj2woVviynj1s9gjwP0cLJ8TapmIkqT+me6WnhRoXRg4Zboj7hJBs3xQIr5SivzE3m+R5LQiYBgpw0lgmeuR+fVgORd8zqiIR8KIhMijRLAPPVgeCYMyoRQNhxCLhF3vh7TH6wA43keW+QuR7f+TuafG28Ppugoh0JXKDKuAEoZhhhdvbWtAb1rFBQuHR3mgwYlGH9YYKBMUQmDZzmacMKN0WPTAGRQmojh5Zjle2nDAdh7CjF5YYDFHhCGwOiUnnt1ePVg+DlYyrSIn6u2OFEhKBK0pdNbrgDUCPAwh4Fp/SRNRbqGQUlREI+7eH1UVSCsC+XqJnKxXKRIiV2+Z9RgMy3WwUnIHKxIiaZ+ZETxhPTZGmqNMRBn7ma+RZI2s3Li7jNMQwTHJYtBJ2/vBLZaM95GXaHcmBVqPgVNI9aQVCCF/nzMMwwDAS+sPoCgnagZLDBfGFSYwozxvTARd7GzsQmNnctj0X1k5/6jx2NPUjc0HOoKeCjMEDAuBRUQXENEWItpORLdJxr9GRBuJaC0RvUpEU4OYJ+PGKA2UuTJ9WcRWFg+eF9fcEZm7VSDpfTJP3qXiyzthMK27I1oPlsw5IVcAhrHGlsylMS4X5UTdPUGW5yk7Vq9uOohVe1pc2wcCIQQeeHsnWiRBJF6x5Enbc3GHXMjCQdzH2u0kSmPaM/YofZvLaHksmQguMIWu+/UrynGL4F4foWsTwY73pbH4sKwUlhldHMnnERF9hoi26T+fGdqZM0GSVlT8c9NBnDO/EtHwsDi1snHCjFIs39Xs6kkdbZj9V8NM5ALAuQsqQQQuExwjBP5XgIjCAO4FcCGABQCuJ6IFjt1WA6gWQiwG8DiAu4d2lowXxjf6stIp8+TdJ+RCFgEej4QRi4SkpWmyk3fjPmTJfs4ADGf5YDTiHXIR08WXVMxJHsuYR6EusKxCwXrCLgtQ+I/nN+G+17e7tg8EOxu78NPnNuHljfY/6kKIrMvoUcZZmBN1vw5GaaWjfNKvVDMbZCF7HRREQoR4RPtzlFHtvVumWyYRwbISQSNspEASgOFXxtnjI4KN49TBDtao5kg+j4ioFMCPAJwAYCmAHxFRyVDNnQmWD3Y2ob03g/OPqgx6KlJOmF6GjmQGm/aP7j6s5buaUVEQx/TyvKCn4qKiII7qqSV4cT0LrLFA4AIL2gfRdiHETiFECsAjAC637iCE+P/svXeYJVd19b32zZ3TdPfM9OQcNSNplEFZQhJB5GQTDAabYGODX3/YOGJjg3lxBL+ASSIjEwWSUA6gPBpNzjOa3Dmnm8/3R9WpOlV1qrp7prtv6P17nnmm+9YN51bV7XtWrb3XeUwIMWb++iyARbM8xjnPX/18D77+25c9t1sCawo9WOpkXtcHE4+EENdMqFM5fWrc5CLA9eEKUY2Iktvs9Ze8z1cd9zppUojUasaoTuZ1JYIjqSwGxmcmQGFgzHjeYZf7ksrmrb6wpMdxs9+LTtjEzPJJXchHVUCQRWU87Pjd+FlYx0E+v26bzmWs1ASRyJ9rpYPlk1rpCV9J+wusiS4kvOG/n8IuTocqBy7k++hVAB4SQvQJIfoBPATgtlkaN1NgHtjXgYpoGNeuaS70ULRsW2Zo/R2nZqZSoljYfqIfly1rKKr+K5VXbZyPgx3DONk7WuihMDNMMQisNgCnld/PmLf58X4A9+s2ENEHiWg7EW3v7u6exiEyjxzowlNHezy32xNPXYlg8DpYlbGwZmKfQywSQjwS1oYT1ASFXPisgyVT6OTv6uOMAAVvf4/cFnX1Z1llcAFx8bqJvboPdPtqJJnFwJi3hG86GBw3ntfdP6SKCI/LmM0hHCJUxiJaJzFmimCH+HTH5WedThRgO1je40CWwNJt81sHS45DFzZiC11vz19lLByYbumO0lcvFrhLbM4OjOOlUwMzVuLJzCoX8n001ccyZUI+L/Dgvk5cv7YZCbP3s9hoq69AS00cO8r471TXUBJnB8ZxyZLiNY7l+mhcJlj+FIPAmjRE9LsAtgH4vG67EOKrQohtQohtzc3FeRWpVBkYy2BYE1Ete1J0V/blpNTPKWiojOkdrKhZIqhMjN39PbqQC791sFR3xL1NJgV648GFlV6nE3O6uHHZZ1WrCcBw9P64SgTzeYHRdA6DM+xgufuH1ORHTw9WxnAS3ccBMI+R1RelHCNz3ySiIYRD5BFKgP8xkmmOgNeNikXCiPqUCMrjp1s/TdefJY9DQ2XMI/wdIRc+Dpb7ZwDW52KmHEimOJno+2iCx/LFwDJi15kBdA2nimZxYR1EhEuWNGDHqYFCD2XGkO/t4iIWWIsbK7FhQS0e2t9Z6KEwM0wxCKyzABYrvy8yb3NARDcD+BSA1wkhUrM0NgbGRHY8k8PQuFdE2THt3iAE2UvjdbD8wyCSmZy2RFBOmuPRkCceXP5coxVfwjF595amkadEUAijhycWJk96XTpnjENbImj1YEXM96J3sNz7SpZXDoxlZiS+VQosdxmnKig8PVjZHBLRMOKRkDdAIpdHPOotrZT7yXL+dL1wVqmm092KhkOIWyLYHXJBiPusgxWNeCPcrfJG6zh41/Sqq4gG9mC598eY4jq6BdaQKVyHWGCVAxfyfTSpxwJ8MbDceHB/JyIhwg1rWwo9lEAuWVqPU31j6BkpzynUS6f6EQuHsKmtttBDCeSWDa3YfrK/bI8DY1AMAusFAKuJaDkRxQC8HcA96h2I6GIAX4HxZdZVgDHOaaSzonWwfHqwgvpZZDlafWXUE2cue7DcIRdycq1LlPMEWbiCJ+RiwsbzeAMUoq5SNykMrSAHjYjSBSjI+2kdrLR0tyK+/T3ZvJiRNbLs46cve6tNRLwLDZsOVjwa1gob6zhoQj6sxZtV8WXF5UccvwNKn1WErOe3t+kj4fN5gWzeiNl3lwjKMQU5WPWVUTN6XQkicZyzzn2lnt9ut1Z+LmbKgWRmlQv5PnoAwK1E1GCGW9xq3saUOQ/u68AVKxpRVxkt9FACkc5OuZYJ7jjVjw0LaxGPFGeZpuTWja0QwkgPZsqXggssIUQWwEdhfBEdAHC3EGIfEX2aiF5n3u3zAKoB/C8R7SSie3yejrkA8nmhjXD1m6AD/iWCMimvIhrWpAjak1xdiaB0TnQOSMxMGNT3YOkCFKQYIM+2tBpyocSDp1Wh4BNFXqWJaVdTBNXfAbsEr6k67nFH1H03E2Vm8vh5jlHaHpNnPTLzOLjL7wBnyIWuz8oOB9H0rmmOkZpK6N6mlnjqYt91CYN2QId/qWZ9pfcYSZFZEQ17XUZl37k/B/J3P4HlLj9lipcL+T4SQvQB+AcYIu0FAJ82b2PKmGPdIzjWPYpbNxRveaBkc1sdIiHCS2UYyJPO5rH7zGBR919JNiyoRVt9BZcJljmRQg8AAIQQ9wG4z3Xb3yg/3zzrg5qD/PvDh/HEkR784iPXOG6XIQnDqSxyeYFwyE7nke5LJiesiTdgBzk0VcfQMZh0PJ8MUKiORzQTe1kiGNY6WHHN4r9BUewy5MJKqNP2YBnvJ5s3SgadpW4hx+TadtK84kNO5GW4gnPNJeN+jVUxT5iFOmEfGEujrb4C04l8PXdpm+wFa6yKoXvYWapglWpGvQIrlc1Zzt+YIipUl9FPEFX6hlyoLqMuiER/zK1yUkVEyW11uhRB8znqK2PWNtmUPp62z1lvTHtAiaC5D3QhJc8d78V7vvk8nvzzG9BSk/BsZ4qPC/k+EkJ8A8A3Zm50TLEhJ8m3bCjOeHaVRDSMjQtry9LBOtA+hFQ2j0uW1hd6KBNCRLhlQyu+//wpjKay1tyFKS8K7mAxxcOBjmEc1qwwrl6Z9zT4p/SlU+OKO5LNC8eEejydRyISQiIa9gYoZJR1sJRtcpKvKxeT5WZ+CXUOd0QzeXc7J153xBvTrhtHOsjBUsMVPO6I/fvg2PQ7WNIVG0npRUNQ2EjcdRyyOSPaXQpMXcKi9hi5Fhp2x+zHwuQTciGs46eLy5ev5ezBkiEXmnWwzG1SfOkWF26qjntKBB0hF1NwsA53DiOZyeNk75hnG8Mwpc+D+zqwua0OC6f5wthMcfGSBuw+M4hsmTnrMn6+FBwswCgTTGfz+M0RDrkpV1hgMRa9IymMZ3KeybY6cXT3YamiSu1TkRPUpqqY+btSppXNoSJmTN51pWnxaMgTruARNhp3pEYTne5OEXQ6WALRCFmumyx3c/R7hd3uSM41Dq8IlKVpSd3kvSqGMdf+HUnZ+3Qm+ngGLYHlfG6rRLAq5hHB0sHyc45iWufI+Nku6XMHWZBVG+/dZjtYThGcc/R7ucs47WMUVKqpnnumg1WhOUbpHEJkbPOGXEymB8tbQttvCuZebmZmmLKjaziJl04P4NYScK8klyxtwHgmh4Oai6mlzEunBjC/NlEyQvfyZY2oq4jiwX1cJliusMBiLHpGjBKnflepk+qquJMER5JZKzpdFVFSRDSaAsuxwGs6h3gkjEQ0jGTWGTRglQi6whUcDpa7RND8uUKTUJeWceuahLqMy8FKmQJB3keKL6dzYro02om9WSJYoXdOiID6qqgm5ML+fUZ6sGSKoMvBkiKisdp7jOwFn42EPo+w0S7CbO8b2ddmb7PXFQNcfVZZ4XISVfElLDEH2AJvUk6idLAyXgerwSwRdDtYFdEwKmOaHqx0zjrPhwNSBN0pkH2jxmepe2Rm1jhjGKZwPHKgC0IAt2wsIYG1pB5A+S04vONUf0mUB0oi4RBuWt+CRw52lZ2byBiwwJpjCCF8XRJ5lb1/1Ll9IMDBGkll0Vobt36WjCk9WIAzoU06WIloGEI4J9TGxN7b36T2YHkDMJyixzl5txPvAE24gkZ8eeLGtQ4O+U7s6zTOyXgmh0QkjMpoBOls3hEmMqLs04GZLBH0SRFs1IgNNWwE0AubwH2jWaA5GjbWxyLShI1E9MfI7qEj63mcr6WL9Lf7vcIhcvXJmceoUu8yVsTCqIx5kx5HU1m0yPPcUyKYscbkTmOUfVk6ByuTy2vXj2MYpjR4cF8HljRWYm1rTaGHMmna6ivQXBPHS2W0HlbXcBJn+sdx8eLSKA+U3LqhFYPjGTx/grNwyhEWWHOMh/Z34vLPPOyZ8I2nc9biqh4HyyGw7AlhPi8wkspazfvqWkGyRHBelTEpda8xlIjaroRM2MvnjaAMXbiCGmrgjk6XseFEpJ30SzEA+C1wa27LukSEJkXQEXKhmdgT2WEbavljMpNHIhqyepDUHh8pTMMhwsD49DodUlCHQ8a6VA7Rl86CyBYbbqcnrjpH5vuWxyQe9pZqZlz7RpfYaBwj1+NMoSuPkXwNO4o97AnAcCc96pxEOX6He2o6ibKcdNzlrBoCK6yJac+hNhFFIhrylFoOKZ8J98WLPqtE0Htcv/TYUbz6P3/juZ1hmOJnJJXFU0d7ceuGVhDRxA8oEowFh+vLysHacXIAAErKwQKAa9c0Ix4JcZlgmcICa45xoH0YqWwep/qcTfe9o7bg0gks+f0xpLgtsgxQ52CNu0oEHT1YmTwqomHEzfQ2OQGWk+6EJlxBlnZZwsYTVmEM0BsP7kwRlJP3XF4gL4CgkItoxFvqlnE7Jy53JB4JIWH2GaU05WcVlsBSU+mMVL7Gqti0L1Y7YiY/LqgzRLBaJjiatkvi5BjV96I6WHK/WUI3GkIsHHatZyX3G3lSBA0n0TxGrnh3I4iEFCfRfRwIsYgzFt8ZRBLWu52aXr6k6SRWROUxsreNpQNKBFNZVMXDqI5HPWEhQ8rnwy2wLAdr1OtgHe4cxoneMY+YYxim+HniUDfSuXxJpAe6uWRJA072ls+Cwy+d6kc0TNi4sK7QQ5kSlbEIXrl6Hh7a3+kpL2dKHxZYc4xzA+MAgC5XLHePcoW9f9QpsIbGM2g1XSrVwZKlUq3m5H3MEXLh39+TzOaQiIaRkJN3c5Ir/7cWGvYJV/A4Jzk7Hl7nbkU1JYLuKHb1NTKqg+XT7xUNk3eMZnljPCqdOdfEXhEzToGVQXU8gvqK6LSXCMrnk9HvannbWDqHyljYEoRup0f2YAGKwFKj2COElCZsxF5bzBVkYR4DvQgOSHPU9G6lVSfNJ+TCWITYmVQpncRE1PueVRGccpVxjqayqIpFUJOIeJM0k1nr8+FOgZQ9WD0aB6tryPgMnhtIerYxDFPcPLCvA01VMWxb1ljooUyZS5YapXTlUia441Q/Ni6ss/6ulxK3bpiPswPj2HduqNBDYaYZFlhlim7BYAA4N2gKrCHnpE4tGewfc1+Fz2BRgzFBV3uwZKmUnFyOqiEX7v6etLtEMGz9MZQTYKu0K2pMjNN+4Qq6EkFVYLkn75qY9pRLKBn3FY7/dQsNu8fhXgcrpoqSjE5gyUAQNZXOCFCor/QKrHxe4O/u2YcD7RP/8f3SY0fxxGFn5Kt0VBY1VAJwuYzpLCpjEctVU4+RtdCwT4lgLBJC3DwOumPkFrqZnLAcKncZp+zP8ohgV5CF+vqBMe3WeRRGIurdlojaDpY75CLh4+iNpXOoikdQHY84euYA4zOxuNH4fLhDSgYCUgQ7h43PYLv5mVTJ5wXyPp9hhmEKSzqbx2MHu3Dz+lbHupClglxwuBzKBDO50llgWMdN61sQIkOwM+UFC6wypGsoiU1/+wCePtbj2dZuLvrrdrDUHpG+UW+JYHNNHPFIyNFvIt2s1lpZfqaGXGRRGQujKj5x+ZnsVbL6eyL+4Qq66HDpgMjtjmS7XN7qFzLu6wyykEJJvU3dFg2HkBewUn48TpojKdAoEQyHjF6wpMY5qdSImeGksdBgXUXUM0HvHE7iW0+fwN3bTyOIZCaHf33oMH784hnH7ZaDZQpkRxCJdLB8HDe1B0uKFrewMfaXK3giHDKPg7cHC4B2EWKHk5jNO57XmQLpFVieuHi3g+XqhYtHVAfL+Z4rY4oIdkWzV8WN81ndh/m8wHAqawnYQdfCy/K+bgdLCGE5WO0aB+v3v70df/mzPZ7bGYYpPM8c78VwKotbSyg9UCURDWPDwlrsOj1Q6KFcMIc6jLaHrWY6YqnRVB3HtmWN3IdVhrDAKkP2nhvEeCaHna4/nkIItJslgp0uB6vH7BFprolbfSOSwfEM6iqiqK2IOhws2c8zrzoGIueEdCwjJ+9eQTGezlkLDQN2mZY7nADQOyeecAlPiaD9WnYEuHGVMR1UIjgJd8s5eXcJrFzeGrd7Ym8n1HlLBEdTWdTEI6ir8PZgdZiCeM+ZQQSxv30IubxA56DzuFoOllkiOOrqk6vQHKNsLo9sXjjKHeV7cQeAGPtGOk62IIqGyeP8WSWC2pALuwcrrdnXbifNnSLoTgokMo6fEZbiLH1MRG1R6XapfI9R2igRdPdgjaazEAJYbApY9fjJz1FzTRyD4xnHuTI0nrXGfE7jYL10qh8vcLIUwxQlD+zrQFUsjGtWzSv0UM6bLYvqsfvMYMk75XKec/Hi+oKO40J41cb5ONQ5jBM9o4UeCjONsMAqQ451GR/S064gi6HxrFXGp3OwKmNhLKyvsJLPJFJg1SQiDgdLlgjWJKKoikUcE89xc7KqK8VSY9oB20VIKj1YnnAFj2PhKhEMq/097t4fQjQULAYAr/iKacRX2gzNICKv0MvkrTCGhG5iH/ELuTDcEaNE0CluO02XY9+5ocC1MqQAk2VnEplKKB2sYa2D5SzVtMNGjCAL9TZ1oWXvvskhHCLTwQt5AjBkyIU2AENNc9SEjVgCy+1gaRYhlmEjROQNucjmzdJBTQ9WWt8nl83lkczkUWn1YHlTNRfUVyBETgerzzyWq1uqATjDY7qU4yT7IiVDyQz6xzI42Tvm2E8MwxSefF7gof2duH5tS0n2/Ei2LK7HSCqL4z0jhR7KBbHr9AAaq2JWG0MpIheqfnA/lwmWEyywSpj/78e78ctd5zy3yz+Y7qRAeaU8RHaDvaRnJIV51XE0uCb5yUwOqWwetRVR1CSijiv0cnJZk4igKh52hVxkURlV+ns0E1npItg9WDL9LeztuVFEj9YBsRwsb0x7NBxCKESIhEjrgLj7s1R3Szext8ScZqFh1cFKuhyshFJ+Np5xxrRXJ6Koq4hiNJ1zPKeciI9ncjjW7X91a7cUWENJRxrRRCEXFdGILYJNQeEQun4Olkb0OPqsNEEkVolghDxlnI4yQE+gBnmOkbsXTgggm7edL/lccVfCYCpjuKeGAPMGe1TGwqhwHSOZlmmkCEYc+1CmatYmDIdX7aGT68lJgaUmdknhHCK7bFciL4xk88JzkSSXF/jgt7fj6aPe8l+GYWael04PoHs4VbLlgZKti43EvZ2ng6sjip1dZwawZVFdSUXlu1ncWIkNC2rxAJcJlhUssEqU/tE0frT9NH7+0lnPNulguQWWbKZf01rjuIIOGA5WU3UMjZUxRw+WvCJfXxlFbSLiTBE03ZCqeARVsYgn5KIybifUycm7EELpwXI6WDLWXE2v86y/FLAOFuANuXAHYHj6rLQhF+rk3etuyfvr4uItgRV1x8znjYWGfRysatPBUvc54Czl3H1mAH7sOWtsS2byGBp3rssUj4SsBZ9HPSEXXjdHjtsZ0+4SwUrvmro2VVSJYncKXaHtwRJCeBYh9jiJasiFeVtKEdxSBNrnSs5aAsCzDpbpYBEREpGwNkWwyjxGsgRWru9WFY+gKu5MEZSfh9oKIwVSPXbSsVplLkKq9jnKz9+a1hqPg6WKKreoPtE7igf3d+Jnms89wzAzz4P7OhANE25Y11LooVwQK+ZVozoeKek+rJFUFke6RrClhMsDJa/aOB87TvV75mZM6cICq8jpGEziZK/XudhpTrZ16XLSwTo3kHSUlck46K2L69E7mnZs6xlJoakqjvrKmOMqvJww1lVEUZtw92BJgRVGZTzsDLkwy89CIUIiGrIcLDlBN6KyZciFe5t3Yq8uJhwUcqGLAFfT69wiKihAwZFs5xARisByLTQcC3CwKmIhbWLfSDKLajPkQt3nANAxmEJrbRxVsbDlUrkZTWVxtGsEK5urADjLBAfHMqivNEo4AX2JoF3G6SrVjGp6nyxXKex193J2iaSnVFPZN6r4kveJRbyLEGuPkXycy8FSxybDRuR70DlYgHEOyvcqhPBdq0wKqspYGDWJCDI5YZ2X8vNQYzqQWoHV7HWwZInu1sX1aB90uo6n+2zBdbzbWb4jP+/u/kr5Hl440cfrqTDMDCGEwAP7OnDVynmoTUQLPZwLIhQiXLSoDrsCLtwVO3vODEIIlIfA2tQKIYCH93cVeijMNMECq8j5kx+9hN/71gue23ea61ecG0w61t4ZHMugZySNVS3VyOWFo/zo3MA4IiHCxoW1EMKZbNY7msa86hgaq6IYSWWtCaQqsNw9WMOprBVLXhWLeARWRdSY1FdEw5agkP9XOGLabecBsJMCAWWNLDMCHTAm1VklxjrtM3lXFxM2HhfWh1x4hIKwnsu9RlbaJaK8Cw0H92BVRp2T91zemNhXx6OoNyPtB8edTseCugpsaqvD7rN6gbXv3BDyArhlw3wATtdrYDyN+ooYQiFCVSzscrCMXjg7zdHlYEVsl1G/0LBXfNl9VqQJsvCKYPs4eBch1oZcaNMcXedRznmMHE6i6Z4C5nmpiHshoC3jlKWv1WZMO2CXWkq3sCYRQa1bYJlO8CqzRFB1sDqHkqiKhbGqpRpj6Zzjcaf6xlBXEcW86jiOuQTWwfZhAMDR7hHHxQ4AeOxQF97y5Wfw2CH+gmaYmeBI1whO9I5ZPTOlztbF9TjQPuRw8ksJKQ63Lqov6Dimg7WtNVjSWMlx7WUEC6wioH80jUcOeGtv+0bTeP7lPhzvHvWUEe08PQC5/MaBDtvFOma6VzesbQbgLBNsH0yitTaB+XVGP46ciOfzAn2jRomgnORLF0v+r0sRHEka6XeAUT41mvaWnwHOiWxSU37mdrAcJYIaYeOebKdc23SLCQNGOaB3HSwl5MLdgxWxe3/Smsm7t0QwZ5WrxSMhSxxa7kgsjIjpxsh9NaK4gNLBUh3EzqEkWmvj2GJ+EaqvJ5Glg7dsMEpWOhRRPTCWQZ1ZelidsPuHhBAYNY9RKESOUjrVwfKNadck+6mLCUfDIeTywlqPTYaDyG06oSv3qTbkQiPm/MZhOFiK0HVFscctB8suEZTCv1ITcmE7WIrAMm8bVnqwvA5WBpWxMOZVxxALh6ykTsBwsFpqE1ho9sapiw2f6hvDksZKrGyuwnFXieCB9iGECBACHkfzN0eMvixd3G/PSAqPHWThxTAXwgN7O0CEshFYWxbXI5MTk1pnsRjZdXoAS5sq0VAVK/RQLhgiwqs2tuLpYz1Wby9T2rDAmkX8Snc+c98BvP+u7TjaNey4/dGDXZAJqs8c63U8z64zA7hujSGiDip/HI91GQLr+rXGZFsVWOcGxrGwPoHW2jgAu0xpYDyDXF5gXnUcjeYfKlneZPVgVcRQE48gmclbE1kj/c6YcFbGwlavCmAsOizXwKqI2QJLTmSNEkGz90f291gTe308uBouAdgiyVkGGFJ6cWyXAzAm6rb4kqVp5CkRzGgm7+o2R8hFLm85aamsseYW4HROjIQ72M5JzHb0pKNUkzB6eACnwOowRfHmtjqks3kc7nSeIwCw5+wgFtQlsHGh0bSsJkQOjmes562KRzBiCrtUNo+8gOXWqGLD7oULXmjYs29cLpV7v9k9WGS7VDnXMVJCSlQRFXU9XzqbR4hgCFZLcNv72xGX71rfSx6HuCqwzP8dMe2uHqxqswcLsHuvhpSgl/pKr4PVUBkDEWFedczZgzWUREtNHAvqjDXk1MWGT5sCa0VztdfB6hjGtebn3l0mKP9GPHygyxO9/PlfH8LvfesFHOzwTqSEEFxWqEBEtxHRISI6SkSf1Gy/loh2EFGWiN7s2pYjop3mv3tmb9TMbPDrfR24eHE9Wsy1H0udrWZpXan2Ye06PYAtZeBeSV61cT4yOcEXw8qEohBYk/hCixPRj8ztzxHRsgIM84J49ngvrvrnR/H8y32O2zuHkvjFTqNh/Sc7nI3rD+/vRGutkez3zHFbYJ3oHcPAWAa3bpyPxqoYDrTbk+5j3aOIhgnbljUgGianwBocx4K6CrTUJKzXBoBeszekqTpuBS3IoAt3iSBgX7UfTWWtK/rVHgdLKRFUBIV0Ryq0Cw0rJYJhzaRZcYcAZ3S6M8jCFVahc04cDpZr8p4z1lEKh8jrnOSCnTQ5xoTS+5NM271lgClGXe5IVTziCbkYT+cwlMyitTaBixYZ4mmPpkxwz5lBbG6rQyJquGBqiaCM2AeAGiUBTy3VlP/r+uSC4vI9Me1qf5pnnwqHu6Xrd3NvU/uzgo6De4ypTM6xLaVZ8Nl4z3YP1ljadlathYalCDbP68p42PoMSGE8lMwgFg5Z+35wPGOJlf6xNBqqjH3fVB23PmeAzsEyBFYuL3CmfxyLTQerfyxjfxbHMjg7MI4rljdhxbwqvGSWCQPGZ/hgxzDWza9Bz0jK6tEEjGN97552AMDXfvMy3Hz87l14zzdfCFwGoBQgoluI6H+IaKv5+wfP4znCAL4E4HYAGwC8g4g2uO52CsB7AXxf8xTjQoit5r/XTfX1meLlZO8o9p0bwh2bFxR6KNNGa20C82sT2p7OYqdrKIlzg8my6L+SXLKkAS01cdxn/r1mSpsJBRYRvdv890b5xTWdTPIL7f0A+oUQqwD8G4DPTfc4psLgWMbRyyLZe3YQN/zfx/Gfjxxx3D6UzOATd+9Cx1ASn/7VPsfV5buePoFsXmDjwlr8/KWzVklVMpPDk0e6cfP6VlyxvAnPHOu1Jm7yatPWxfVYv6DGcVX6ePcIljZVIR4JY1FDpSWw8nmBjsEkFtZXWAsDS6dD9mLNq4pZDpZ0UQbHMyCye0wA++r9cDKL6oR0sCJW6poQwohpV0sE006nQCa5qRNgR4mgy8FKZfzdEUd6XcS//Mxwt7xJgbbAUsvZ7EANxzZHBLi3P0uWpsWVhDq7LDJk7it7f0iBVR2PoCYRBZHhKAJ20lxrbQJLGitRm4h4ysKGkhkc7xm1BNj82oSnRLBeKRGU560aPS7HZq9HZjtYnh4scxHfSMjeNylFRKlCV95f7m+386fuV/02b8iFOg73+ZBSXLa4Q2DlLZcmlbUdrIRaupqxBWfYfG9jZg+WPK+rtCWCWdRWGLfVVUSRywsrTbNvLIMGs+S2qTpmfc6EEEbpZ00czdVxRMOEc+Yx6xxKIp3LmyWCRu+WDLqQn/P1C2qwdXE9dp4esP4mPHvcuHDzydvXIRwiPLzfLhN8cH8HRlJZbG6rwy92nkWXIsCfOtqDn710Fk8e7saXnzgGla7hJG779yfxFz/drS1N7RxKWn+vioT3Afg/AH6XiG4EsPU8nuNyAEeFEMeFEGkAPwRwp3oHIcQJIcRuAKWtSJkpcf9eozfmtk3zCzyS6WXL4jrsmmAh+2JEjlnGzZcDoRDh9k3z8fihbu0ckyktJuNg3WD+exuAu8zSh23TOIYJv9DM3+8yf/4xgJtohhc9eHBfB/75/gN44nC31eS+79wgPnH3Llz2mYdxzecexU9ePGNNcB472IW3fuUZnB0Yx78+dBg/eP6U9Vx/f89+tA+O433XLMfes0P4xS7DqRpNZfG9507hVRvm40PXr0T7YNIq83nmeC/G0jncsqEVV69qwtmBcStdbOfpAVTGwljTWoN182txqHPYmugc67bT5BY3VlqRzz2jKWRyAgvrE4iEQ2iqiqPbnMD3jtoOlpwQ2lfN06iJRxAKEWoSToE1klJ7sMIYTWetGPa8gJXGpk5kUxmnc6L2KqkTe8+EWuccKUl0dsiFXWKmLiYst3n6e3Q9WFnhKDk07p8zX8t/HGoQh+pgud2iyljEOqeko1QdjyAcItTEIxg0yzPlWkmttXEQES5aVO+Jat9rfslsNsskWmrj6DSFczKTw3gmZ/XVGYtBSwfL+L9CKRHUOVhy3ziOgxSfnrWpcp79prqJQXH52h4sbTmiXY4pwy3ibnfLEZcfhhDGuDM5I/REbqvQlAhK90oVwfJYVcXD1gUFVWDJz4XdQ5e2/rcEVpXtYA2nskhm8mipjSMUIrTWJtBuOljygogqsGSZoOyTWL+gFluX1KNnJGUJs2eO96AqFsY1q+bhiuWNeFjp6fzJjrNoq6/Af7x9K7J5gbueOQHAuOjymXsPoK2+Ardvmo9/f/gI9poO6Wgqi/d96wUc7x7FD54/jfd96wWrL6B7OIWPfH8HrvinR3DjFx7Ht556GaMp47N/sncUP3j+FP7sf3cVQnwNCyEGhBB/BuBWAJedx3O0ATit/H7GvG2yJIhoOxE9S0Sv97sTEX3QvN/27u7u8xgmM9vcv6cdWxbVYVFDZaGHMq1sWVyPl3tGPYvcFzu7Tg8gHCKrNL5cuH3zAqSyeQ4rKgMiE91BCPF76u9E9GoAPyeiLUKIXp+HTQXdF9oVfvcRQmSJaBBAEwDHaptmScgHAWDJkiUXNKh954bwjd++jK88cRzRMGFJYyWOdY+iMhbG2y5bjP3tQ/jE/+7Cz3eexTWr5uHzDxzCuvk1+J93b8Nf/HQP/urnezG/LoFUJo+f7DiDP7pxFf705jV4/kQvPv/rQ7h90wL87/bTGBzP4APXrsDGhbWoSUTw0x1n8IrV8/DQ/k5UxcK4amWTtUjsM8d7sKRpCV46PYDNbXUIhwjrF9QimcnjRO8oljQajtWtG40rbEsaK6wJebvZRL/ADLhoqYlbE/ieYSmwYlYJ1IDSgyUn6HKbnGipPVhV8QiEMCaqUjBJB6syFka3nPQrIRfyfzXkIkRGH45cx8iRUGeJKE0ARliNB5diIGfd5t6mOidSLDh6iZRUQuM1bAdLvme1bE0KS+dCw95gD8AQnu4SQTlxr6+MWQ5Wx5DtYAHARYvq8NUnjzv6iGSy4EVtddZ9j3YZH4shpbxTvoYUx2NKqIP7OKhC1+0yOlMUnQ5eJicsEanrz7JCLpSFhu0SQaWMM+sWweQRs6qI0gld20l0CnX1OOhCLipiIWu/6EMuZDy7TBHMWJ+LugqZApnBogbjIoV0hOdVx9AzmoYQwlrkWx7XhXUVllBSBVZbQwVikZAVdHGwYxiNVTG01MSt3omdpwbQVl+BZ4714vLljYiGQ7h5fSs+/av9ONk7ikQ0jN8e6cZHbliFFc3VuHVDK7777Cl85IZVuH9PB/a3D+E/3r4V161pxo5T/fjTH+3Ezz9yDT76/R3Yf24IX3/PZegZSeEvfroHb/3yM3jH5Uvwrw8dxng6h/e/YjleOtWPv/vlfnzhocOoTURx1hSKLTVxnBswSh1nkXuJ6N3mz9sBjATdeYZYKoQ4S0QrADxKRHuEEMfcdxJCfBXAVwFg27ZtRWUDMl7O9I9h15lBfPL2dYUeyrQjE/h2nxm0+jtLgV1nBrBufo3197xcuGxZI+ZVx3D/ng685qKFhR4OcwFMKLCI6OOamwcAfI6I9gsh/nXaR3WeTOeX1p/esgZ/cN0KbD/Rj2eO92Lv2UG8ddtivP2yJairjCKfF/jucyfxufsP4jdHenD92mZ86Z2XoCoewZd+5xK87SvP4CPf24F4JIRNbbX445tWIxQi/OUd6/HO/3kOX//ty/jRC6dxyZJ6XLq0AQDwmosW4ucvncWnX5/FIwc6ce2aZsQjRpTzvOo4nj7Wi9df3IYD54bwe69YBgBYN99YxPRA+xAIxiRXXvle0liJgbEMBsczVo/HwnpjUtdaG7dK0HpH0wgR0FAZQ9iM8+4btUsE5QS91nKwlB4sc3KpLs4qJ+Ny7aUKZbI6nrZ7sACvwFIn9cZt9sQ+bjkgTscpncsjGrEn6LYD4nSwgpwTd7iCXXLoXGg45VoHS94/mxcQijsS7GCFLYdQLREE4AhK6NIIrGxe4GDHsDXB3nNmEIsbK6wUpfm1CXQNp5DLC0f/nHwN2U9kCSyljNOT5qhJREw5joNX9NSa50NUWaA5n7cXEwYMgWytZ6UkBcrHeXvojEWIQ6QXbLpFqeMuEZjK5CEgzPelnnveHiwAqIzbLqOx5IBROiiP06iSIljrcrAGxzPI5vIYTmat8sx51XGks3mMpLLWcW2uMcJmFtYnsP1kPwAj4CIcIiyoTyAcIixvqnI4WOvm14CIsG5+LWKREHae7se2ZQ041j2Kt122GABwywZDYD20v9NaquCNlywCAHzglSvwwL5OfPfZk/jmUydw0aI6vPaihQiFCP/y5i14zzeex6v+/Umc6R/HP71hs7WY6oK6Cvzhd1/E396zD9uWNuCzb9qMVS3G356XTvXjO8+cRDKbwx9evxJXrWjCyuYqzHCRgQchxC+I6Jvmr5UA1pkhFL8vhNg+yac5C2Cx8vsi87bJjuGs+f9xInocwMUAPAKLKS1+bZYH3l5m5YEAsGlRHYgMR6hUBFY+L7Dr9ABes6X8BEg4RHjVxvn46Y6z1lIqTGkyocACUKO5LQTjC6x6GsYwmS80eZ8zRBQBUAdgOtyzQCpjEVy7pln7RycUIrz7qmW4aX0rnj7agzdc3IaIOYGsjkfwzfdehjf899PoHknh39661ZpcXr1yHm5e34IvPHgIeQH8hXJF7E2XtOEHz5/C5399EJ1DKdy83oiCJSJctdLow9p/bgjpXB4XmxPs1a3VCIcIB9uHrYmmLBFcYl49Pt03Zl0hX2g5WAnsPWeUHPWMGFfaw2bue0NVzOFgWSEJloOllEcpDhZglFPJia78w6CmCMpJfEITBpHK2DHnnr6aXB51sahnmxDCEF8OESXMSb0sMbPFl+yPca+/5EwYzDvEAKCUwfmEXLgTC9X0OjX2HDBEzZl+0x1JOgVWXUXU6n/rHEoiEQ1ZokWWAe45M2AJrN1nB3BRm/EzYAjnXF6gdzRlOWFWD5YZciGEUBwbuwerZ8ROGJTvwXhPYZdb6FeqqXP+8sjkXWI2Qp4eLPX4qa+lvo7aXxcU2+9eq8x4TznIoDznQsPeHix5jMaUpEfZq1YZC4PIWSIoBbD8nAyNZ6x9Lx2spmrj/96RtNX7KMNmFtRXoHNPO/J5gVN9Y1hYn7D21cqWKhxoN0qAD3UO43euWGq9540La7Hz9ACeNQNwrloxD4BRGrxufg0e2t+J/rE0LllSj+XzjL8Jly5twNbF9fjs/QeRF8C/vW0rQubn/ro1zXjXlUvxnWdP4iM3rMQ7r7CrAF6xeh5+/pFrsL99CK/ZvMB6DABcvKQBFy9pQDEwDRUXLwBYTUTLYXzvvB3AOyfz2kTUAGBMCJEionkArgHwL1N6A0xRct+edmxcWIulTVWFHsq0U5uIYmVzdUktOHyidxRDyWxZrH+l447NC/C9507hicNduG1T+YSqzDUm7MESQvy9+g/A0zAEzseEEJ+ehjFYX2hEFIPxhXaP6z73AHiP+fObATwqiiRXuK2+Am/ZttgSV5KW2gR+9uGr8fMPX4PVrU6N+snb14HIKDuU5XyAMflZ2lSJu545iRDBunoMAFetaELXcAo/NZMGty42JjTxSBgrm6twoH3IaoZfYTpYslb8dN8Y2gfGkYiGrMl2S63RE5LLC/SOpNBUFbdeq6Eyhj7ZR6JxsIbGM0hnDVFRbcW0270pbnckEQ0j6Qq5sHuw3A5WQDKcZmKvJs2p/2fyeW3IRSbrnLyryXZpJeQipogBeRtgiAg1il0+lxptLsefM0Wee/JeEY14YtqrFIElnafOoRRaaxOWE7CwLoGmqhiefbkPp/vGsP/cEE73jWPzIrsGXcYHdw2lLKFWb5auVcUjyOaNUkb7GClJj54SQa+DZaQ56ssA1RRBNZnRL8hCCOFxsILXMXOWD7qPuRqWYvdg2eeRlVKpSU5092CprutoKmvdTmS4WHZMu1IiWGnH7MtFhuutkAvj89U7mrJSHuVyCQvrEsjkBHpGUjjVN4bFSo/HinnVONU3hiNdw0hm8pZjDRghN3vODuLJwz2oTUSwYWGtte3m9a147uU+HO4cwZsuXWTdTkT4wCtXIC+M+1y5ogkqf/2aDfjBB67En926Fm5WtVTjdVsWOsRVsUFEH1f/AVgLu+JCV43hQAiRBfBRAA8AOADgbiHEPiL6NBG9znyNy4joDIC3APgKEe0zH74ewHYi2gXgMQCfFULsn+73yMwu7YPj2HFqoKzSA91sWVSPnacHS2a5BikGyylBUOWK5Y1oqIzivj286HApM5kSwW+YP1YAWGc+5s1CiGnpzDV7quQXWhjAN+QXGoDtQoh7AHwdwHeI6CiAPhgirOhpqU1o18tY1VKDf33rFsyvTViuEWBMft548SL828OHsW1Zo3X1GwCuXmlMhO7efhrzaxOYX2c/7/oFtdh+oh9N1THMq45bgmhJkzFRO9U3hnOD41hYV2FN1ltqE8gLI96511xkWNJQFUO/OTkfGncuVAsYV+3dwkBe4R9L55A1J9QVSg+WZ/IetZ2TpKP8zJy8a0Iu3OLLCC7wTsIBY7KvrqMEGE6W5XLkXNtc0eHuNDydiFCdNPl86iK2cpvt2qnuiB0UEleSDOsro5Z72DGURGuNfZyJCFsX1+Pe3e24d7cd46quAyLdlM6hpPU8UlTXJFQRLPuKzOMQ0ZQIKiLFLtX0Blm4AzDUfZPJ5ZVIfNtJFMKIJHfHtDtElJJYKJ9zMk5aKpuzzi/LwcrkkTcnDwnlGCUzOaejpxwjmfpnrOlm/6msjkecKYLmhYd6pURQfn4arZAL4//uYcPBqoiGrYsTsi/SCLIZs5xrwHCwcnmBB/YaoRXrF9giauvienzzqRP41e5zuHZNs+Nvyc0bWvHFx44iFgnhNZudZTS3bZqPP79tLV6/1ZvdEIuEcNXKJs/tJcQFV1wIIe4DcJ/rtr9Rfn4BRqWF+3FPA9g8lcEyxU85lwdKti6uw092nMG5waTV813M7Do9iMqY0T5RjkTCIbxq43z8ctc5R881U1pMpkTwCfP/UQDHAbw03e7RJL7QkjCuFpYNd2omNwDwxkva8MXHjuAO1x/zpU2VWFCXQPtg0ioPk6ybX4tf7DyHl04NYEWzXcJQm4iivjJqCKyBpLXmDmA0oQOGS9IzksJFyiS9oTKKEz2jEEI4SgRlD8pwMusJZ6hSelNkepjag5U1J9PeEsGwJdaMcALjdhmRrgtXsEIuVBHldrBywg5J0KXXefqzSF8iqAlXcJfBpbJ2sEfM5ZzIJD+5HwBj8j6qBChI4QMYbtPgeAb5vEDXUNIqC5T8/Z0bcbtyJbU6HsaVKxqt3+ebAqtjKGmJBhmvL4/HqOIyWiWCMedCw/FIyBLjquhJBYZceIVpOut1qdSEQTXIQm5zrJ0V1o9Ddxxk2IgjSj9qHyNLYCniPm8mDMpjlJAhF/EIRs3AibF01uoxNPa5UWqZzRlOoEwRrIyFEQkRBsfttavUHizAdrBkMiQA63N5tGsEPSNpRzDEinnGBOLePecQDpFjQnGx6WKnsnlc5XKiLmqrQ1t9BbYta7AukEjCIcKHr1+FcsSssrAgoltgBB99bLouCjJzi/v3dGBta41VGVKObFEWHC4FgbVTCfoqV27fvAA/fOE0fnOkB7dsaJ34AUzRMZkUwbsmug8zfSxurMTj/+cGa6IsISJctaIJP33pLLYuqXdsW7fAuGh7pGsE77jcmZ4okwXbB8dx7Wq7l0w6HV3DSfSOpDFPdbAqY+gfS2MsnUMmJyyBBRguyFAyYwksqwfLmrzbE1m1RBAwyrCSGSMpUF1LqndElgHaC/XKbROlxunKAAH/0jQ1XCEcIusPtDth0Aq5CDtFhLb3J5v39C0lIqqDJWPP7Z60dDaPXF44khgBY0KeF0aUd+dQCjfX2KWbgFH2+eZL/ZPZ5BpnnUMpCCEQIvsYqQ6kp4wzEnY4ieoVs3jU7ifzEzbyf1uY2qWVbrdQDcDIuJ3EiHOhaHk74OyTU3vy1DLAbN4Zxa6Wmkrh73YZk5k8xtM5x3lZGVXXKss5PgPVCSMsRJYJSoFMREYP3XjGcg+lCy3/lz1YLYozKYNnXjjRB8DunQRgXTA53DmC1S3VjuOyuLECjVUx9I2mPa5TKES456PXzLkG6ZmuuGDmFp1DSbxwsg8fu2l1oYcyo6ybX4tYOIRdp4u/FDKdzWP/uSH83jXLCj2UGeXqlU2oq4ji3t3nWGCVKBP2YDGzT1t9hfbKzNWrjCb2S1wN5RuUsqGVzc4m3MWNlXi5ZxRdwyks0DhYp/rGMJLKWlfYAUNgDSez1lV4dXJZm4hiWBFY9kLDZopgOusJUJD/JzM5y+6WV+/j0bAVY57M5ixhAjiDIlIaYZPRhEuoCYMe8RWx+6zUFDp5H11/jyXYrAWKhdfB0ThpEzlYgOGMjKayVqkYYLtNp/vGMJ7JWUJ4skTCIcyrjqNrKImBMcN9lD0zagKeXAdL7u+KWMhRxinfG2AEUDicI3OfhEKESIgcwtTtMmYCXUa9QNa5VMZz6sehlpN6ExCd5x7gjGkHDMduPJNDZSxinZdqyMVYKovquNPBGk7aAqtW+XzIHjrZwyjXwYpFQqiriKJ3JIXu4RRaauOOx1REw3juZa/AqklErV4ttTwQMATdJUvq0VQVw9pWb2VcU3Xc6h2bQzxh/vsJjAXqLxJCPFPYITGlyi93nYMQwGvLMK1OJRYJYYMZmlPsHOwwgr7Ktf9KEg2HcMfm+Xhwf6c1p2JKizn37VvK3Ll1IWoTEVy2zCmwWmriaKiMon8sY0W0S5Y0Vlr9OguVvi0ZES0XL21S+r0aq4wJ44leY/2depeDNZzMWul30n1RJ+9StqiLtgJGXPl4JmcJDcCY4FsR4BM4WLqeG3fvk5oo55nYO8rPbLcFcIVcZPOWKyFdrnTO6NVJ68oHc0qAgju9LpNX+s5Cjv0yns5hOOlysMx9fbhzGADQWjc1gQUYZYIdQ0nUJKJWyAJgHyMZRFIZC1viKxEJW6EcXgcrZJVxpnN5x3jdgkhNCgScTqLWZZSlmtbxI0fJoSqCY47zwRaBQX13qoMlewMTSsgFYDir464694qYM4hEFSrV8QjaB5PWenBqiWddZdRIERzLIBENORykJnMtrM6hJG5YawfYEBmx7HK9qyWutaNWzKtG51DKcqpV/va1GzEwlinq4InZhCsumOnknl3nsKmt1vO9Wo5sXVyPu7efRi4virr0TopAd6tEOfLaLQvxg+dP4+EDnWUv8ssRdrBKiGg4hFs3zvesL0NE1tVtncCSqD1Y0XAITVUx7JcCS3Gw5KT8RI8x4dOVCA67SgQrlZCLUc0aS3JbMuOcvCeUAAU15AIw0+u0rpLx/lMThVx4+nucfVZq+Zm7fNCzTekX0k3sdcEQxnsynBMie5vtYOWMHixHiaCx7w93GomQra4SwcnQWmssIq32zwG22ziSymIsk7PGAdgu43gm5+iFk+9JVyII2KJHik9PD1bAMcpkhaZ8UB82Irep8e7yuIZCZKxjlvMmBSY0KYJq/x9glwjKRYYBY103OfbRdM7hMsoeLK3Akg7WaNpyryTzquI42TuKsXTOcqUksu+hJh6x+rYkK1sMV9rtYAGGQ62mSDIMMz283DOK3WcGcecWfb90ubFlcR3G0jkc6Rou9FAC2Xl6AM01cSw4j4uPpcYVy5vQWhvHPbvOFXoozHnAAqtM2LK4HjWJCNoanA2qToHl/IPUXBPH4Q5jIq+mCMp+kZd7jCZ/tQSqtiLqSBGUk/Z4JIxomMzyM6Ofxd3rMm6VCKqTd7X3xzmxj0VCSGVyyOUFcnlhR6DrQi506XWaybu1ZlNWOB2siD7kwngcOSPhdU6aZx0sWSJoOFiJSNhRfgaYYlRZrBmwQxEsB2uKJYKAkRDZNZTE4FjaKbAUB8u9gGE8qpbSOZ3EmNtJdAusnFD2jat3TSd0dS6jpk/O7TIGjSMeCTuOg9dJzNnrkSllkYDpYKVzqIzax6FCOUZj6axDjFYnIhhNKSWCCWeJ4MCY0YPlFlhN1THr89biElhysrC4sdJzAWXDgjpEQoSNGoHFMMzMcM/OcyACXrOluHuSpgu59MuuIi8T3HV6AFsW1c/6QuaFIBwivPaihXj8UBcGzWRapnRggVUm/NGNq3DvH73SY+2rAkvGQUtaaxPW5HdelepgGRPGk716B0stEVSv7FfGIlZCndrPUuGYvOc8DpZuHSzALBHUlfrpQi40sep2PLi9LZs3FiFO5/JWGZvcpuslMl4v7BiHFYChLRF09fdkzbLImLP8DADGM1lPyIXc14c6zl9gtdYk0DtqhCmoboglsJJGTLtDUMhjlDbeS1AvXNzl7qnHQZfmmPGIKE2fXMQWX34hF+4ST52T5lnwWXGwPAmWSn/WeCaHhHKMZEng0HgGmZxwHKOaeAQj6ay1XplbYFkOVpXTiWqqjlmfNzV+H7A/m+7yQAB4y7ZF+PWfXKtd8oFhmOlHCIFf7DqLy5c1er43y5VlTZWoTUSw8/RgoYfiy1Ayg2Pdo9i6eO649q/buhCZnMD9e9snvjNTVLDAKhMqYxFr3SuVBXXGWlu1iYhjkgjYQRcAMK9G42DJHqxKVWAZPSbDZnlUldKbUmXGj49nsg5BofYcuXtdEmaEezaXN3qw3BP7jC1egtL7dGszpf0m/fm81x1x9WA5t5HLpbIXE3aPww5XUB2svKPvLKhEUAqsswPjqE1EzisFbn6dcVzbB5OO/rnKWBhEdky7Q/RJgZX1OlhxNS4/p3G3HOJTI3Rdi0E7t2lCLnJK3LrHLVN78uzxx8IhR1y+veCzkuaYdYZcxF09WBXK+5LHqGs4BQCOmPaqeARCAJ2DxoLBzpj9KIaSPiWCShmu28GS7rLuMxwNh8p2vReGKUb2nRvC8e5R3+VUyhEiwpbF9UXtYO05Y4i/cg+4UNncVofl86q4TLAEYYFV5kTCIbTVVzj6ryTSHamIhh1N/HJieLpvzFr7SlKbiCKbF+gZTaNKCUkAjInnqBKgIJGlWGOmg1XhcrAAu0fGPXlPZXMeB0sNnghaB8sdrmD1/piuijsCPK2IiJjqbpnx4H6vldIIPbeDpb4v+f6Hk1kkM87QiEQ0bO2T83GvADicjjplkk9EqI5FMGyWCKrHSL7meDrncbA8pXkeByunEUq2S5XO5VzbbIElRa21mHBYhmMIs88qIEVQ42DJ13KXajrFl3FbhZoimHael1J8dpsCq1LtwTIFVfuQV2DVVkQhhCGQvSWCtqhqdjlY8vO5WONgMQwzu9yz6xwiISrrxYV1bF1cj0Odw0WbWicDLi5yrQ9ZzhARXrtlIZ453otO8zuHKQ1YYM0Bbt88H7dq1lGQV9HV/ivAmORXRMPI5ARqExFHrbOcTLYPjDt6hwBzcdZ0DqOpnEOwWWECVsiFs3cGMMq0POl1pmNhuUPa0jTvWleAsy9KDbkAjOjwjLvELOwsTXNP7DM5jSMWGA9ubsvkkXKJykrX5L3a5SzWVxjH43wFllp+ppZ3AgEiOKAHSw25SGVzHmGjBoDoQi7SnkWdnQEYMXUxYaWHzi3mZPmgO1BDPi5tuqByzOr/qYzhYMWUBZQTVpR+3oppt/aT+XP3iPcYyZ/bB8aNxYWVMcr9nckJNFS5Qy5i1uvWuj47GxfWYcOCWlylLBrNMMzsk88L/HLXOVy3ptnzGS53tiyqRy4vsPdccZYJ7jw9gBXNVZ7vtXLndVsWQghj2QCmdGCBNQf4i9vX4+O3rvXcLksE1SvrkgazLND9h0wGXpwbSHqEQVUsjLFUFuOZrHbyPu7TgwUASbNHxtGDFQ0hlVGi2KOaif0EayxFw2RNqKOObcITZGH1YLkn9qaYswMZjOcjIkvopTLBPVgJh8Ay9lvXsHE1yr0f5T53l5FNFjWhrt51/KoTESPkIpOzesEAZ7lcUA+WN9nPVT7pcQvV/ixy/G85ia6kQPk4o0/OK6rdaY7yZ12aIxEhFgkhaTpYCeUxanLieNod02783CMdLOV8lhcZzg0kHf1XgPPz0lDp7sEyjktLTcLToN1YFcN9H3slVrV4o9gZhpk9XjjRh/bBJF63de7FYl9k9jYVY5mgEAI7Tw9g6xxyrySrWqqxqa2WywRLDBZYcxhZSjZPc5VOXrmrc5U5WZPLwXGvwIpHHGssSaweLK3AMhcoTmWRF85Js9FXY7sSjtI001Vxl4RZLpXOAXH1Z7kXGnaskaVJynO7NNY2zaRfXX/J3YMlJ+9dQ6Y74nIz6syJ+fzzdLAaq2LWe3NHfhvHyEgvrIzqHKy8Zz2yWCSEXF4glc0hL+DsfYq4nETzfauLEOv6rABzEWLNcQDsAIyYax2slEbMqdvcIReA6cCZvXyOc8+1CLEa0y7P3x7TwVLLOKW7dW5w3FEeCMCx7lhjlTdFEIAnop1hmOLhJzvOoDIWxs3rvVUf5U5LTQJt9RVFueBwx1AS3cOpOdV/pfL6rW3YfWYQRzqLO0afsWGBNYeRDtY8rYNlCiy3g2VOKIeTWY8wqIqFMZb29rNIsaFbaFhuk4ls7pALVby4S/rSWWWhWqsM0BY2GY0DAqjultelEsKv98fuM/IIjFzOIwLV0kfDHfEPUPCWCBr7/HxLBIkILWaZoFtg1cQjGElmPDHtdrlcznQSvcdIxpIHJyx696lnHSyPy+g9RvI5ncecoIZmOBYhlmLcleYof5ZC19ELpzpYE5RxqmEu1cpnwC2w1M9LvU/IRUsNpwEyTDEymsriV7vb8ZqLFnhCoeYKWxbXYdeZgUIPw4N01eaqwLpzaxsiIcL/vnim0ENhJgkLrDlMc00ckRBpr6hbDpZHYHljvyWVZn/PaNoZPR4KERLRkOlguXqwzEmtXOPB0fsT1YdcyJ/TuTxSLvEVVybvabdQUgIw3O5W3Cw5dK/nJB+nliO6J/ZSBMbCISv0IxomhMhOr1Odk2g4hGiY7Mm7W2BVSoF1/k6HfKy3ByscuNCw7IVz92ABsKL53aLHTwQbZZfCCrLw68/yO0Ye8RVxlWpqgjjcJYLyZ7ngc0IjHJNS+CsiqtLVg1UVV0oE48514VTU/d3oEli1iQgqouE5sUAmw5Qi9+5px1g6h7duW1zooRSMLYvqcbpvHL3m375i4aXTA4iGCesXzM0y6uaaOG5c14Kf7jhjXbRkihsWWHOYeCSM77z/Crz3muWebXYPlnPyX+MQWK7+nngEo2nvIraAUYI2ls56nAI54bUdLE3PjTVpDru25TxrLHlLzPT9PToHy9kvFNBnpFt/KeN0W4jIXEQ5h6SrvwcwJvDSwfJzQc7XwQKA+eYkvq7COcmvjkfRN5pBLu9c20keh7G0KbAc4sVOPZTv2d7mjmknx+PSmvXIYu5j5NeDpSnx1KU5Av4LDQOGOyfXwVKPA5Eh/AfGMxACwQ6WJkUQcH4eALeD5dxGRPj2+y/HB69bAYZhio8fbz+DFfOqcOnShkIPpWBIh6jYygR3nR7AhgW1ju+mucZbty1Gz0gajx/qLvRQmEnAAmuOc9XKJk+vCGCXCNZX6HuwAKA67hYNYSQzeQwnnf09xrYIBseNCXpcE3IxlNSUCEb1fVbyZ51zogZZ6AIZAJleJzwT+2xeWIvRup2TTE7f32M5aVlnQId8b4aD5ezBkvuqb9TPwbqwFEHALkNzO1g1iYj1urq+MHkcEhoHS659FrTQcDzI3fLEtEuXSu3BUuPdhacXLpsX1npW7j4rR+Kkdj01p3tqvM8w+k33tEITpW/1YKkJg6qb5RLHiWjIGpfuc3XZskYuESxyiOg2IjpEREeJ6JOa7dcS0Q4iyhLRm13b3kNER8x/75m9UTMXyvHuETx/og9v2bbYE0Izl9jcVocQFZfAyuby2H1mEFvnaHmg5Pq1zWiuiePu7acLPRRmEszNImNmQvxSBCtjYYRDhFxeeHqwZMlgKpt3lJ8BxsSzfzRt/uyc/AJ6ByseMRYhHjPX5HCHGqjOiTe9zjt5t7aZTofDwTKT7eRrBfUS+blsboElHSx3DxZgCJq8cO43yas2tqJ/NH3eIRcA8IaL21CbiDhECGCIA/m66jGSYx8Y0wtdABhO6R2sTM6nB8vclnG5W2oQicfBkos357wOpLzfiByHJ+QiZ/dgaUpNk64odsBw7uR5qbqusqw1mckjRG7BGTYXps57UgSJCHUVUQyOZTyfAab4IaIwgC8BuAXAGQAvENE9Qoj9yt1OAXgvgD9zPbYRwN8C2AZAAHjRfGz/bIyduTB+/OIZhEOEN10ydxYX1lEVj2D9glrsOFU8p+2hzmGMpXO4ZA47i4CxrukbL2nD137zMrqGk3yxrshhB4vR4teDRUTWVXt3iaA6ea10iYaKWBj9Y+ZEVuNgSYGlii9rQq3t/bFFD5Gx+DBgT96tkItwwOQ94hVfo2nN5D3sLoNzT94Nd8QtZuQEPZnNaR0sSZVrIr6qpQZ/9ZoNjkWcp8qWxfXaaH71mKmCQpbL2cfBGzwhSwTjEX/x6Vd26ThGisuYcgnduEsEu485YJ8PQeWk7v46GXKhE7rWeekSX9K1qopFPFe05cUFt4MFGJ+Z+sronL4KXsJcDuCoEOK4ECIN4IcA7lTvIIQ4IYTYDcDdCPEqAA8JIfpMUfUQgNtmY9DMhZHN5fGTHWdw/Zpmx0Ltc5VLljRg56kB5OTVuAKz46Qh9i5ZMrcFFgC85dLFyOUFfv7S2UIPhZmAggosImokoofMcoqHiMjz6SGirUT0DBHtI6LdRPS2Qox1riFLBN1N/AAUgeUUBmrplPvqfUU0rDhYan9MkIPlP7FXAw/UhWrl2lS6kIuJerAAI0VKPr/6WrqFhgFnep27NjweCWM4afT3xN0CKxqx9ou6UO1MU+04Ru7ytjAGTLHhdLDM8kHzGE2mVBOQokdYx8FaTNi10LBOBGsdyEjwMZIhF9EwOcSpUSKYQzKb8xyHeMR2Vt0iWArQyrjXiZLnunvBYMAQWLryQKYkaAOg1t+cMW+b1scS0QeJaDsRbe/u5n6KQvObIz3oHErhLdsWFXooRcGlSxswms7hUEdxRILvODWA5po4FjVUFHooBWdVSzUuWVKPu7efgRDFIYAZPYV2sD4J4BEhxGoAj5i/uxkD8G4hxEYYVwP/nYjqZ2+Ic5OLFtXhpnUtuGRpvWebLIvyxrTbv3snqxH0aR0s5+Tdvf4SoPT++KxNFXMJFDuUIqd1QNJZTRS7NXn3LxH0W3/JKhH09PcYAQr6/WH87t6HM436ejoRPKBxsOLu0jzXcUhpSjUBQyxJERXXCV3zOOiCSJKZHLJ54YjEl9t0pYpxl+BWkQ6WsdCw9zjozkt1/1TFvMdIOoG6CxCvv7gNb7qEJ2qMP0KIrwohtgkhtjU3Nxd6OHOeu7efRmNVDDeum3trX+mQTtGLRVIm+OLJfly6pIGrAkzeum0xjnaNYMepgUIPhQmg0ALrTgB3mT/fBeD17jsIIQ4LIY6YP58D0AWAv5FmmPrKGL7+3su0Nb6+JYIB7kiFWS4HuHuwnCWC7nACABjyLRHMecrIAKX3xzV5lyWB0o3SOVhjZomg2zmRjop8fnX80jnxTuzDVvy8N0XQFFizvNaKQwR7+uTs8cZdEeiALXTd5ZP+7h4ho1mPLBwihJVFiHUhF7JUM6or40zJY+TuwTKdRLdLFQ0r21wiOBK2zktP8qUsEdQco5q4f4ngu65cig9cy0mBJcpZAGpG9yLztpl+LFMg2gfH8eD+Trz50kWe75K5yuLGCsyrjuOlk4UXWN3DKZzqG9Ne7J2rvGbLQlTHI/jusycLPRQmgEL/NWkVQrSbP3cACLx8RESXA4gBODbTA2P8kdHUbnFQFQt2RyQJzc9BJYJ+zoluMVrAnvR7J+/SwZJOh3diPyIdLE2fUcrPwTJ7idyT97jqYMW8vT/A7AusIAcroThYQaWabqErhLGINKDvwUpnncfB2EbW8XP0YEWk0NUHmwBKiaBrWzYvMJ72ho0kIiGjRNDHwbJ+9pRxmiWCmrAKuwfL62AxJc0LAFYT0XIiigF4O4B7JvnYBwDcSkQNZrn7reZtTBHzvWdPIS8E3nXl0kIPpWggIlyypL4oHCwZtjGXo/PdVMcjePOli/Cr3eespUSY4mPGBRYRPUxEezX/3I3DAkbykt/zLADwHQC/J4TQrrLGde2zQ62fwIoHCKyYKqqcbkY0TBiSEe5TcE5kuELU5RxFzb4oT1Kg+fN4RhP77nJH4hoRpS0RdKQIenuwrNCIiE/5maa/ZyZRj5nsA5M4Qy68TqJfiiDgL4J1biHgDMfQrYOl67MKKhG0x5HxCG47iMSb5qj+7naw5LHRiWB5rrtTBJnSRgiRBfBRGMLoAIC7hRD7iOjTRPQ6ACCiy4joDIC3APgKEe0zH9sH4B9giLQXAHzavI0pUpKZHH7w/CnctK4VixsrCz2couLSpQ042TtmLVVRKHac7Ec0TNi4sK6g4yg23n3VUmRyAj94/lShh8L4MOOXz4UQN/ttI6JOIloghGg3BVSXz/1qAdwL4FNCiGcDXuurAL4KANu2bePuvxnCKhF092AFlgj6l6apQiSuXX8pi3CIHGEQariCZ0JtlvS5t3nLADUTe6s0zVnqJh/nDlCwwxVy3hLBaMhKYUrE3AJLX2Y506hiQbcYtBzvVMJGALVsz+kYGmmOwrNvbJdR34M1oikDjLteyx3pL8eoi8sfS+eQyQmPCFaFpK5vEPAmYgL2ftSVCDKljRDiPgD3uW77G+XnF2CU/+ke+w0A35jRATLTxr2729E7msZ7r15W6KEUHTISfcfJfty6cX7BxrHjVD82tdV5yuznOiuaq3HtmmZ899mT+ND1Kz0XMZnCU+gjcg8AuRjjewD8wn0Hs0zjZwC+LYT48SyOjfGh1urB8newvP0s9qnmdnMS0ZDlKiU0PVjDyax3gq6EGujdkZx3HSVr8q4pZ5OlaZpttjuS87xWUImg+l78HCx3EuNMox4zt3umK90EvAsN64In5D7V9WdlfI5RRlMi6HGwdOJLV6qoiECvk6icX5qFhiXuc1aWCLpj9AFbWLHAYpjSRAiBbz19AqtaqnHNqqZCD6fo2NxWh2iYChqkkM7msevMIMez+/Deq5eiaziF+/d2FHoojIZCC6zPAriFiI4AuNn8HUS0jYi+Zt7nrQCuBfBeItpp/ttakNEyAIANC+uwtKnSuwhxVHWwJteDBegXtQWcJYKePitZtpcTmpALMkIpsvqkwLGUzqVyOli6if1oKqvp9wr7LzQcUH5WWQQpgp5+JI2oMn42bg8SNqMpw91TU57UcBDfY5TLO4Ms5POlvb1wQQsNy5JO3bminl/uc0/dB35Jj7qQiw0LarG6pVqbMMgwTPGz49QA9pwdxHuuWsrpdBoS0TA2LKwr6ILD+9uHkM7muf/Kh+vXtGBpUyXuevpEoYfCaCjo7EAI0QvgJs3t2wH8vvnzdwF8d5aHxgRw26b5uG2Tt2QgEg5ZkdjuiWdQKZZuUVvAWZqmD7IQSGVyjn4pe1veM3m3E+qk26JO7M1tVn+PNxxjJOV10uJRJUXQE66g7zsDghPqZpKKaBghMkSHeyHjuGZ9MsDpDgH+QSRel4qsMk5vyIUUyE4HS+7fMUtEecWXX7+XHOPCeudaKc735T4Oxu+yF1BFOnw6B+v1F7fh9RdPdnkkhmGKjbuePoGaeARv5CUVfLl0SQO+//xJba/zbPAiLzAcSChEePdVy/APv9qPvWcHsamN+9SKiUI7WEyZIUvQvI6NLSQ8aXumEImFQ45Jv5wMD2uEjeVGpXMOEQU4Qy7UcrZwiEA0QQ9WQIngqEZExEyhkMxoFhpWHSyfhLqaWRZYRISqeESbjOfnYHnCRnxCKTwulU8ZIGCKYBly4TgOzjRH52vJbQECK6XrwfK6cRIpgiuiYc9V7MoCiWCGYWaWzqEk7tvTjrdsW8yf7wAuWVqPZCaPA+1DBXn9Haf6sbAugfl13uViGIO3bFuEylgY33jq5UIPhXHBAouZVirjYURC5JlsS6eACJ4JsBRS7tulONIt4qsGHujEl5Vep4gvIkI0HPJdTBhQQi40rspo2jt5V4Ve0MS+WNbBAgxR5xbAgKvvSpP0aDl/PqWV2l64nDcpUD6HDLlQHydFsG6tK/uY50AERBQxLrfpYvvjgU5i2PG/Y5uMaecJGMOUFf/z5HEIgMMtJkCW5r1YoPWwdpzst8I2GD21iSjeum0x7tl5Dmf6xwo9HEaBBRYzrVTF9JN3OVlNRLxOgZzY69aRkrhFlBrZrSsfTGvcEblNN3m3EgY1zolVmqYpVdQ5Pe735f4ZCO7vmWkm52A5t8v96BY2jn3jWWhZL6IAY38nM3nk8s4eOiIyjpGmF04KblmO6O738hu7Kqp0ixC737vEitLX7CuGYUqT3pEUvvfcKdy5ZSGWNHE0exAL6iqwoC5RkKCLcwPjaB9McnngJPjgtStABHz5CV4itphggcVMK1XxiLbxXwoMnfiSIsVvUq/ex9qmTOz1k/cc8gKabWRN3uMaJ0YXD64m5emcGHuM3vQ6ids5keVnhUihq05ErB4wFTnGaJgQ9vRn2WWcOmGj2zfqWle6hYZ1bqF8jVFNEIl0I0eSWW3fnXtM1tgdyZQuBytIYMW5RJBhyo2v//ZlJLM5fPiGlYUeSklw6dIGPP9yL4ylSmePF04YS8htW8YCayIW1lfgzZcuwt0vnEHnULLQw2FMWGAx00plLKx1R6SgSES8p9ykHCyNSwUYiwbrRM+oxomyt2lEVMRe60p9fvU5/HqwrPH6OFgh8jpwa+fX4No1zdi6ePa/PF5z0UK8erM3pCShuIxu5HvTiShAX6oZDYeQF8ZinjoRrFs7CzBE1ahP7Dvgf8zdY9X97kkRNM8x9zplgBrTzgKLYcqBwbEMvv3MSdyxaQFWtdQUejglwVUrm9A5lMLLPaOz+rrPHOtFTSLCCwxPkg9dtwo5IfDVJ48XeiiMCc8cmGnlyhVNaB8c99xulQhqnAJLYAU6WK5tGvdJ4py8e7eNyQhwNaHO6iXybpM/j2e8iwnrSgntMYes9+cui6yriOLb77scheD9r1iuvd1P6AL2e/MTL+MZTdiITGZMawSRchx020Y1QRa6yHZ7HP7ljY4UQZ+Qi0rNebl2fg1Wt1RjdWu1ZxvDMKXHt54+gZFUFh+5YVWhh1IyXLXCWCPsmeO9WNE8e38LnzneiyuWN3qqKRg9S5oqceeWhfjecyfx4etXoqk6XughzXnYwWKmlY/csAr/+PrNnttlyIVeYOkn75FwyPrjGuRYaF2qtDfm2/jdr/zMdmJCZLy2JKjPKsg5SQSUnxUjFT5C17jNdLCCBKaPu+fnbvmK4Ii+fDCoDDBY6J5fyMXixko89PHr0FrLCVYMU+qMpLL4xlMv4+b1LdiwsLbQwykZls+rwvzaBJ451jtrr3luYBwne8dw5QpeAHoqfPiGlUhl8/j6bzlRsBhggcXMClb5mcYdkRNgt0BRb5vaxJ6QN8vFtaVpaf/ys7G0vpxN97P7OTwBCoqDVQoEOVhWlL5PiaD7Z/W+2n0aCSluob600P16uuNlj29yJYLuYyTPx1IRwQzDnB/ffuYEBscz7F5NESLCVSub8Ozx2evDkmLu6pXzZuX1yoVVLTW4Y9MCfPuZk+gfTRd6OHMeFljMrCB7sLQhF9LB0kxy/Xp/1JCDaMCk3yMIIoScOXv3Ewd+iYXqeOyxKwvyeib9/qKyGJEuo87BsksEA0o1pyK+wiHrOPj11xmPsx3IUIisBMNAJzGgl8/dAxgUvsIwTHnQO5LC/3vsGG5Y24yLOZVuyly1ogk9I2kc6RqZldd75ngvGiqjWDef++Smyh/ftBpj6Sz+89EjhR7KnKc0Zn5MyVMREKCQCHCwYj4CK9DB0iyEq/tdnbyHQwRZ6u0WbIHliGH/ib0VoFAi7kgiQBD6Cd0gV0kXImLdN6L2v7m3TXxspzIOZ4mg28EqrTJOhmGmzn88cgRjmRz+8o71hR5KSXLVSrMPaxbKBIUQeOZYL65Y3oQQ919NmbXza/C2y5bgO8+cxPHu2RHEjB4WWMysYJXLBSxwqy8R1G8LdKkmWdLn9zi/XiLttsDStNKavMtjE1iqGSA+/UoEgQnEV8A2v2Pkfkw8YK0rxzpYfjHt7GAxTFlytGsE33vuFN5x+WKsbmVH5HxY3FiJtvqKWRFYp/vGcXZg3BJ1zNT5+C1rEI+E8Nn7DxZ6KHMaFljMrBAKERLRUGAEuM7pmczEPjjZb+ruiNdt8Xdignp/rP6eEpm8ByU9Ws7RFARrTJPSKAkWWOS7zS/NMCguXwrdSIgc4SWA2htYGseIYZip8c/3HUBlNIw/uXlNoYdS0ly9sgnPvtyLfH5m+7CeOd5jvR5zfjTXxPHhG1bhwf2dePb47IWTME5YYDGzRnNNHPOqY57bgxysSZUIBpaLOSfOk3G3Ah0V1/MFLzTsn8pXjEzGSZyKg+UsEZy6g0UEq+fKej0flzESDlklnn4hFzoRVRkLIxENoVlzXjJzEyK6jYgOEdFRIvqkZnuciH5kbn+OiJaZty8jonEi2mn++/KsD55x8NTRHjxysAsfvmEV5nFs9QVx1comDIxlcKBjaEZf55ljvZhXHceqFl4e40J4/yuWY2FdAv947/4ZF8WMHhZYzKzxgw9ciY/e6E1wsmPa/R2seIBzEuyAkP+2yZYITrYHq4wdLD8nMRwi3yj9YDGruFs+rmA0HPKsH+YnuNXb/AWW9zGJaBj3f+xavGXbYs82Zu5BRGEAXwJwO4ANAN5BRBtcd3s/gH4hxCoA/wbgc8q2Y0KIrea/P5yVQTNasrk8/vHeA2irr8DvXbOs0MMpeWajD0sIgWeO9+LKFY2ev/3M1EhEw/jz29Zh79kh/HjHmUIPZ07CAouZNRY1VKImEfXcbjk9U4gHD16byhYIwc6JfmFcr1CYZCCDT2maO7muWPFbjwwIFjZy/wSHVbiF7sQuo1voqrdpBVZYL9Tlemp+TuLyeVVcIshILgdwVAhxXAiRBvBDAHe67nMngLvMn38M4Cbi2WDR8ZUnj+NA+xD++jXr+fM9DSyoq8CypsoZLTl7uWcUnUMp7r+aJl63ZSEuXdqAz9x7AF3DyUIPZ85RGjM/pqyZzMR+avHg/r0/jpK20OQCFCa7wK2nRLDEHCy7RFDnYJnbpiB6AssAA/raokEiyqcXDLDDLXSPi0dCWgHPMC7aAJxWfj9j3qa9jxAiC2AQgJwRLieil4joCSJ6pd+LENEHiWg7EW3v7u6evtEzAIAjncP4j4eP4I7N83HbpgWFHk7ZcNXKeXju5T5riY3p5pnjvP7VdBIKET73poswnsnhr3++d9bWMWMMeMbBFJzgif1kQi4m7yrJiXkkRJ4IWLsHy3k7EdkuTaDAmnzvTzESj4RA5BPTHg0SPcb7CxKmU9kW9TkO6m3BDpZeYOkCVhhmGmkHsEQIcTGAjwP4PhHV6u4ohPiqEGKbEGJbc3PzrA6y3MnlBf7Pj3ejKh7Gp+/cVOjhlBVXr2zCcDKLnacHZuT5f3ukBwvqEljWVDkjzz8XWdVSjU/csgYP7OvEr3a3F3o4c4qCCiwiaiSih4joiPm/7wqARFRLRGeI6IuzOUZm5jmf0rTg9LqJJ+9B7oj7MY7HedZY8h8HEeH1WxeWTLkDEeENW9u0Vw8nEi+AzqVS+6z8HazJrnU10TY/MW5sC5fMgs9MQTkLQG3IW2Tepr0PEUUA1AHoFUKkhBC9ACCEeBHAMQAcXTfLfP23x7Hz9AD+/s5NHGwxzVy7phmREOHB/R3T/tzJTA6PH+rGTetbuP9qmvn9V67AlsX1+Nt79qF3JFXo4cwZCj3j+CSAR4QQqwE8Yv7uxz8AeHJWRsXMKlavkjZcwSz7ck3CwyGC/Bs82cWE1W1BIipI6HkWIQ4IuQCAf3/7xbhhbYvn9mLlX9+2FTes8443yMHydfcmGXLht20qQld9fZ0TmoiGSibNkSkoLwBYTUTLiSgG4O0A7nHd5x4A7zF/fjOAR4UQgoiazZAMENEKAKsBHJ+lcTMAjnYN4wsPHsatG1rx2ou4NHC6qauI4qqVTXhwX+e0l5v99kgPxjM53Lph/rQ+L2PMl/7vmy/CSDKLv+JSwVmj0AJLbRa+C8DrdXcioksBtAJ4cHaGxcwmiYDJu5zYu/tniMg3sjtwgdtI0OR96hN7OY6wZo2lcsIvbES9LWitK3dS4GREsLbPahIOll/MPDtYzESYPVUfBfAAgAMA7hZC7COiTxPR68y7fR1AExEdhVEKKC8MXgtgNxHthBF+8YdCiL5ZfQNzmJFUFn/wnRdRHY/gH1+/iV2QGeLWjfPxcs8ojnaNTOvzPrCvAzWJCK5cURoVH6XG6tYafPzWNbh/bwe++dSJQg9nThAp8Ou3CiFkUWgHDBHlgIhCAL4A4HcB3DyLY2NmiWVNVfjAK5fj2jX+pWl+jkUqmw8MV/BzVdx9W+rjdAIrML0uEpqxpt9iwRZRAYsQn+caWX7lg1MNuQgqH/yD61agvtKbYMkwboQQ9wG4z3Xb3yg/JwG8RfO4nwD4yYwPkPEghMCf3b0LJ3rH8J33X46W2kShh1S23LqhFX/98714YF8HVrfWTMtzZnN5PHygEzeta9H+/Wamhw++cgV2nOzHZ+47gA0La1nMzjAzfiYT0cNEtFfzzxF9KwzPUjdL/TCA+4QQEwb5czJTaRIJh/CpV29AS433SzGoNM2v90d1S3wXEw4ISdAKrAkm9uWeUBfkHPkJ08ksJqzbFnQcJtNDp3Ow3njJIty4znP9hmGYMuD/PXEMv97Xgb+4fR0n0M0wrbUJXLykHg/s65y253zhRD/6xzJ41UYuD5xJQiHCF966BUubKvHR7+9A++B4oYdU1sz4rFAIcbMQYpPm3y8AdBLRAgAw/+/SPMVVAD5KRCcA/F8A7yaiz/q8FiczlRmBpWk+PVOqy+IXDz7lyfsE23ST+nIiSGD57ZsgBytQBAeJ2cmsg1UiqY0Mw1w4Tx7uxv994BBeu2Uh3v+K5YUezpzg1g3zsefsIM4OTM8E/YF9HYhFQrh2Dc/bZpqaRBRffdelGE/n8KHv7kAqmyv0kMqWQs8K1Wbh9wD4hfsOQojfEUIsEUIsA/BnAL4thAgKw2DKiKC+Gr/Uv6hj8j75kAt7Yq8pH/RZhFjeVu5lDYECyzoO7n1t/+4ngsMhQjikf5zOZTzf8kGGYcqPl07140PffRFrWmvwuTdt5r6rWeJVG41qgIf2XXiaoBACD+3vxLWr56EqXuiulbnBqpYafOGtW7Dz9AA++v2XkMnlCz2ksqTQM5HPAriFiI7A6K/6LAAQ0TYi+lpBR8YUBbbAmkLvj9K35f7CjQWsozSpHiy/EsEyT6gLWmjYTwSrCzl7SwTJ8b9z2yQcLO04wiDSPyfDMOXFvnODeM83nse8mjjuet/lqIzx5Hy2WNFcjdUt1dNSJrjv3BDODozjVi4PnFVu27QAn75zIx7a34k//dHOsu8jLwQF/Ytkrhlyk+b27QB+X3P7twB8a8YHxhQNk3FO/EIugifv3m2xAJfKek6f0rRyv3B6Pj1YoZCxQHMmJ7zuVkCppn1cvTt1ovPBWCy5zA8Gw8xxjnQO411ffx7V8Qi+9/tXoJVDLWadWze24stPHEf/aBoNVbHzfp4H9nUgRMBNmuVBmJnl3VctQzKTwz/ddxCJaBj/8qaLEArx9+d0UWgHi2EC8VsHC/Cf2PutWRX0mIm2BZWfxaPlXyIYFCAxmQWa/YIspnJc1dv8Ity5PJBhypu9Zwfxzq89h0iI8P0PXIlFDZWFHtKc5FUb5yOXF3j4wIW5WA/s68BlyxrRxItCF4QPXrsSf3rzGvz4xTP485/sRjrL5YLTBXvqTFFz4/oW/OnNa7Ck0fsl6h9yMbFQOt+QC53AmAtf8PPrEoiECG0NFZ5tQcETxj7N+bqMgaEZU4xif/tlS7BlUX3w4vjI7wABAABJREFUG2EYpmR5YF8H/uSHO9FQGcVd77scy+ZVFXpIc5bNbXVY3FiBu7efxlu2LT6v53jpVD8Od47g03dunObRMVPhj29ahbwQ+I9HjuBM/xi+/LuXor7y/F1JxoAv9zJFzbzqOD5282qtbe0fcnFh7khgaaFmYv+Ft2zBF96yJfB9lDqLGiqx++9uxUUaAXM+DtZkFnXWlmMGCKzNi+rw1svO74ueYZjiRQiBLz9xDH/43RexZn4Nfv7Ra6ZtDSbm/CAivPfq5XjhRD92nh44r+f42m9eRk0igjdesmh6B8dMCSLCn96yBv/2ti3YcXIAb/jvp3G8e3oXkp6LsMBiSpZ4JKRNoQteFJgc/zu3Teyc+Lli5V4iCMC3iTwa4O759UwFidmg4xBUIsgwTPnRO5LCh7+3A5+9/yDu2LwAP/rgldo1E5nZ522XLUZNIoL/+c3xKT/2dN8Y7t/bjndesQTVnB5YFLzh4kX4/geuwOB4Bnd+6Sn85MUzMJaoZc4HnqUwJUvMp+dmMgl1+qTAgHjwANE21/Fb8Nm4TX8sgl2v4Eh8v20Mw5QX9+9px63/9iQeOdCF/++2dfivt1+MBK9zVzRUxyN45+VLcP+edpzuG5vSY7/x1MsIEeG9Vy+bmcEx58W2ZY34xUeuwdrWGnzif3fhA99+EV3DyUIPqyThWQpTssTCIa2IIjLS66YaZDGpkAue2HsI2jfWPg05t01mwWCtuxUgvhiGKQ9O9Iziw997ER/63g4srK/AL//oFfjQ9Ss54awIee81yxAiwjefOjHpxwyOZ3D3C6fx2i0LsaDO29fLFJbFjZX40R9chb969Xr85kg3bv23J/GdZ0/yellThGcpTMmSiIZ9r2bGwvqyvSAnKnj9JfLdNteZqHctEiLPxCgopt3uofMeW3m8+So2w5QfnUNJfOpne3Dzvz6BRw924RO3rMFPP3w11s7nfqtiZUFdBV5z0QL86IVTGBzPTOoxP3j+FEbTOfz+K5fP8OiY8yUcIvz+K1fg3j9+Jda01OCvf74XN//rE/jFzrPI85pZk4ILX5mS5feuWY4bfdbOiEZC2sl7PKi/ZzJrbrHA8hDkYMV8jkM0QLBaDpamT+7GdS34u9duwApOD2OYsmHPmUF899mT+MWus8jmBN5x+RL80Y2r0MLrW5UEv//KFfj5znP44fOn8AfXrQy8bzqbx7eeOoGrVzZh48K6WRohc76saqnGj/7gSjx2qAv/8utD+NgPd+K/Hj2Kd125FG+4pA21iWihh1i0sMBiSpa182t8r2zGwn79WROXn+kEQWNVHPWVUS5R0dBUFUMsEkKVJgTDr4xTlgwG9rtpjkNNIor3XsNXPRmm1OkcSuLB/Z348YtnsOv0ACqiYbx+axs+dP1KLG3iCyilxKa2Oly5ohFf++3LeMMlbYEhJN9+5gQ6hpL45zdunsURMhcCEeHGda24fk0Lfrn7HL7+25fxt/fsw+d+fRCv27IQr7loIa5Y0aidO81lWGAxZUnUb2I/mXhwzePee/UyvOaiBdM8yvLgzq1tuGxZI6o0SVDRCGmdrVCIEAmRJWpV7KRH/mPNMOVCKpvD3rODePZ4Hx4+0ImXTg0AMK6Q/91rN+ANlyxCXQVfDS9V/urVG/CWLz+D939rO374wSu13wcP7e/EP913ALdsaMV1a5oLMErmQgiFCHdubcOdW9uw+8yA4TrvPIcfvnAatYkIblrfimvXzMNlyxrnxPqgE8ECiylL/KLTJxVkodlWEQtjsWaxY8bYb34LfkZ9nES5TZ/mGLa2M0whIKLbAPwHgDCArwkhPuvaHgfwbQCXAugF8DYhxAlz218AeD+AHIA/FkI8MItDLwrG0lkc7RrBwfZhHOwYxt5zg9h1egCprNEkv7mtDn926xrcunE+VrdUg4grA0qdTW11+OI7L8YHvr0df/yDl/DVd29zLKGy6/QA/ugHO7C5rQ7/+faLuRqkxLloUT3+5c31+PvXbcJvjnTjwf2dePhAJ3720lkAwMK6BC5e2oD182uwbn4t1s6vwcL6Cs+yOuUMCyymLHntloVYVO9NJ5pM4h07J9NHLBzSlgEC8E16bK2L4+b1Lbh0acNMD49hPBBRGMCXANwC4AyAF4joHiHEfuVu7wfQL4RYRURvB/A5AG8jog0A3g5gI4CFAB4mojVCiNzsvovpRQiB8UwOI6kshsazGBzPYGg8g77RNLpHUugeTqFzKIkz/eM40z+GnpG09dhENIS182vxu1cuxWXLGnHZsgY0VccL+G6YmeKm9a34+9dtxF//Yh/+7p59+MgNqwAAvaMpvP+uF9BcE8fX3nMZKmIcUlQuVMTCuHXjfNy6cT5yeYFDHcN44UQfnj/Rh52nBnDv7nbrvtEwYVFDJRY1VKCtvgLNNXE018QxrzqOuoqo9a8mEUFlLFLyczEWWExZ8vFb1mhvDyoDbKuvQCREaOXG6mmjraECw8msdptfAEY8EsbX3nPZTA+NYfy4HMBRIcRxACCiHwK4E4AqsO4E8Hfmzz8G8EUybJg7AfxQCJEC8DIRHTWf75mZGGgqm8OnfrYXACDXAxUQEMIQRcK8PW/+nM8L5IVALm/cls0L5PJ5ZHMCmVweGfP/dDaPVDaPVDaHZCaP0XQWQeuNVsbCaKmJo62hAjevb8XixkqsmFeFtfNrsLSpak5dtZ7rvOuqZTjdP46vPnkc33n2pHV7XUUUP3zv5WiuYXFdroRDhA0La7FhYS3eY65vNpzM4HDnMA51jOBU3xhO94/hdN8YDnUMo2ckhaBAwlg4hIpYGPFICImo8X/UvGgbCxMioRAiYULYbDkgIoTJ+B0EhIhAAEJk9JERABBg/gQi4KoVTXjTpYtmZH+wwGLmFLWJCG5ap3dHNrXVYc/fvYqvrk0jn7pjPXI+M7M7Ni/AxUvqZ3dADDMxbQBOK7+fAXCF332EEFkiGgTQZN7+rOuxbe4XIKIPAvggACxZsuS8B5rPA88c6/XcHgoZkwhSJhkgWJMPIkI4BGOCYi6jUBmLWK5yTJnQJKJhVMXCqIxHUBULo7YiilrzSnNDZQwtNXFtvw0zd/nkbetwyZJ69I/Zse1XLG/EiubqAo6KKQQ1iSguXdqIS5c2erbl8gJ9o2n0jKQwOJ7BwJjhjI+kshhLZzGazmE8nUMyk0Mqm0cyk3NcBMrlBVLZHHJ5gUzOuHhkXEAyLijBvLiUF+qFJ+cYWmZQ8PNfRWZOEQmH8PX3+rsjLK6ml0g45PtH5tN3bprVsTBMsSCE+CqArwLAtm3bzntRmYpYGE998sZpGxfDTAehEOG2TRwKxQQTDpFVJliOlHaBI8MwDMNML2cBLFZ+X2Tepr0PEUUA1MEIu5jMYxmGYZgyhwUWwzAMw9i8AGA1ES0nohiM0Ip7XPe5B8B7zJ/fDOBRIYQwb387EcWJaDmA1QCen6VxMwzDMEUClwgyDMMwjInZU/VRAA/AiGn/hhBiHxF9GsB2IcQ9AL4O4DtmiEUfDBEG8353wwjEyAL4SKknCDIMwzBThwUWwzAMwygIIe4DcJ/rtr9Rfk4CeIvPYz8D4DMzOkCGYRimqOESQYZhGIZhGIZhmGmCRNDiFiUMEXUDODnhHUuDeQB6Cj2IIoH3hQ3vCxveFzblsi+WCiGaCz2ImaaMvqvK5bybDnhf2PC+sOF9YVNO+0L7XVW2AqucIKLtQohthR5HMcD7wob3hQ3vCxveF0wh4PPOhveFDe8LG94XNnNhX3CJIMMwDMMwDMMwzDTBAothGIZhGIZhGGaaYIFVGny10AMoInhf2PC+sOF9YcP7gikEfN7Z8L6w4X1hw/vCpuz3BfdgMQzDMAzDMAzDTBPsYDEMwzAMwzAMw0wTLLAYhmEYhmEYhmGmCRZYJQYRfYKIBBHNK/RYCgERfZ6IDhLRbiL6GRHVF3pMsw0R3UZEh4joKBF9stDjKRREtJiIHiOi/US0j4g+VugxFRoiChPRS0T0q0KPhZm7zPXvKYC/qwD+rpLwd5WXufBdxQKrhCCixQBuBXCq0GMpIA8B2CSEuAjAYQB/UeDxzCpEFAbwJQC3A9gA4B1EtKGwoyoYWQCfEEJsAHAlgI/M4X0h+RiAA4UeBDN34e8pC/6u4u8qCX9XeSn77yoWWKXFvwH4cwBzNplECPGgECJr/vosgEWFHE8BuBzAUSHEcSFEGsAPAdxZ4DEVBCFEuxBih/nzMIw/1m2FHVXhIKJFAF4N4GuFHgszp5nz31MAf1eBv6ss+LvKyVz5rmKBVSIQ0Z0AzgohdhV6LEXE+wDcX+hBzDJtAE4rv5/BHP5DLSGiZQAuBvBcgYdSSP4dxsQ2X+BxMHMU/p7yhb+r+LsKAH9Xmfw75sB3VaTQA2BsiOhhAPM1mz4F4C9hlF2UPUH7QQjxC/M+n4Jhu39vNsfGFB9EVA3gJwD+RAgxVOjxFAIieg2ALiHEi0R0fYGHw5Qx/D1lw99VzFTg76q59V3FAquIEELcrLudiDYDWA5gFxEBRqnBDiK6XAjRMYtDnBX89oOEiN4L4DUAbhJzbyG3swAWK78vMm+bkxBRFMYX1veEED8t9HgKyDUAXkdEdwBIAKglou8KIX63wONiygz+nrLh76pA+LtKgb+rLObMdxUvNFyCENEJANuEED2FHstsQ0S3AfhXANcJIboLPZ7ZhogiMBqmb4LxZfUCgHcKIfYVdGAFgIxZ3F0A+oQQf1Lg4RQN5lXBPxNCvKbAQ2HmMHP5ewrg7yr+rrLh7yo95f5dxT1YTKnxRQA1AB4iop1E9OVCD2g2MZumPwrgARiNsnfPxS8sk2sAvAvAjea5sNO8KsYwDFNo+LuKv6sk/F01B2EHi2EYhmEYhmEYZppgB4thGIZhGIZhGGaaYIHFMAzDMAzDMAwzTbDAYhiGYRiGYRiGmSZYYDEMwzAMwzAMw0wTLLAYhmEYhmEYhmGmCRZYDMMwDMMwDMMw0wQLLIZhGIZhGIZhmGmCBRbDlBhE9BgR3WL+/I9E9F+FHhPDMAzDSPh7ipnrRAo9AIZhpszfAvg0EbUAuBjA6wo8HoZhGIZR4e8pZk5DQohCj4FhmClCRE8AqAZwvRBiuNDjYRiGYRgV/p5i5jJcIsgwJQYRbQawAECav7QYhmGYYoO/p5i5DgsshikhiGgBgO8BuBPACBHdVuAhMQzDMIwFf08xDAsshikZiKgSwE8BfEIIcQDAP8Coc2cYhmGYgsPfUwxjwD1YDMMwDMMwDMMw0wQ7WAzDMAzDMAzDMNMECyyGYRiGYRiGYZhpggUWwzAMwzAMwzDMNMECi2EYhmEYhmEYZppggcUwDMMwDMMwDDNNsMBiGIZhGIZhGIaZJlhgMQzDMAzDMAzDTBMssBiGYRiGYRiGYaYJFlgMwzAMwzAMwzDTBAsshmEYhmEYhmGYaYIFFsMwDMMwDMMwzDTBAothGIZhGIZhGGaaYIHFMApE9DtE9GChx8EwDMMwDMOUJiywmDkHEZ0gonEiGlH+fREAhBDfE0LcWuDxCSJaNYX7P05Evz+TY7pQiOjVRPRbIhogog4i+hoR1RR6XAzDMAzDMNMNCyxmrvJaIUS18u+jhR5QmVMH4B8BLASwHkAbgM8XdEQMwzAMwzAzAAsshlEgovcS0W+V328lokNENEhE/01ET6huERG9j4gOEFE/ET1AREuVbYKI/pCIjpjOzZeIiMxtq8znGiSiHiL6kXn7k+bDd5nO2tuIqIGIfkVE3ebr/IqIFpn3/wyAVwL4ourEEdE6InqIiPrM8b814D0/TkT/QERPEdEwET1IRPOmcbdCCPF9IcSvhRBjQoh+AP8D4JrpfA2GYRiGYZhigAUWw/hgiowfA/gLAE0ADgG4Wtl+J4C/BPBGAM0AfgPgB66neQ2AywBcBOCtAF5l3v4PAB4E0ABgEYD/AgAhxLXm9i2ms/YjGJ/TbwJYCmAJgHEAsqTxU+brflQ6cURUBeAhAN8H0ALg7QD+m4g2BLzddwL4PfP+MQB/5rNPlphi0e/fOwNeQ+VaAPsmeV+GYRiGYZiSgQUWM1f5uUsYfEBznzsA7BNC/FQIkQXwnwA6lO1/COCfhRAHzO3/BGCr6mIB+KwQYkAIcQrAYwC2mrdnYAimhUKIpBDit/BBCNErhPiJ6f4MA/gMgOsC3ttrAJwQQnxTCJEVQrwE4CcA3hLwmG8KIQ4LIcYB3K2M0z2WU0KI+oB/3w94DQAAEd0C4D0A/mai+zIMwzAMw5QaLLCYucrrXcLgfzT3WQjgtPxFCCEAnFG2LwXwH1KkAegDQDD6iySqIBsDUG3+/OfmfZ8non1E9D6/gRJRJRF9hYhOEtEQgCcB1BNR2OchSwFcoQpIAL8DYL7fawSMc1ohoithOGtvFkIcnonXYBiGYRiGKSSRQg+AYYqYdhjlewAAs39qkbL9NIDPCCG+N9UnFkJ0APiA+byvAPAwET0phDiqufsnAKwFcIUQooOItgJ4CYZAAwDhuv9pAE8IIW6Z6rgmgoiWANgfcJc/8NsfRHQxgHsAvE8I8ch0j41hGIZhGKYYYAeLYfy5F8BmIno9EUUAfAROF+jLAP6CiDYCABHVEVFQGZ4FEb1FBlUA6IchkvLm750AVih3r4HRdzVARI0A/tb1dO77/wrAGiJ6FxFFzX+XEdH6yYwtCLNEsDrgn5+42gTg1wD+SAjxywsdB8MwDMMwTLHCAouZq/zStQ7Wz9x3EEL0wOhb+hcAvQA2ANgOIGVu/xmAzwH4oVm6txfA7ZN8/csAPEdEIzBcnY8JIY6b2/4OwF1med9bAfw7gAoAPQCehSFUVP4DwJvNhMH/NPu0boURbnEORvnf5wDEJzm2meATMIJAvq7scw65YBiGYRim7CCjrYRhmIkgohCMHqzfEUI8VujxMAzDMAzDMMUHO1gMEwARvYqI6okoDiOSnWC4SAzDMAzDMAzjgQUWwwRzFYBjMMrzXgsjfXC8sENiGIZhGIZhihUuEWQYhmEYhmEYhpkm2MFiGIZhGIZhGIaZJsp2Hax58+aJZcuWFXoYDMMwzHnw4osv9gghmgs9jpmGv6sYhmFKF7/vqrIVWMuWLcP27dsLPQyGYRjmPCCik4Uew2zA31UMwzCli993FZcIMgzDMAzDMAzDTBMssBiGYRiGYRiGYaYJFlgMwzAMwzAMwzDTBAsshmEYhmEYhmGYaaJsQy6Y0uXpoz0gIly1sqnQQ2HKhJ+/dBZ1lVHcsLal0ENhGKZE+cXOs3j8UDdaaxNYWJ/AinnVuGZVE4io0ENjSpTu4RSeOtqDc4PjaB9IIpvP42M3rcH8ukShh8ZcICywmILw4L4O/HznWfz371zq2fZvDx9GOES4auVVBRgZU6oc7x7B8e5R3Lyh1bPty08cw8L6ChZYDMNMGSEEvvjoUXzhocNorIphOJlBJicAAB+7aTX+9JY1BR4hU4r0jqTw+i89hbMD4wCAuoookpkcnjzcg2+//3KsbK4u8AiZC4EFFlMQXjjRh1/v7dBuS2XziIT4iiAzNb719An8ctc5vPQ3t3q2pXN5ZHJ57eP2nRvE8nlVqIzxn0OGYZzk8wJ//8t9uOuZk3jjxW343JsvQpgIvaNpfPb+g/iPR45g3fwa3L55QaGHypQQmVweH/7eDvSMpPDd91+BS5bWozIWwd6zg3jvN5/HW778DL753suwZXF9oYfKnCfcg8UUhExOIC+AXF54tqWzeevqoJsnDnejayg508NjSpBkJodUVi+i0tk80pptyUwOb/jS07j7hdMzPTyGYUoMIQQ+fvdO3PXMSXzglcvxf9+yBdFwCKEQobkmjn964yZcvKQeH797Fw60DxV6uEwJ8fe/3IfnXu7Dv7z5Irxi9TzrAt+mtjr8+A+vRlU8jHf8z7N47nhvgUfKnC8ssJgZxc81SJu367ZnfNwGIQR+/64X8L3nTk3vIJmyIJMTvueb3zmVyuSRzuUxlMzO9PAYhikx7t/bgZ/vPIc/uXk1PvXqDQi5KivikTC+8ruXorYigg98ezv6RtMFGilTSnzvuZP47rOn8AfXrcCdW9s825fNq8JP/vBqtNTE8f/9ZLf24iBT/LDAYmaMvWcHseFvfm3VF6vIPxhprcAS2j8oxgRaYDyTm/7BMiWPdD6F8Lqf8tzxPCZA6DNzEyK6jYgOEdFRIvqkZvvHiWg/Ee0mokeIaKmyLUdEO81/98zuyJnpJJXN4bP3H8S6+TX4oxtX+96vpTaBr75rG7qGU/j0L/fN4giZUuTswDj+7p59uH5tM/78Vet879dSm8DfvnYjTvSO4bvPnpzFETLTBQssZsY43TeGTE6gY9Bb0icntBmtkMr7CC9TlPHVnDlLNpfHiyf7tNtssaQRWFm9g8XnFKNCRGEAXwJwO4ANAN5BRBtcd3sJwDYhxEUAfgzgX5Rt40KIrea/183KoJkZ4TvPnMSpvjH85R3rEZ6gJ3jL4nr87hVL8avd7VzCzgTy3WdPIpcX+MfXb5rwvLp+bTNesWoe/vPRIxgcy8zSCJnpggUWM2OkAyav1sRWM+lNTzQZZrdhzvLwgS686f89gzP9Y55tmQA3Ku0j2oOcVCEE9pwZvNAhM6XF5QCOCiGOCyHSAH4I4E71DkKIx4QQ8gR8FsCiWR4jM8MMjKXxX48exbVrmnHtmuZJPebdVy1FNi/w/ee5hJ3Rk8zk8MPnT+GWDa1Y1FA54f2JCH95x3oMjmfwxceOzMIImemEBRYzY8jJq3bCmzVchkxWX7YVVM7FbsPcZWjcuIo3rOmZssSSj6CfqoO149QAXvvF32LvWRZZc4g2AGriyRnzNj/eD+B+5fcEEW0nomeJ6PV+DyKiD5r3297d3X1BA2amn/969CiGkxl86o71k37MsnlVuH5tM7733Cn+jmK0/Gp3O/rHMnjPVcsm/ZgNC2vx5ksW4a6nT+JUr/fCIlO8sMBiZowgQZQOcKMyuby2dDBIsM0VtgfE288FUpNwRd3nRy5vJFYGnYe6c2pgLG3+z6UZjBci+l0A2wB8Xrl5qRBiG4B3Avh3Ilqpe6wQ4qtCiG1CiG3NzZNzSJjZ4WTvKL79zAm8ddtirJ1fM6XHvufqZegeTuHX++bu32hGjxACdz19AqtbqnHVyqYpPfYTt65FOET43AMHZ2h0zEzAAouZMYIEUSZoW074hl+oz+tGTojLmf/5zXF8fg7/kQ10ReX54dpmCy99+IX6vLrXSuc4VGUOcRbAYuX3ReZtDojoZgCfAvA6IURK3i6EOGv+fxzA4wAunsnBMtPP13/7MogIHz+PxYOvW92MpU2V+PbTJ6Z/YExJ89LpAew5O4h3X70MRFNb53N+XQLve8Uy3Lu7nV2sEoIFFnNBJDM5XPlPj+Dh/Z2ebUE9U0FuQy5vCCx3GlxQj82JnlFc8g8PYfeZgfN6H6VCKpv3Xevpd772LL765LFZHtHsElQGaIsv53kj91ewK8olqQwA4AUAq4loORHFALwdgCMNkIguBvAVGOKqS7m9gYji5s/zAFwDYP+sjZy5YMbTOfxsx1ncsWk+WmoTU358KER415VLsf1kP5cWMw7uevoEauIRvPHioIpjf373yqUIEfDDF7jHr1RggcVcEEPJDDqGkjjeM+LZFjgZ9hFL8nehWYRYPo9OYHQMJZEXQLsmsbCc8FswFwD2nRvCoQ7vcSgnrHNgCqJ9MkJfd04FnW9MeSKEyAL4KIAHABwAcLcQYh8RfZqIZCrg5wFUA/hfVxz7egDbiWgXgMcAfFYIwQKrhPjV7nMYTmXxjsuXnPdzvGXbYlREw/j2Myemb2BMSdM1nMR9e9rx5m2LUBWPnNdzLKirwI3rWnD39jNzuk2ilCgKgTXRuiPK/d5ERIKIts3m+Bh/JuMoBKW3uSev6h8Ot6sQ2NMVMI5yIp3Vp+FNtK1ckOV6fvH+gPccmChdcKJt5X5OMU6EEPcJIdYIIVYKIT5j3vY3Qoh7zJ9vFkK0uuPYhRBPCyE2CyG2mP9/vZDvg5k6P3j+FFY2V+Hy5Y3n/Rx1FVG84ZI2/GLnOYymeAFzBvjpjrPI5ATedeXSie8cwDsuX4KekRQeOeCtGGKKj4ILrEmuOwIiqgHwMQDPze4ImSBSgS6VTAoMchvcZYD2755emsBUwvJxG54+1oM3/7+n/ePGfd5jOptHqswXYQ5coNpnm0yqzGtc0cmcU7rX6hlJ4bdHeqY6fIZhipSDHUPYcWoA77h8yZR7ZNy8ZvMCpLJ5PHWU/0YwwCMHOrFxYS1WNFdf0PNcv7YFC+oS+P7zpye+M1NwCi6wMIl1R0z+AcDnAJR3DViJEVSyFdTfkvERX6p4cE96g5IHy8lt2H1mENtP9luR5Cp+JYL5vEA2rw8HKSeCQy70vVbqPnHvu0mt1abZ9oPnTuG933zeI9gYhilNfvj8acTCIbzpkgtf1mzbskZUxyN47FDXxHdmypqBsTRePNmPG9e1XPBzhUOEt122GL850o3TfRx2UewUg8CacN0RIroEwGIhxL2zOTBmYoIdrJz5/+Qj1zMBk2HL9dKsnWX30pS+g5PKBJdWZvMCeXd/WhkJzPF0Dq/74m+1gSWTKRP1uqLKOeWbMDi1stORdNYQtGWwvxlmrjOezuGnO87g9s3z0VAVu+Dni0VCeMWqeXjsYLcnrImZWzx5pAd5YbhP08Fbty0GAfjRC+xiFTvFILACIaIQgH8F8IlJ3JcXb5xlAhd3zfpHYPsFD6i/exysrD6GG7CFXjmUCEqRKIWWc5t+v5XT++8YSmL3mUHsPTvk2WafAwGuaIBo92wzny8o5CJIzJWDoGeYuc59e9oxlLywcAs3N65rQcdQEgfah6ftOZnS47GDXWisimHr4vppeb6F9RW4YW0L7t5+msMuipxiEFgTrTtSA2ATgMeJ6ASAKwHcowu64MUbZ45f7+3Aiyf7PbfLCeZUFxO2wwX83QbfEsEyD7nwE1HqNrcgmOj9P320p2TEgCUwNeM9n8Wrg8pOU0EOls+6WsbYykfQMsxc50cvnMaKeVW44gLCLdxcv9aYg3CZ4Nwllxd44nA3rlvTjHDowvr6VN5x+RJ0Dafw2EE+t4qZYhBYgeuOCCEGhRDzhBDLhBDLADwLY/2R7YUZ7tzkc78+iK//9rjn9skkBQaHXOgdBePx+kCC4FTC0hARQQQ5WGkfQRskStoHx/HOrz2HX+/tmO6hzghWiaRWSOvfv1w/TbfN4YqexzkV6GBpjhHDMKVDx2ASz5/owxsubrvgcAuVltoENrXV8iR4DrPrzAD6RtOW2J4urlvbjIbKKO7d0z6tz8tMLwUXWJNcd4QpMOPpXHDJ2lQdLJ/HBZUIBoUOlFMPkt2DFeDg+Lg02n6hpBEVPJQsjcjgZEaKxfPr3fNuC0imDOjrk/tfN45UGQl6hpnL/HqvMUm9ffOCaX/uG9e2YMepfvSPpqf9uZni57GDXQgRcN2a6RVY0XAIt26Yj0cOdFnfl0zxUXCBBUy87ojrvtezezX7pLK58+5TcU94c3kBmdEQGHLhUyJY7jHtqQB3ZCJhqjsO9vOVxh/iSYn2qQhz5b5+wSmBFwG02/zFF8MwpcN9ezqwtrUGq1ouLEJbx/XrWpAXwJNHuCd8LvLYoS5csqQB9ZUXHpzi5o6LFmAklcVveLmQoqUoBBZT/CQzeX1PzAUuJhzYLzOFPqOgbce7R/CFBw+VTJqTVe7n2jfZXN4Sph6BESAw5fOVypWuIHfI18FSRdRU+voCy1j9Q1qCxvj0sR48cZgnVAxT7HQNJfHCyT7cvnn+jDz/lkX1aKyKcZngHKRrKIm9Z4dwwzTEs+u4emUT6iqiuJ/LBIsWFljMhAghfB2sVMCVfL8gi8CemMBIbeO+QTHlunE8sK8T//XoUQyMedeVKkb8HJzA9ZwCBKZ0wpIl0i8khWBwep9/GWDQOlje4BQzRXAae7C++OhR/OtDhz23MwxTXPx6XweEAF49A+WBgLFu0fVrmvHE4W5eM2+O8fgh4yLbdKx/pcMoE2zFQ/s7uVS9SGGBxUxIJmeU9E21B8vubwlwqQJ7aVwiKusvvgIFhnRwiuiPUC4v8J1nTmj/MMr97JcUCHj7s4IdrNLqFwpK6JO3+TlRgL8w12+zn8/tcAaWKgaMcTyTQzJdGvuaYeYy9+1px+qWaqxurZmx17h+XQv6xzLYeXpgxl6DKT4ePdiFBXUJrJs/c+fWHZsXYDiVxVNHuUywGGGBxUxIUELdZCahfpNa98/GfYXvtqDHBYkIua2YHJzdZwbw17/Yh99q6qd9+4yU390Te+nApLVCQZYIFs/7DyLQwZpMD1ZASarfsgBCwHOFOag/K/B8y+SLSswzDOOleziF51/um5FwC5VrV88DYCyVwcwN8nmBp4/14NrVzdOaTOnmmlXzUJOI4N7dpZEQPNdggcVYHOkc1q7ZkfRxVIBJxrQHRLF7Sr0m6W5NpQdJTtjHi8hVGDPHMq7pi/ITtOp7m5L4sgRm8bz/IIIcrPMS7ZPo69M95+QWGtacb9lcyexrhpmrPLCvA/kZLA+U1FfGsKa1Gts160gy5cnR7hEMJbPYtqxhRl8nFgnhlg2teGh/R1kkKJcbLLAYi68+eRyf/Mluz+1BfVaTSXzzlLpNIopd97hU0GQ4oAdL3qYTM4VCij2dq+S3DlSQwAraN5bAKpE/wIF9fZMqEZx8X19QP2BwMqP/WmWpTL6oxDzDMF7u29OOFc1VWNM6/emBbi5d2ogdp/o9vcNMebL9hCGmty2bvoWr/bhj0wIMJbN46hg7pMUGCyzGYiyds5wVFcvB0giU84lpn3wPVsA292TYZwFaY9z+4y8UUuzpnA7fkItJuC26x5VaTLvtmAasAxZYBjgVQa+4qa6+NnnfoAAMfUlqrmTELMPMRXpHUnj2eC9evXnBjJZwSS5d2oDhZBZHukZm/LWYwrP9ZB+aqmJY1lQ546/1yjXzUB2P4L7dnCZYbLDAYizGM/rFhAMXfjUnpdoSwUlNht2ugX8anNOJmHzIg+yHKSoHK1Bg6ff3ZFIEdY+TwqrYJv1PHe3B8W7vhGMyDpbbpQraN6oY9+43e//7haoEx7TrBX06m+er1QxTpDx2qBt5Abxq48zEs7vZttQoFdt+sm9WXo8pLDtO9uOSpQ2zIt7jkTBuXNeCRw928XdOkcECi7EYT+eQzuU9zf5yEpnNC2Td5Wc+5WyALZCmtJhwNkB8OVwav3Iu/1S+Ygp5CBKtk3KwAoSCn4NVbH1Bn7h7F77yxHHP7UHnlC169AIbmFoypSNh0Gd/686pyQh6XdDFk4e70T447rmdYZjZ45EDnWitjWPjwtpZeb2lTZWYVx3Diye4D6vc6R5O4UTvmCWqZ4Ob1regdzSNnWcGZu01mYlhgcVYjPm4KmppmV8Py5QS3wJCByazDpZ2HIHR3kXoYKVlD09QTLu/iAjqJfILx9C91mgqi//dfrogizAPJzMYTWc9t/s5WPm8QNYU/4FC6XzLTv3ObV2KYE6/T3N5YY1FJ+g/9N0X8a2nTnhuZxhmdkhn83jycDduXNc6Kw4DABARLl3awEEXc4AXT8r+q9kTWNetaUY4RHj0AC9oXUywwGIskmkfgaWWn7kmjZbbkHOWROWViWbQQsO6ybD8zguM4p7KOljmGItKYPmU7clFnQHd+/d3qYJ7sPzdsof2d+L//Hg3Xu4ZnepbuCCEEBjL6NP2bAfLJTCDygADy07zCJH3fu7nmezizUIIW9B7AkXsMbvfWz4vMJrOYSjpFZVM8UBEtxHRISI6SkSf1Gz/OBHtJ6LdRPQIES1Vtr2HiI6Y/94zuyNnJsPzL/dhNJ3DzetnZgFYP7YtbcSpvjF0DSdn9XWZ2eXFk32IhUPY1FY3a69ZXxnDpUsb8MhBFljFBAssxkJO+t1CRJ0oBvYFqZPc/MROVDwS0roGsXAI0TBNKaY9eHFaf7eoUPj1YGXzxqLOQHD5ZOAixJ4eLP8SweGUMdkfSc3upD+ZyUMInxRFn2M5mZj6WDikdUWrYhHtcwaJ/cmsueW+4KC+H/fnyPp8aVw7pjggojCALwG4HcAGAO8gog2uu70EYJsQ4iIAPwbwL+ZjGwH8LYArAFwO4G+JaPYuYzOT4pGDnYhHQrh65bxZfd1LzJKxHexilTXbT/Zj86I6xCPhWX3dm9a14ED7EM4NcAl6scACa44xnMzgpzvOaLfZk37/ia23/ExfPhg04ZdCqSoe8aQBZrLCFFga8ZXNI2JaEX6TXp2DJd9PMUVnJ60SwYB9HbDNI6ImEW+vEzNyHLMtsMZMkaFzFf0WGg7qs5LHvzIe1p43FbGw9nGZXB4VUXPbJB2sVIDQDXKw5HsdLaLzkPFwOYCjQojjQog0gB8CuFO9gxDiMSHEmPnrswAWmT+/CsBDQog+IUQ/gIcA3DZL42YmgRACjxzowjWr5ll/E2aLTW21iEVCVoR3OTMwlsYf/+AlvPN/nrX+3f3C6UIPa8ZJZnLYe3ZwVvuvJDeZjiy7WMUDC6w5xn172vHxu3fhTP+YZ5tfiWCgg+Uz6bccBZ1LlZUCK6wtEYxGpMDyrmdUFTecCP8eLP9UPl3oQKGwSwT9+9285Wfn6WAFvH85jrHU7O4ba6Fljdjwc7DSASLSEu2xiNYxjUdDiIQ0rmhWoCoe9jy/+pzBTqL7s5LX/gzY77WYhD7joQ2AOhM8Y97mx/sB3D/VxxLRB4loOxFt7+7uvoDhMlPhWPcITvWN4cZ1s1seCBhpb1sW1eHFU+UvsP75voO4d087Mrk8Mrk82geT+Muf7cHBjqFCD21G2XN2EJmcwKUFEFgrm6uxtKkSjx7onPXXZvSwwJpjDCf1JWGyJwaYYg+Wn8AyJ6XV8Yiv21QVi2gdhWiYEA2HNCVbAtVSYPkIjLyAN+kwKx0sr4NTKMbOo99tMmtdGT/rn1NXImi7KrPtYPmLvokcrETUX7T7nW/RsF60pxXRrj6n7CEkMgSa2l84WQfLXZIq39cYlwiWBUT0uwC2Afj8VB8rhPiqEGKbEGJbc3Pz9A+O0fKIGQJQCIEFGAsO7z07WHSJrtPJc8d78aPtp/GBV67A//7h1fjfP7waP/3Q1aitiOIvfrqnrKPEpTtZCIFFRLhxXQueOtbL3zFFAgusOYYUVqMuxyKTE1Y8u/vKu9PBCki2c6QDGs9VFQ8bfUXKH1VHiaBmohwNhxALk7ZkS7oNQYvJuie9SZ/eMgA40jlspf7MJslJlGP6OSfhEPmuA+Z+DkBNJcx70gKlm6JbYHomkYIuGehg6d9jdVznUvmXCGaydl+fTrTJ/iztBYKY1zFNB4jgyfRgzfa+ZqbEWQCLld8Xmbc5IKKbAXwKwOuEEKmpPJYpHI8c7ML6BbVYWF9RkNfftrQBmZzA7jODBXn9mSaVzeEvf7YHixoq8LGbVlu3N1TF8FevXo+XTg3g+8+fKuAIZ5YXT/ZhxbwqNFXHC/L6N61rRTqbx9NHewvy+owTFlhzDL/SLHUy6C0RDC5NC8u+KM1CwFWaCaoUTpWxsNZtiIVDiEa8DpajRFAzDr/+rKCY8i88eBh/8dPdnttnGrm/gwWrPkVP69IEvn/jeYTwijZ5rEdnuwcr5b/4sRyv241UBZY3yELY2zSlpdFwCLGIRnzl8rYrmvNeBKhOTCCwAko83eJ5LEDMprN5fObe/RgYS3u2MbPKCwBWE9FyIooBeDuAe9Q7ENHFAL4CQ1ypDQ8PALiViBrMcItbzduYImBgLI0XT/bPenqgyiVlvuDwV544jmPdo/iH12/y9Li94eI2XL2yCZ/79UF0DZVfkqIQAi+aCwwXisuXN6I6HsEjB7lMsBhggTXHkA6W20JWRZWnL0gte9KUn+nK9qSoqUl4y69UoeA7GdaEXKiTYZ3zJV/LL+RB52ANpzIYGMt4bp8uHtrfqU31GbdKBANKzHxK5PwE1kTvX/d6VongrPdgmSEXGrHhJ+gt0a5xsOT9KqI6ESUQi5iuqFa0mz1YGjdWJ+iDjlHSsa8n72Dtbx/C//zmZfzmSI9nGzN7CCGyAD4KQxgdAHC3EGIfEX2aiF5n3u3zAKoB/C8R7SSie8zH9gH4Bxgi7QUAnzZvY4qAJw53I5cXBSsPBIDGqhhWNFeV5YLDx7tH8MXHjuI1Fy3ADWu9+5iI8Jk3bEYqm8ff/2p/AUY4sxzvGUX/WKYgAReSWCSEa9fMwyMHugqytiXjhAXWHGMspU9vUye67kmvY8KrKWnTTeylcNJNUOW2Sp9AgmjE7MFyJQyq5Vzqa8kFaGsSUc1r5ZXSR91CuzmrL226yecFPvTdF/HdZ096to37RKfL95WIhrQiKkRARcwbDpLO5W23Jag/y+e4z3bNtuWkZnKeLwJHMqVD9DhdKnfZaTRMiEU0+0329em2ZfU9WOpFAO847FJNbzmm8jlyO8GWe+zd12NW6S7XzhcaIcR9Qog1QoiVQojPmLf9jRBCCqmbhRCtQoit5r/XKY/9hhBilfnvm4V6D4yXRw92oakqhi2L6gs6josXN2DXmcGymwD/v8ePIRoi/M1r3Ksa2CyfV4UPX78S9+5ux+HO4Vkc3cyz6/QAAODiJYVdmeHGda3oGk5h37nyDhQpBYpCYF3Iwo7M1BhJ6R0LR4lgUOO+ZlvQJNSevArPtsqYvmRLlgjq3QZNyZZrMuw3Xp2DNZ7OYTyT87zWdDCSziKbF9oI9KRVIqjvl6pJRLUpeoYToxcKNfGo9jmD+rMKHXKhG1Mqa7xP9zb3cVbXWpN9VjFdOErWP+QikxPaHizZQ1ijEa1yTNXxiDfIYjIOlkZUjhRoPTKGmQvk8gJPHu7GdWuaEZKrjheIzW216BlJoWs4NfGdS4R0No8H9nXgVRvno6U2EXjfd16xBETAvbvbZ2l0s8Pes0NIRENY2VxV0HFct8YIzXniMKeTFpqCC6wLWdiR0TMwlsY1n33UuqKiIp0Kt2PhmPBqerDI/E4KKk3T9anIkABVwEgRFY94F4V1hFxoJspWyEXWm+qmc9KSDkfBK6KksBiZARdraNwoPdRNmsd9UwSN32sS+jLAWDiEWCSkFVF+CYupbA5yTuEXwT/7Me32PtGNqTYhxaLXzdI5dTLeX7csgCXaXeJLCOGbIhjUQyhft7bCe4yCljSQAku3wLL8/M2Um8owc5ndZwbQP5bBdWsLn9i4eVEdAGBPGQVdPH2sB0PJLO7YvGDC+7bUJHDZskbcv7fcBNYgNiyoRSRc2Gl1c00cm9pq8fghXg+r0BRcYOHCFnZkNJzuG8fZgXEcaPdaxLIEyVsG6F8imMrmUKNxh4QQZomgvjQPsB0sd5y7LNnS9WDFzHWwdKVeiWjYk6KXDhBYQeVxwMxObIfGTTGrES/jfg6W9V6i2kWdY5GwtgwulcsjEQsjokkYTGXsY+Tbg1VAB0sdkzynaiv8XdFqnSsaEMVu9/U5RXs2byddAvrzRifmLBEc97qMDsfUHSSj/O6+wMEOFsPMHI8f6gYR8MrVhRdY6xfUIkTGmknlwv17OlAdj+AVq+dN6v53bJqPw50jONpVHmWC+bzAvnOD2NRWV+ihADBcrB2nBjA4PnP95czEFIPAupCFHR3w4o0GQ0l/52Q0bZcpqaiTP3fIRTKTR12lt/xMTW4D/MqovLHq6mLC6ZwzOjyTE2bim86JEEafjWsSLd2FGo3rIUUVkb5EUE50h1PT/4dIHgedeLEWGvZxsGo1DlYqm0c8Yjh/npCHTM52tzR9cnUVpsDK6o/7bIdcqPtEPS6ZnIAQUBwsr6ukL0kVlkulSxjUuVveMlb/c1snvmorIhOkCAYJLOe2sRl0UhlmrvP44W5sWVSPxqpYoYeCylgEK5ursbdMBFYml8cD+ztw8/oWJKLhiR8A4HbT6bpvT8dMDm3WON4zitF0rmgE1vVrW5DLC/yWQ5MKSjEIrEkz0cKOvHijgSxN07ky0sEac4kvZ0y7t8RMTtB1PTF2iWDOs00XcpGWIips1K25+7PshYbt23N5Y52uWDjsWc/I7WCp2+R7qauIeia8ubywts+Mg2UcB/dkOpcX1hiTrn4cKY5qE1FtiWDcrwcrFyC+sjnLEfJbt2m2HSy/UJWkUiIJ6Bey1iVJWs5nhHx6sMgUX94o9ngkhEiItOIrqAerJhH1XXi7Jh7xitmAAAzZG6m7KNIzktIGpTAMMzG9IynsPjOA64ugPFCyua2ubBysZ4/3YmAsY4mmydBam8C2pQ24b095lAnuO2ccy81FIrAuXlyP2kSEywQLTDEIrAtZ2JHREOhgWTHtk5/8pTJGfw+R8wq9/FnbE+MqsXJPXqXb4N7mF9Muf45GCLGIM0XPWrNI6zYYY6yviAau/TUjAiupT4aTQq8mEUFeOAWm2k+m67OKmU6Mr/iayMHyC16YIQfr3t3t+OqTxzy3q45Z0uE4SnfIvwcrqOw0pnVFjX0TDYeQ0oSjyNLCwJh2XQ+WJogkmcmByDh+42l9Oabx/l09kCnppHrPw3t2nsNf/XwvOgbLb+0Yhplpfnu0B0IYV/WLhU1tdegaTpXFelD37WlHVSxshStMljs2L8DBjmEc7x6ZoZHNHnvODCIeCWF1S3WhhwIAiIRDeOXqZjxxuLvs0ipLiWIQWBeysCOjQfb+uMuNhBATlghWRMPe0IFsDoloGHFXuIKcdNZqerCCYq7VPiv5u/o4Q3yR53YAVjiGtjcnwG2oq4x5gwWUyexwcgZKBMf1JYJyot1QGTPH6F1nrLYiiqzp2kmsFEGNSyXFV9wlPoUw3LIJSwRnyMH68Yun8e1nvO6LI+TC0Y8lSyS951RQX5Q8p2LhEISAY79J0e4uH5SPj1klqeq+DipHtEVwOpd3xMWnsnkkImEkYmFNqa1/n6Pc/7rzUNbRD4zzIsQMM1UeP9SNxqoYLioSdwGAVUq291xpu1jZXB4P7OvEjetbJ10eKLlt03wAwP17S79McM/ZQawrgoALlevWNqNrOIUD7eXR51aKFPxsuJCFHec6RzqH0T/qnXT5OViprL0mlJ+b01gV8zogGVl+FnaFRvg7R5YDoElhU9cs0m/zOgpyYmwIM9KXbGnGISe19RVRpJU1sQCnizczDpZZIuiOxE9LgeUNnrBi2n0m9lYUuV+Eu0t8WgKzwvta+bwIXPz2qaM9+NJjRyf9fnX0jqa1+3YsbScbqs6O2t+k/g5oYtpdAjxqxvsb23R9faTts5Ji33n+OmPaddH/tZr0zGQmh3g0hEQk7AlVGQvowZKOnq4HS55HM7kgNsOUI3kznv3a1fMKHs+usnFhLYiAPWdKe62i517uQ99oGneYYmkqLKyvwMVL6ks+rt0IuBjC5rbaQg/FwfWmo/j4YfYkCkXBBRZwYQs7zmXe+bXn8F+PeifAVg+WS2CpZUnuEiU56a+riHoXSHU4WN4+q+qAMir9QsN2GaDxu3MyHNMFEijlXH5hBbo0QzkZrq/0lsiprs3MOFhZz+uoY6g3HSx3tHc4RKj0E1gBJYJSfGnFgKZEUG4Lkb6c9GcvncV/PXrkgkoMekfSGEllPc8xls5aDecOgZn1d7AmKtuLKmWnftu0ZadyyQDN+aZbI8t9vqVcAjkRCSMRDXkTG9M565x3O8ijASmC8jwaGGMHi2Gmwp6zg+gdTRdFPLtKVTyCFfOqSr4P67497aiIhs+7/PLVmxdgf/sQTvSMTvPIZo+TfWMYSWWLpv9K0lKbwPoFtXj80NwNfCs0RSGwmKmTyeXRPZxC17C3hlv2/oy4RIN61dwjojI5JKIhVMS8JYKWgxUNeSaTgL5ky+s2OMuoZCCB+3GZrJ+DZTxe2y8ziYWG6zUCY3yWHKxkxumc2SWCmj6jnN1LBQApV3BIoMCSx0jTg6ZL5VNdy3Q270ltHBrPIJnJX1B0eO9oCrm80KTm5SyBpQtYqdWFqmTziIQIcelSuUS7EQBC1u+AvdZVTJc+mZUCi3yDU/xi2iMhQkUsbP1ujT9rOFgVsbDnMzaesd+zO2QmaD02drAY5vyQ8ezXFkE8u5vNbXUlnSQohMAD+zpxw7pm62/hVJFlgg/sK90yQSmSiyVBUOX6tc148WS/9R3CzC4ssEoUWRqom3T5LXArfw+HSBtyURENT9CDFXaVbNl9W5GQfoJa6RfT7hNykc7lzSALfRS7rgcpOEXQdOYqvZP5UWUfDM1giqDxWvbzy31vO1iqaM1ZaYDG705BawVZKO8/nxfI5oXVg6Qr49SFXMh90VQVd4zLGr/5R7l7+PwyZcbSWd+URlVgOV01O6Ye8HfwADj2gSwDtBws83FyrStZPpjWuaIax9QdnOI+3xzHyHW+JSJhJCKaz5EqsPxKBNNZR08XYJ9HA5o1TdoHx3Gog2vsGUbH44e7cFFbHZqq44UeiodNbXXoGEqe99/XQnOsewQ9I6kph1uoLGqoxMrmKjx7vHcaRza77D07iFg4hDWtNYUeiofr1zQjlxd4iuPaCwILrBKlVwosTeP7cFJ/NVyWITVVxTw9WGNpQ2DpSpvsHix9+ZnOVUmbfVZyEuosERSOFEG5zXYbNCEXViAB+Sa+VQcsNKxzsFQXYSYWeFWvGql9WONWiaBm3a5sHvFI2N5v7gCQSBhx8/3LsjtVfMajYZ9IcW8KpDwHmqrlpN+5D2Rp2vlOAHpH7HPTXYI5ls5akx5d2aI2RVAJsgDgCaxQ+/rkuZNRRZRPX188IEXQb403ua/VMcuf49EQEpoLFeOZnLWv3e6WFOBCeMsHpfjXXUz5/K8P4UPffdFzO8PMdfpH09h1egDXFVF6oEqpB108/3I/AODy5U0X9DyXL2/C9pP9jiqPUmLPmUGsW1BjzWeKiUuWNqAmHuEywQJRfGcEMykCHaykTw+WOaFurolrk+0SsTDiromhEMI3RVD+HNe4ShmlJwgIDrmQk+Bc3lhkVjoR2bywruYH98sY462MRRAi12RYOliakIcxpe9sJnuwAKeDlbRCLnQ9SMYEXe431cGy+qxcQQ7yProADClQ5PFLatw9KXTciw1bDtbIeQosJYDF7RCOpXJokiWCitiXx8uvB0t9/+5zKhYJe1xRZ2mpPuRCXfRafS1AL9rTLhHsKBGUDlY07E2tTOdQWxFFJEQeMTuayoLMHnz3hRF5bg5qLqa0DyZxdmCco3gZxsWTR7qRFyiq9a9UNi40QhH2nilVgdWLedVxLGuqvKDnuXx5A4aTWRzsKL3ADyEE9p4bLMryQMD43nvF6nkc114gWGAVOY8e7MRPd5zx3C4nr4MTlAiqHyrpYDXXxD0lSsl0DpUxb4lgJmeInkQ07FljyXKVNO6A2i+k3lf+7HAicsLxvy6sIJNzvZbO3bKSDjU9WKZbpDoHcpLbWhufsR4sWeoW5GC5S+RiYaOXCnCKCOmcuAWG7NOKa4JIVBEcdyXbyXHM83WwLqxEsFcRZqqAFUJgLJNDbcIQG0nNeOt0KYJZZ7y/zjG1t3ndPXfIhRTm2uCUgGUG5LmtKxG0HayQt0QwnUNlNIyKWNgjZkdTOcwzhe5IyvmZtkoENZ/1vtE0Utm8dv0shpnLPHG4Gw2VUWxZVF/ooWipSURLOujihRP9uGJ5I4guLJ1ROmAvvNw3HcOaVU71jWE4WXwBFyrXr21Gx1AShzq5lHy2YYFV5Hz1yePapMA+U2ANp7LecIKkcTVcCGevhxRY86rjSGe9wQtWiaDqcpiT33iAeLEcLE/JVkCflWabnRSoBBnIbVYggX85l3Q33A4WkT5FT+6b1tqE1sF67GAXjl3AIohD4xksqKsA4HSwvOtgufqsoiHEwmHHezN+zplBDk6BIf+PyzXCcs7nAwyB4S7/lM6RPbG3x5jPC2vSPh0lgupzy+UCKmKG06MuyCvHWxmLIBwi5/nmEu26xatjEWfIhSXMTfFlXDAwxZflbpH3AoFybkdC5BK6OevzoI4ZMNzIuOVgafocY2FUxsIO185Yny6L+bUJAM5+NfU4aAWWmSxYqn0cDDMTyHj2V65uRriI4tndbCrRoIsz/WM4OzCOy5Y1XPBztdVXoK2+As+fKD2BJcVxMQus69YYJbJcJjj7sMAqcjoG9U2wjvIrpfk9mzNS31pqjEmzOllTHSzA6ViMZ4wywETEOfmTk8S4bqFhaxIa9gQvBDlYGaXPSt5X3m48nyq+nE6E7TY4UwkBWK6CI3TADCSoMPtl1PcmSyZbahJaB+tP796J/3zkiOf2ySAnxvPrjEmzGos/ng5ysMzys6i3/Mzep07x5XASXS5jyhLI5qQ/63WwmqxkO3vbSDoLaX6et8AaVXuwvCEfVTHvmFRBrxM9jvPGfU5F/J1Ped4YtznLTuUFAneoSjRMICLtxQOZ2Ah4F4pOmA7WeCbncJDlRYzKWMTRZ2Xcz3BSAacYVY+DO+RCCGGVCuuOUf9o2tNryTBzgX3nhtAzki7a8kDJ5rY6nBtMOtz+UuB502260P4ryeXLG/H8y30lV8a25+wgomEqyoALyfy6BNbNr8Hjh3g9rNmGBVYRI4RA+2ASI6msp3xLXWBYnXjJydnC+grzdzXJzuzBqvamxo2bIRcVMWPCK//Qycl63Gzq10WAa0sEzUloJOR0FACjL0ZX6qVOhj29NObkV4ovXUy7zklLSeEoBZYj5CGLimgYtRURj8BKZ/MYGMvgaNfEDtbRrmEc7XLa73JivEAKLI1o1fdg6V0q+bOjB0kKrJxTYOrKJ+ORkCfZztODpZxjqmg/7x6skZS1mLDqEMpzuTIWQUUsZPWkAcr5Fg17Iuet9D7p7mkWE7bOG5f4dK67pjvfvCmY8v66xZt9SwRNB6siGkZe2OdtPi+QzOSRiBoO1phjTTrbSQWcPVjyOIQIGHStgzU0nrVSEnUC6+1ffRafvf+A53aGKXfkZPKVRRjPriL7sPa3l1b/0Qsn+lCbiGDt/OkRFpcvb0TPSBovl9h6WPvPDWFNa431nVysXLe2GdtP9M9IrznjT3GfFXOcgbGMNXnrGXZOrvpUgaWUDslgBSmw3A5WOERoqDKcE/e6WLJkSwilv8cVkqD28KiT97juKn84ZDkAbnfL6SjoAwnU13A7EdoerLDXwUpJByvmLecaTedQFQ+jJhHFSCrrKJnsNyezx7tHPbHZbj5x9y586md7HbfJibEsEVQn1OMZYx0l2d/jdbCUKHIZN57LIy/gdAXNHiJ3iWTKFZoBAImod40sb4qgEltvnkdE5+9g9Y2msaCuAkR6B6sybjqmGtGXCBDtfn196jklz4+0S0Spj3OIr0jYE9Mun8sbHJJ3lgi6LjokzBRBwHbk5H1kiaCudFcKLLWfSv08ux2s3lH7uLiPUS4vcKx7BAfaue5+qhDRbUR0iIiOEtEnNduvJaIdRJQloje7tuWIaKf5757ZGzWj8vjhbmxuq7OqNYqV9QtMgXWutATWcy/3Yduyxmkrv7xsWSMA2xkrFQ60D1nHsJi5fk0LsnmBp46Wbhx+KcICqwj49d523PpvT3h6qdoH7UWEu0ecCwr3jqasK+hquphMfltoOidqudFYOoeqWBgVUTN4Ie0sW6uM2cloSbMvJplxiihdiqAupt09QZXiCbAXE3Y7Cu51idTb1EVhYxq3IRIihEKEmGutrmQmZ5THmc/ndLByqIxFrCAKdV/1mK7NeCaHc4Pj8COdzWN/+xA6hpzHR06MdQ7WeDpv9rtpJugZV0y7y6VS3a2USyjo1giz++S8azPJfdFspQgqE3vzPFrUUHHeAqtnNI151TFUxyN6gRULexa2TmXzCIcIkbBXEKatMkCfxYQDglNiEULUJ8JdPqcuUENu94aNKCmCroWSjRJPU2CZ79V27cKocJUISudwvs7BMo/DksZKjKVzjnLEfsXRcruMvSMpZPMCp/vHwEweIgoD+BKA2wFsAPAOItrgutspAO8F8H3NU4wLIbaa/143o4NltAyMpfHSqf6iLw8EgIaqGBbUJXCghBys7uEUjneP4vLljdP2nCubq9BUFSspgdU1nETPSBobSkBgbVvWgOp4BE8c5jLB2YQFVhHwmyM9ONw5grP9zol8x5D9u3uS2zeaxvJ5VQDcDpYpsGSJoDJZG0llURWPoCru7UeSPVjS6bGvvKsOVtgzCQWUcAl3D5Y52fWsaWUuJmxNeGXim/V85Cu+pIjwBByYz6VL0UtEbQfLsdBwKovKWNhyklSBpTqEx7r9yxYOdw4jkxOe4yMnxq2mwHI7WAlVzLpSBONRr0ujhlV4xJcrRTGXF8i6HMi42TPkCLkwX1cufqsm28nzaGVzNXpH0xO6eDr6RlNorIqhNhF1rQlmlwi6HSxZIgl4nSPpikbCIUccvyyTiykpgvoyQLe7ZTumnuh/8yIA4C0RnHCh4ajd8yf3t3yPiWgYldEwxtPeEsFmTQ+WPA7/P3vnHWbHVd7/73vntr3bq7SSVr1YzbJsudvY4A7YpndiWgghBEJIIeEXIBASEhJCEkjACSGEQEwzsQAb914lWbKq1VZtVytpe79t7vn9MXNmzsycGe1Kt+6ez/Po0b0zt5yZO3fvec/3fb/vItMKWXQNFU1E3NcfX5w5NZJ0fB8UZ+UyAIcYY52MsTSAewDcKT6AMXaUMbYTQE72AorS8syhvrK2Z3ezur2uopTmrUd5/VX+AiwiMuqwKsjogn9mlaBgRbQQrl7ejCf3K7v2YqICrDKg05zAu1ebHQqWJ8DKYGmrJMBKulIEHQqWEWAlzGDDXRdUZZpc8PuAuwbLGbykBbVBNhn2m6Bm9JzZ3FVucuGspXEaEsicAtO6S22QKljO4zLOh6Ha1Zo9l8T8ZHHyejigDos7QE2kdacCZE6Mm6ujiIZDGBP7YJnnOhQyAkm3Tbkz/Ux3nCNZipxbSRQfb39+Xme7ZNpwWOTKpaho8utoWWsN9BxzqCVTpX8sjeaaGGrjcgWrOhpGPKph0uXCx5U9t2ulGEiLfaucDpMuF0FxEcCjbtn7PH2wXAqsOw0wGvamCGb1HLI5Ztb8mcGzOX5+3qsiGhIxp007V7DqqyKoimiOAIuft44mI8AS0wT5IkBLTdQ3wGIMODnkVFdHkxlc/dXH8PRB5SolYT6AE8L9LnPbVIkT0VYieoGI3pTXkSmmxBP7e1FfFcFFHefvcFcMVrfX4nDvmMd1tFx58cgA4pEQ1s3Lr3PepYub0DU4ie4h/4yRcoKrjpWgYAHA9avacHI4iYNTqCtX5AcVYBURvwJObgV+YsClYA0nESKjwF2cQOXMCe+i5moQOSddXCmYL1WwnCmCfBU9o+eQ0ZkjbY2vuCddNVgZ3W7+61Abwt7gS5wM88ksryU6q+mAb4qgtwmxaEjgV4NlpA+GPH2wEtEwas0UQTEI4A540XAIhwKs2neftC12xc+IByh18Qiqo5qzD5ZpKALACFrdjYZNV0Z+Xzx+WaPdlLDPrW5ZKYIRb4ond7UjIlTHwlKTi2WtNcaxTdPogjGG/vE0mqujZoAlmq0Y71MV1VAVcdb1ea8pd9qpZu1z1+eJxinWeZOknXqt/00Ldx+TC5lxCF9w4GMW35MbigC2Ssyt6KtMkwu3kgoYAWeNKxgVUwQB52IKv0ZXza31BFinhLTWEwPOhZtXT42ie2gSTyrb3kKwiDG2CcB7AHyDiJbJHkREHzUDsa29vepzyBe5HMOTB3px7YqWsrZnF1ndXodsjk3JUKkceOnIAC5e2Jh3YweuiFVKP6y9J0cwrz6OetMNuNzhiq5yEyweKsAqEtuODeC1f/8EXuh0FhmOJjM4Y06OZArWnLo4mqpjjgnuSDIDPcfQUhNDXTzicBfzpAiKClbKqWBxJYFP9qqiGqqiPG3NqYDEI/aKvRj02MqR5lKVmENVSllBlJmWJXERlBkSeIIvn/osO0XQOQ4jRdAYd1VEcwQztoLFAyxRwUohHCKsnVcXqGDt6h6xJuKOz8j8HOqqwp7ghacIGufVq9LI0s8cKpXPeYtHvOYYltOjZhgvuBsN82sh4QoC+cSep6FOtw5rLJVFOptDs1mDNSaxqa+OmX2wJCYfgDxYtpz9RAVLuG7c/dOsGixN7loZIhgKrCzF1aGKej8jqxYu4/yMHKm2Ge93LBENO9RCft6rYxpqXeeK1/ItaOQBlv1dHxxPIxHV0NGY8ATAPUJNoPvvSqe5YLDvVOXUfRSRbgAdwv0F5rYpwRjrNv/vBPAEgI0+j7ubMbaJMbaptbUyUtkqgb09I+gdTeH6VW2lHsqU4QpIJTgJjiQz2HdqJK/pgZzV7XWojYUrJk1wX88I1syrDPUKMAy3Vs2pVf2wiogKsIrE84eNwGr78SHHdlHVcq80nxpOYm59HK21MccEl69cN1dH0ZCIuBQso8lwgyTdaCxlKDaJmDPA4oX4VVFvKp3dl0gs6rcnlI4Jr0MB0F0mF7IgymcyLAkixImytY8rOLp/DZaRImjsi0dCjrozb4qgswarqTqKFW01vs2GM3oO+3pGcPlS48fGqWAZn0lNLIzqaNipYGV0JKw0uJDXpj0S0ExYUE48NVia5nke/4xCIfI0kZ5I61bwWeNRsLKoiYWtPl7TDbB4+lpTdQy18YjTzZKbXETCqHKnLWbsMZ0tFdRtxS4GUTKbdndKKnez5PvFJsS8V5tsHOI5FdMHrZ5x4ZCQImjs4wFVPKKZx2w3+h5zKVhjSaciXR3VrF5l7hTBxkQUrbUx9I+lHC6Yp4aTmN9QhYhGHmWcpyTvPTniycc/M5LEX/5yT8WkKxWALQBWENESIooCeBeAKbkBElEjEcXM2y0Argawt2AjVXjgq/OvWdlS4pFMnUXN1aiKaBVhdLHt2CAYAy5bnP8ASwsRLlncWBFGF8mMjs6+8YqovxK5flUrthwdUHbtRUIFWHnmSN+4dHKy9dggAHj+iPLJe3t9HCdcJhc9w5NolwRYg9bkNYqGqojH5KImFkYoRJ50o4m0jpqYsYJu3Df2TQr1IZb7GQ+wRAXLlRKVzuasbUEmF+I+0ZDBnvCak1rZRNmVBhfRyE71EibRfulcKWGMVS61ZCKdRSJmuwiOuFIEm6qjWNZag76xtEM54BzuHUM6m7NWSx0BlhmghLWQUXPjcmysEhQsfq71HENGZ4iFjfos0dnOUYMV4CLIPz9LwcrYipCsDxZPVUxEnXVBI8kM6uJhy+bYL8AaT2Xx5V/txVv/7TnHa/eZNWzNNVFvDVbKThGMR5yNrZ0KltdURUwfTEsCc9sp0FlnFRGNU3yuG/F5DnXWXZ+VzVnnWQzoRQUr5l6oyNjOiZbJTMbpMFgdC3scF0cmM6irilhNqYddKYLNNVG01caQY05jlh4zwJrfUOVRsPjfnMGJDE6POD/X+3acxPeePTpr00gYY1kAnwDwIIB9AH7CGNtDRF8iojsAgIguJaIuAG8H8B0i2mM+fTWArUT0CoDHAXyVMaYCrCLy6KtnsGFBPdpq46UeypTRQoRVc2srIsDacXwIRMCFHQ0Fef2NHY043DtW9gHAwdNj0HOs4gKs113QhozO8MzBvlIPZVagAqw80jeWwi3feAr/8thBx/ZcjuFlM8BypwF09o5DCxGuWtbiULB4k+G5dVVorZErWE3VUdQnoo7JvzExNiZj7nSj8ZQRUPBJtSdFUCzOt0wuRAXLNXkPqH3KZJngIhjypPpFNTJ6ZEn2RcLkqZfJ6DlEzOd43OBcE++USxHiqpzb5GEibShJcpOLFFpqYljeZtQgyZwEd3UZ9VevMfP93QoWD9yqo2GHAcakENjEIyFrTKJKxc+5VKXyuAg6Gz7z4+b/8wAzZr4XVy3EQM+dxjiaNCb2Rs2eJg2wHn/1DG7+x6fw3WeOYNuxQYfSNyCorIaClbHedyKjW4Fy3FRzONymnp8Hd2qerK7P3TAY8OmDJQm+ItbruZ4XYNKSyur2dR/xU7B8UgQjhk07YAdWYyndqq1zp1Py73NNLAwtRBgSWjJwlVUWBJ8aTqK9IY6OpgS6BtwpguNoM5+zt2fYsW+b+XfqyQOzN42EMXY/Y2wlY2wZY+wr5rbPM8Y2m7e3MMYWMMaqGWPNjLG15vbnGGPrGWMbzP+/W8rjmG30j6Ww48QQXntB5aQHcla310kV5XJjV/cwlrfWWM67+ebCjnowBuzuLu9gk//drLQA65JFjaiLh/HYq7NzAa3YqAArj/zylZNIZ3N4dJ/z4j3cO4aRZBbzG6rQ6XIL6uwdR0djFZa2VmNgPG1NxEdTWUykdVvBGktZf3wHhACr0Z0iOJm1aorc6Ubj6aw1UYuFQ0IBvmlkYU6mAVu5Slqr8mJdkL1iH5OYDgBeFzZZw2DjfwpMHxTVLTEd0djmVRvcClYyYytYYr1PLseMACsWRjwSQjhE0hRBbvIgq8Pac3IEiaiGpa01Hic3rjwA8DSWnRRS8+KCSpMSAiXrnLqaCYsW7ilXEBGVpA+KQXA8rCHHbFvzSSEdz1ODNZlFXTwCIrKuP5GvPvAqPvhfW1AV1fCVN68zzpEQhPabj+cughmdWcc5YaaqAkbAkdbtdLmkGBCGJX2wJCmpDrOKkLfOip8bT0qqsAjgUbccNYR2oMtNWhwq21RqsLjJRVSz0kMnhR5ZPG3XnU45MplFXVUYRORRqz0BlnnOGWNWevGCxoRDGU9nczg2MIHXr28HAIc9NGMM246bAZbEzvdbjx/CDf/whLJ9V5QlT+zvBWPADRfMKfVQps2aeXUYSWZxcjh59geXCMYYdnYN4cIFDQV7jw3ma+/sGirYe+SDfT2jSEQ1LDLNhyqFsBbCdava8Pj+M+fUekUxPVSANU0YY/ize3fhb3/zqmffL7YbtdCvnhrFKeEPJV8Vfs/lC5FjwP5T9qTmcO8YlrXWWDbMPJ2HP5/XYGV0hmEzkBoIShFM2hN7cTU8q+eQzORQbU5sq2NhW8FKiwqWn0272LfJnti706j4pExUACLhkB0ouQMsof+QwynPM+G11Qbb5MK2MHcYajgUEd0KAkWTC15bVh01XPSMYFRIERwz0q8WNFYhqoWkdVi7u4exdl4dtJA3CBGVRHd9UzKjW2YioqomNgU2/g8Jk3fbrCKmaY7zJZ63mCt9MCWks3lVlZwVUFdHXTVYyQzqqoxrxZ2iyhjDD188hhtXt+HXn7wGb714AUIEhwuWWCdop2Aa1ymvfTPG5FZMnUE7Pw49x6Dn7KAnIuwTA0yeWum2aZepWxmzHxt/PXGfu4ZQZolvfUYuK/ZYJGQ1tpb2wXKZzIylstb3sjYuV7AAoD4hCbASUbTWOOvkBsbTSOs5tNfF0dFU5Vi4OT4wAT3HcOGCenQ0VWHvSXuluGtwEr2jKaybX+ex89VzDD94/hgO947jp1u7UI4Q0U1E9O9EdJF5/6MlHpKiiDy2/wzaamNYW0HGA5w17bUAgH3C97HcODlsNNbd0JFfe3aRpmrjN3dn1/DZH1xC9vaM4IK5tQhViFOlyA0XtKFvLI1d3eV9jmcCZw2wiOi3zH9v4T9c+YaIbiWi/UR0iIg+K9kfI6Ifm/tfJKLFhRiHSC7HHBMdzv+8cAz/+9JxfOfJw5YbF2BMLnd2DePtlywAADwlpNhsOzaIhkQEb7BWjUes9zjSN46lrdXoaDRc/3hBOu9jwxUswDmBqjbrV+oTUctVEDCVE2Fiz1fDxwXnNsAINsZdNViJqNymPaKRoXp56nucltpMUEecwZetUrknqGL/oYzQ+JVPfJ0pgvZzxNdy1tJovjVY8Yht087rjfhkV7QST2V1jKayaK6OIqyFsKSl2hNg6TmGPSdHsNbsBeJO4+TKAwAkYprH5KJKqOFxOzbK6ozEOitviqCt4HgULJfJByCok4JdvBhwA86JvfvYTgxMYjSZxesumGP11+poSjjOUf+YfY26TUTEAMut9KSyujXOWNirUlmBjZgiKASYxnkQ0wft+iy3w2BKuKZkzoxBNYQyK/mkkE7r/h7xlghGHyxniuB4Kmt9L/miCF+oGE1mrQWThqqIlSI4mdYxmdHRVBNFS61hgME/ox5rcabKsnfnCzf8b9bS1hqsaa9z1H1sPWYUl//hTSsBwGHj/kJnP06NJFETC+PfnjjsaMrMGMOf/mwn/vRnOx31dCXgQwD+GMD7iOh1AC4q5WAUxSOj5/DU/l68dlVbRU56V801gsJydhLceWIIAAqqYAGGivVKGStYjDHs6xmpuPRAznUrWxEio15RUVimomC91vz3TgDfJ6IdRLQpXwMgIg3AtwDcBmANgHcT0RrXwz4MYJAxthzAPwL423y9vx//8tgh3PEvz7iCqFH81a/34bIlTYiGQ/jXJw5b+36xvQshAv74llWYWxd31DBsOz6ISxY2YmFTAjWxsPVHtHtoEqlsDktFBWuAK1hGoDW3Po7WGm+A1Wi6ijVURcCYXT9kTMiEFMEUn9TahfSAEVhMSmqw3CmC7poYwNn8VlSOAGMCyhhzWbhLDAkcqV5eQwJvnRULNCQQ62X0HEPWVNPENMYqof8QPx88Va02ZqdmWfVD5nlf1lbt6VFypG8Mkxkd6+abAZZL5REDlOqo/Tkwxlw1WJqlpvHzahmHaLaCdbZGw9FwyKxp0zz7xHQ2wFkXxAOcREzz2IPzib1bneMrX+vn2yuZy1prHGmUA+MpNNUY16i7zxhveA3A7hclmKpY15tgYZ92B1Fh8jhMRsJigGUH+sY24ZrK2oGZGESJj/frrWZ/DvYY3epWPCKvwQqbvdjcCtZEWrfOR008DD3HrO+fWMvXkIhaClb/uJmCWR1FImqYY7gDrPb6ODoa+d8V4+8JT+Nc2lqN1e11ONI/bn0Xth0bRE0sjOtWtmHlnBrH37B7X+5GbSyMr73tQnQPTVpqPWAsOv146wn8eOsJvPPu5x3qfZEZZYwNMcb+CMDNAC4t1UAUxWXL0QGMprJ43erKq78CjIWVRc2Jsja6eKVrGOEQ4YK5tQV9n/UL6tE1OOkw7SknugaNBcZKDbAaq6O4eGEjHnv1dKmHMuM5a4DFGPug+e+djLENAD4H4P+IqDlPY7gMwCHGWCdjLA3gHgB3uh5zJ4Dvm7d/BuAGIiroMtWVy5oxNJnBm771LJ452Id0Noc/+PEOVMfC+Oa7N+Ldly3EL7Z348TABHI5hv/bfhLXrGhFW10c161sxdMHe5HVcxgYT6OzdxwXL2pEyPzjxP+I8hX/Za015kRJs1aae4aTIALaauOeGgvewBWA5S7GJ15+Jhc8RcjR98hdgxUR0wBtBUtUFAC5Q52oANhBlJl+5WNIAJh220G9rkRFQZhA++0TxyhOePnxJTP2pFY8H6LTXf+YnYIJAMtba3B8YMJRe+IOMlprY+gbS1l5zc4arDBS2RyyujEmxmD1wRIbDXtSBCN2YCo2E9ZChqLIUyTFIErWB0t8Pb4NcNZgVUfD5meXQy7HDJOLuJ0iODSRsZ63++QwIhph5dwa63wsb6tBZ9+4paQa16hx3fKC6DFBTbUCTI+ClXMEmDxgT+mu+jRHEGWnTwJuVdS8pkKytgDea0pUvpx9sJwqY2CKYFiDZlq4WymCaTsd020yI6YI8nM1mjJMQUYmM5YC2CCkCA6OG/83medYDIL54kx7fdyzcNPZO4bWWqN/3pr2OjBmpDQDwLZjQ9i4sAFaiHDdyla8dGQA46ksJtM6frO7B69f345b183Fuvl1+NfHDyGr56xFp+tWtuLff2sTDp8Zwx3ffAavmKvdRebXPOMCwFYA95ViEIri8/irZxDVQrhmeeXYs7txK8rlxs6uIVzQXmv9ZhSKCxfUW+9XjvDPqJJ6YLl53eo27O4ewemR8q35mwlMJUXwD8V/AFYBGALwt+b982U+gBPC/S5zm/Qxpo3uMABPgEdEHyWirUS0tbf3/FywLlvShPt+72q011fhru+9hLv+8yXs7h7BV9+yHm11cfzOa5ZBI8K/PXkYLx0dQPfQJN6y0Rj2dataMZLMYseJIWw3i8YvWdQIwHCd2dczilyOWf1olrZWg4jQ0ZiwVppPDSfRUhNDNBySpAimrMm/FWBNZqy0RqsGy6wrYoxZKXE1loIVtgIrPjGsihr24NFwSFoTY7kICqqKe/Ke1nMOYwHAZXLhSRG062UsdUCswRJMLngNjdth0K2W8W1i/RjgDrDMgDPGa18iVo0Qrx9qMRWYZW01yDHgaJ/txra7ewSxcAjLWo1GvK01MWRzzPocRlNZ20WQ9x3L6Pa5FhSslFvBkpw3T2qauE93Nuc1tnmt9OMudVJMERRVlfF0FjkGh4IF2IHn7u5hrJxTa51XAFjWWo10Nodu01Chf8xeBHC7NIoKllcxtV0fY+GQZcrhVrDEoIcroHa6Hzms2MMhMmuznMYpYh8sWd8xWX0hP6+yZsjugD4mOESKzaX5ubZMLlK6dY1wtW8smcV4Wjc/B1PBqopadZhcwWqqFtM4jR/LnuEkwiFCc00MjQnDCZIv3BzuHcNSs3k0X4Hd1zOC0WQG+0+N4OKFxt+p61e1Ia3n8EJnPx7aewrjaR1vvng+iAifeO0KHO2fwL3bu61Fp6+97ULctGYOfv7xqxANh/CO7zyPQ2fsWtNiwBi7D3bGxdsBvD3fGReK8uTRV8/g8qVN1t+VSmR1ex2ODUxISxNKTS7HsKt7uODpgYCxaEmEsq3D2tczCiIUXMkrJK8znTYfV2mCBWUqKYK1kn8hAAkANQHPKzqMsbsZY5sYY5taW1vP+/U6mhL4+cevwmtXteL5zn68+7IO3Lx2LgAjde/tmxbgp1tP4NtPHkYiquHmtYZ70dXLDdvuJ/b3YtuxQYRDZLnjrJlXh7FUFl2Dk+jsG0NdPGxNRDuaqtAlKFjtZpPXungY0XDICrAGxzPWynV9ldmAdCKN0VQWjMGa2NfEIsjmjDQ5W8GyUwR5DdZE2jnpF5u/iq5utjpiBwTiJBQwJqbedK6Qo+4FsG2xHeqWMFEOUhtkKXLuNDhDwXJOhnmDV/GY+WS3TlCwBqzJq5kiyJ0EhXTR3d3DWN1eh7A5ztZa22hgLG1+DmaAwn/0J1K6Ix2Tj82vBsvoA+VKkZOoKmI6m/UZZbznJm7V0Ikpgsa+GqEuiPcDE2uw+LExxrC7exjr5jkLnd3nqH88hWbfFEGxD1jIGos13oj3c3Yfv0yligqGFQ4jCx+nwEyW2dehJGgXVVZeX5j0KFiCi6CgYAGu71HGWe8GwPr+yRSssVQWI2YwVScoWGOpLDKmMg64FKxRrmAlMacuDi1ktDXoaLIXbjr7xrHU/KwWNFahNh7G3pMjeOXEMHLMXgjatLgRiaiGJ/b34t6XuzG/ocpqLnrzmjlYNacWf37vLseiEwBcMLcO9/3e1fj0TSuta6KYFCHjQlFmHO0bR2fvOG6oQHt2kdWmorz/VPmpWEf7xzGazGLDgsIZXHBq4xEsbakuWwVrb88wFjdXW3OpSmTVnFrMb6hSdu0F5qxXCGPsL8X7RHQTgI8C+BRjLB/NUroBdAj3F5jbZI/pIqIwgHoA/Xl477NSEwvjO+/fhGcO9eGKpU2Ofb97/TL8eMsJPLG/F2+5eL71hauviuDihQ148kAvElENa+fVWRNKvmq8t2cYnb3jWNZWA57tuKAxgecP91s2y4uajfQeIkKbMIHqH09ZK9dWA9LJjD0hExQswJjYcpMLPoGrktRgWdbhkZCvogA4zSVkqWnRsLNOJarZq/yiqxv/X3QY5OlvABAiONQt0dqdbzPGoXtrabI58CRS8bgmzT5QQSYX/UKTXMBQGAHbqj1nGly8eaMttIoqI1cj+MSYv8d4Ogue1yprNGylCEZsF72JiazjWGV1bW6bevHxYg2a6AKZ0XPI5pitYPFJf0q3znmtkCLIj+3kcBKDExmsm+9Mj+CT6UNnxnD9qlbTQjzmOA+Wi2BKR3XUDkIAQ83J5ZhUjUtlc/Lj97go2tebmOpnB1FO45S0nkNdNGI9h7+XoVTJA3o+DmuMEVmjYVlKatZewHArWIKiJ6ZT8ve1TC6E77roJMo/o6cP2jVYc+vtRqsLGhPoGpzAwHgaQxMZS3UlIlNRH0FbbRxEwEULG8zj03DVsmb8Zs8p9I+l8LvXL7PMA0Ihwu+9bjk++b/bHYtOnOaaGD523TKUAp+siiEYGRd7GWNfL/KQFAWGTxJfV4H27CKrTSfBvT2juGRR01keXVy4mlQMBQswjC6eOVSezXD39Yx6fv8qDSLCay9oxb0vdyMplAoo8stUUgT/0/z3v0S0HcDXAbwtT8EVAGwBsIKIlhBRFMC7AGx2PWYzgLvM228D8BgrYkc+XpMgpkQBxsTlLRcbk+y3XrzAse+6la3Y1T2M7SeGcLG5KgwYKwchMv6IGuk69ipvR1MC42kdgxMZ9AxPYl5DlbWP11hMpLNIZnLW5LWhyq7B4hNYrmDVCqvhloIVk9RgmU5zPLAR+0WJioJdw+M0VwCEib2gNogpfTJXN4CnutmmGfw5xvOdk2geYInvxV/TW4OlQ2z8ChiTeT3HkNEZJjOm6UfUThHk7m3942lENLLOXyIaxvyGKhzqHUPfWAp/8OMdGEtlsdGcjPLPBwB6x5IYmTQVoKqw4z3GU1lvMBvWkDVNOdyKm8NcwZ0ipzn3+at7ukfBSmZ0zzh4wDMuKieuFMHesZTVXHndfOdKZmN1FM3VUavnW0ZnVopljcTkgi9GiGMS+0gZx2IbdsiO31NnFbZVUZ426G4lID4+o+esOsGoFXwx6xqV1RfKa7C8LoLGcdiulZOZnG0o4qrBGk/p1vfSOleprH0dcZt24bs+MJ5GOESOOrmRZBbJjI5TI84Aq6OpCicGJhw1n5w17XV49dQoth4bwKo5tdZ7AcbfsN7RFHIMePNG59+32y9sx/98+HJ84fa1KDMqJuNCkR8effU0lrVWY2FzZfUkcjO/oQp1pqJcbrzSNYR4JIQVbcX5Cq1fUI8zo6lSGuZIGU1mcHxgAqvnVnaABRj94ibSOl7oLIpWMSuZisb5pPn/OIBOANvzGdwwxrJE9AkADwLQAPwnY2wPEX0JwFbG2GYA3wXwAyI6BGAARhBWFvzJrRdg3fx6XLnUmYFy/ao2/P1DB5DO5qy0G8BYvV7SUo2tRwdweiRlqSMALKv2/adGMZLMOiZJrTUxHB+YsNUVc+VanHS5J2RWwXwyY6UjiTVYvA4pKaRsAd7UprinBkuo73FP7HWv2hDRRMc3rxuc1VdLCKL488VJNF/lDzK5cJs8GON2BRhZ3aNg1cTDyDHDgKF/LIXm6pilLAJGHdazh/pw49efxERKxx/cuAJ3bJhnfz6CytNe70zt4pPn8ZRuTeSrBFWNj9c2uZCYK2R1aCGyUhIdFuYBx5/KOG3q+b4kTwu16oLstDV+bvj4uZLXO5rCyaFJaCGSOigta63B4d4xj7qihQjVUU1q0y7amcsCTH7sshRJP+MUMSVVdAo0UuaEGiwxDdBUvzKCSuWu+ROvbbEuUVxwCJH9PDElVax3C5s1hhNp3VLFagQ3S8BQsMLmgodVg5UwzufwZNpyEuXXqJjG2TM86UiX6mg0Fm54Pz7xb86a9jpMpHU8d7gf77xUTCQArlvZBmAPLlxQj+WuiRUR4ZoV5WcoUISMC0UZMTyRwYudA/jt1ywt9VDOG1FRLjd2dg1j7bx66/en0HCl7JWuIcytnxv84CLCDYEq2eCCc+WyZlRHNTy09zSuX1XZ6bXlylRSBL9/tsecL4yx+wHc79r2eeF2EkbRctnRUhPDb1252LN9TXsdWmqi6BtLOwIswEgTvH9XDwDnajJ3/NpydAAArBoswJjAbzs2iMEJ5+Q1rIVQGwtjaDJtK1iuFMGxZDbYRVCoDwGMFLWkMGmsrjZeR5YiaKsDXrUhJuzLMaN3lKVuCeoAn3hnhN5DfJ+YztXgSgPM6Dm7Aa0mS2M0JtJ2iqAZYKV1Kz3LNrmwz5WR3haFyMq2Gjx1oBebFjXiq29dj+VtzgLX6qhhcd87mvIoQFzBmkhnoeecaWKia6MsRVDW64vvk9ZgyRoNc0VFsGl314JZRhwpXRg//9w1NCQi6B1NoWtwAstba6QpBcvaavCb3T3oN93suM29cX4jGE1mkM4aqYnuPlipjBhg2sfPj09ag+Uyl3D0XXM0Eza2E5HjeY7eamE77dTdV0s2DofKKC5GRDQr6IkJCxWTGd0KwgGzN1o66zFbsb6zqSxC5sdt1WAJiymikyhgB/iHeseQzORcCpbxd+WJ/YbT2oJGe6WfB8p6juGShc6/UwubE7jrykW4btX517MWCyL6T/NmFYALYPzG5TPjQlFGPPrqaWRzDLesLZ9J+Pmwur0OP95yAnqOWRklpSar57Dn5DDefdnCor3n2nl1CIcIO7uGyuqz5cFvpVq0i8QjGq5f1YaH957GX925riL7x5U7lVulV+aEQoSb187Fi539aK+vcuxbM68Ov9rJAyxBwTInQi8dMQKsuXXOAKt/PI3TI8bktVGYXNUnIhieyHiK4m3L56yg2NgmF9ydbTKTcwRYccFFMOlTg6XnGLJCYCObhLonrxndqw74TXj5Pm584TAkEHpkyZQNPo4cc6Z6iY5140LjV8DpdNc3lrZUG87vXr8MVy1vxvUr5Y0sicgyGnCbRPDghbvCie9rq2peBUtUR8Rglh+nXWdlm40QkRmY2UYkYr0QP36xubQxRlvBslNN7XSx1poYzowmsat7BNetlE+4l7VWY3Aig4NmrZoYAHAbfHf/sXjYNrlIWmmL3hqslO79nD1pp5o3+DJqsORBu8OKXUgf9PS6EsfhVtkiYoqgregax6Fh2FwQcS9iJCKa6djIayOdga7oJFZr9cEyPo9BM0WwSRJg8RRO8W9OR5Nxe+vRQSxtrXZM3FbMqYEWIug5hk2LnQEWAPzlnes828qcgmZcKMqLB/ecwty6OC6cX3jzhWKwpr0Okxkdx/ptM5pSc/CMsWizoUj1V4Dxt3PlnNqycxLc1zOC+qqIY/G7krl57Rz8elcPtp8YLLu6v5mACrAKyBduX2NN9ET46keI4Mgbr4mF0ZiI4GXT2l2cJPEJ1IHThkQtTl4bEhEMTWYsJYgrD7UuBasqolmTqypzgjuZ1jGZzjoUiXhEs5QysQZLnLxbK/luxzddR0Z3bhNVFW+KoHzCa+xzKhHRKSgbtougbgdYrmBmMqNjIm309+Lng5+rEVPBWuzK52+uiZ21iNrohZX2KEC2i6A9afaoahldcKET0wC9TZ35+RMVrPqEfT3w9EG70bKZIigoWFy9FPtgAUb6Hk815eeEH9uekyPoG0v5FvjyNLIt5gKBGKTyptf8fXkgYRk+iAqe63NO+dRgZXSGXI5Je6txxTbtCdqdbQFEsxX3e1kpgjKHTFcQbJxrZ7FwPBzCaasPlnMfN5lxu3vGwhqiYUPV5T3VrD5YgmPowHgaa4U0Ff73gU9IHAqWqVhlc8xR8wkYn/+y1moMjKexsKmya1iA4mRcKMqDybSOJw/04h2bOmbM6jtPPdvXM1o2ARZ387uwCA6CIhs66vHA7lNgjDnS9UvJ3p5RrGmvK5vxnC+vvaANEY3w4J7TKsAqAMVJqJ2lxMKaNTkSWWMGWAubEh7jjI6mhDUJbauzU4p4jcV+Mwe4SZi8NiaiGJqwUwRr3I5kKcNFUOwRwk0NJjKG8UJiCjVYxjGFzHQuZ3PXIJt2MaXPozg5GsZ6TS5SlkqT80549ZynAa1ogMENCbgiwi3JjQAr67BZrbOMGDJGDZaQ3jZVjF5EKc/nwN9nLJXFZNqZqmnVRQkpcjIDhVRAiqAYRPHn8YbPjNmvZ9u0CzVYlougYHKRzKA6qjny7VtrY+gye1yt91kt5umuL5oBVpNDwTJSBLmCVWUpWGKA6VXwjPHqntQ8R11U1uk+KTpTGumTzmvK0T9N0ltN5ljI30v2GfF9bgWrKqohKbHEB+waSB5g1QjfTaNBuGFaUxXRrPeqjYdBZLsIiue3qToKImBX9xAAZ3pxdSxsPXZZm62Yc3772qX45A0rZsykQTE7eOpgL5KZHG5eUz4pZOfL8jZDUS6nOqxXuoZRGwtjcbP3b0chWT+/AUMThqlEOaDnGPafGpkR6YGcungEVy5rwYN7jEBWkV9UgFUC2mpjaK6OSvvE8NXm5uqoY8VbVLBEhzvAMLoYmjRMLmpiYWtiLNZzjKeylmoA2MrBeMqoRxJNLhw27dmcFQQA9oq9n4IlpnOJdVYAzEm/K31QNMBwm1xoIbtnke6tM8pk7ZqumMthMJXNWZNbsdEwYCo4KWdQyQPhvrE0xtO6pwZrKnCnR/fnIDbxnXQFNnxsyayt4Dia6fIGt64gymHTLlG3nOls3novqwbL5Ww3btZg8fox69jMgJPIP/98fkMV4pEQuocmURsLOxYPeIogT1XlAT5vbD2Z0a3Py3YR9FeOxJS+jCswd6YBSoxTssyzT7ZA4A70nPvk6YNOBUuowUrrjoDe6EPnNVsB7AbhI5NZSwXl56q+KoK+sRSGJzOOazSihdCUiOL0SAohgqPeC7ANdNwKFgC8fVOHtI5UoShnHtpzGvVVEVzuap9SyXBFeW8ZBVi7uoaxbn590VVCrpiVS5rgkb5xJDM5y05/pnDL2jk41j+BA6fHzv5gxbRQAVYJICL807s24o9uWeXZt8Csl5jryvHlE6bDvWNoTEQdq80NiYhl0y6mdcXCmmUiMZG2m5kCtqoymdYxmcl5UgQnBQUrFnEpWJJgQFSO3CYBYtNgriyEBbUh4xcouJzi+L5QiBAOEdK6111OnAy7FSx3iqAzwDLOx7H+cQCwLManQ2ttDAPjaQyMpyxFjB9jNBzCeDqLSXNMlslFxA56eL0U/2yjmt3g1lOD5UoRjAlBRCyiGcfvCoJDIUJUCyGZ9ZpchLUQYuGQ2Wg446i/4scGAEtbqh1KqEgoRNYEvsl1/uriYYwk7RRBt2tlKmN/XjFJDZbMmZIfe1AaoCfA0uTXlNho2F1DKAZ6lnLrdjrMeBWseCSEybTRd23S1WskwVMETUVPPKc1MSOdUvY5NCaiONJnXKPNrkUA/hm11sYcxwwAC8z0P9FBUKGoVLJ6Do++eho3XNDmudYrnXJyEkxnc9h/arTo6YEAsHJOLaJaCLtPlkeANZMMLkRuWjMHREY9oyK/zKy/TBXENStapF9UrmC5iyhbTAUhozOPutJQZaQIDk14J2RG7UsGY6msIw3JVlWM3jlVrgAraTbkTWVzlhEBYBf1yxzvALeVtXeCypUoK4hwWbF7TC6sJsTMsy8tmXiLSpq7LxE/xlTGmNiKigJXsPjklfcZmw78MzrSN+5RgKqjGiZSdmDjto7nAUbMda75sYgNePlxOlwEPQqWWNPk+vwyOUtJEyf9NbGwYXLhUk4Ae/Lulx7IWWbWYbkn/+4UQTHY54GIu2+ZI8DyqHumrbrOPA6Ljv5pOrOCJ3FfzuyHJlWwfFMEvamKYhpjKutcjIhHNYd5icPkIiBFsCZmBKMjSa+SWF8VQWev/Brln9Fcl6kOACyyAqzyqOtQKM6Hl44MYGgi42lyPRNY016HnuEkhsw66FJy4PQo0noOa0tgIhINh7Bqbi12d5dPgBUOEVbMmVl/Q9tq47h4YaMKsAqACrDKDO4k6Faw4hHNUkXcDncNiQhyDOgZnvRMjGtiRrrRRNpuZgoIAZZZj+QOsFKZnJmeBpeCZe6TmA4APi6CLtc/dzBg9yxirhosstPg3OmD4ZA1uRbf31bSvAFGlaBgTaZ1R8pkdVQDEXCs38j3PtcUQQA43DvuCXSrY2GMp+xglgeYcccEPec41+5z6lb3LIdBl/IXi4RMBc8ZYAJ28JzMeJWkRMwIAoMULHeDYTfcFdM9+a+NhZHK5jBsGoC4a/5Ek4u4K31SbtNuK1iZIOXTHXyZximZnM/r6cxr0y42Gs7mQGQrsGIQnHQrwWFDSeRBVJWQausxuYg51dSxZBajyaxDCQWM7/qZ0ZR5jl0Klhngt9d5Ha7uumoxvv2+i62+eQpFJfPgnlOIR0K+jqaVDF94LYc0wT2menS2hbVCsW5+PXZ3j5RFfdC+nhEsb6vx1M3PBG5ZOwd7To7gRJnUu80UVIBVZvBaCbe1O2BPct2TVz5pOj4w4VWwzHSjsVTWkYbE1ZsJnxqstJ7DRMqpKPDbRrG/uc/tIig6BVoKgHMy7DaycJpcuBUsswbJNYmOmHVGfjbtssa9VopgOofxtI6qiH0+iAg1sTCO9p1fiiBg1Ly5A93qqKEOuc+1aJ0uWqob+5zBV1TyOQCSHllayGHI4E5bS2VznhRBcYwy5WRNex3WzqvDay8IbkjInQTd54+nYPI2A4mYqGBpVoqkOF77s9QDjSf81E2ApwE6rzf+HOO+sY+IrGBfZglvjCNn1cJZva6EFEG32Qi/3gYnjKBS/NyreQ2WZdMuSRGczHhMchqEz8UTYFkKljfAmlMXx63r2j3bFV6I6FYi2k9Eh4jos5L9ryGil4koS0Rvc+27i4gOmv/uKt6oZw+MMTy09zRes6LV8Z2aKfAAa1/PaIlHAuzqNgwuFpXIYXT9/HoMT2Ysg6VSsq9ndMalB3J4r7GH9p4u8UhmFirAKjMWNVfjQ1cvwa3rvKkPfALlTr9qMC26R5NZz8S4xjIXyFrGAoA7RTDnqYkBYKkNnhqsjJAqFdCM1d2EOKMzaRogbxYsazTMG9Ma9+2JcsxUKbw1WPY4khkd4RBZZhN2HyzDml5UsADDUWfUVBTOR8HiryViNJbVPf2QHDbtbiMLt4IlOTd8v0fdynhrsADbeGEy7VSLANN4IWXYtLuVk+aaGH79yWulxiwifL/7/PFA4fRI0ngvSc1fMuNWsCTXlKTmL511mVyExdRSedDuVqmMfSRVYB3OlK7PwZEi6Kqz4ooVb3lQJaRFVkXDloJF5Ax0uaX9SNIbqDcknM6BIvz6myk9WkoBEWkAvgXgNgBrALybiNa4HnYcwAcA/Mj13CYAXwBwOYDLAHyBiLzNxRTnxfYTQ+gZTpZVA9p80lobQ0tNDHtPll7B2tU9gjXz6kpmg89bguwqcZrgwHgap0aSM87ggrOouRoXzK3FA7t6Sj2UGYUKsMoMLUT4/O1rpBPZ1lpj4tSY8KYIctwT41pzNXwi5bRp5wHVWCqLtJ6TTvqHzAAr7lJVRHWIT+zDIQKR3MqaT36NgMjb64rv80v1ck94+b501qs2hLUQQmQrWLKapsmMoRwkXKufXGWJhkMORWGqiKqNtwbLSBE0zA7EgEcwucjkHOkHfLx+KYLprNDwWaJuuR3v+GtyF8FoOORoOlsdC2M0lcWoRMGaKktbq7GkpRoXuppS1lgKlhlgxZwBvUzBctegibV7jrRToUeasU/odeVKLY3x1FKX0yVgX2/8uTJLeENJdC448DEmM7pcwRpPW8fJSUQ1pPUcRiYzqI6GHaY1NTGjXm1k0puqKab4NSbkaZwyBUsxZS4DcIgx1skYSwO4B8Cd4gMYY0cZYzsBuJsc3gLgYcbYAGNsEMDDAG4txqBnE5t3nEQ0HMLNa4P7ElYya+aV3ugio+ewr2ekZOmBALBqbi0iGpU8wOKfxZr2mdHQWsbtG+Zh67FBdA+VXi2cKagAq4LgNRZuhzYxbchXwXK5CPLbA5LJHw8AeJGt10XQO3nnKVYOkwCZuiVRqQD/VC+ueomvY+wjp4LlUhV4GmPcNXYiw+TCbZsN2AFWc3X0nHoCxcKaNQF2B7qJqKFgJT3pmHZvKsMkwXturABDmNhHA4IoW8HypngaClbOY2wCGNdE32gKOeZV4KZzDh7/o+s9CmytEGCFTTdD+xyEzBRJV6Phs9SgAUJg7ko7zeaMJsRp6TUlD9ot4xQfS3i+z8+IxN3SwE4RlAdYANA7lpIG+hndCJzd32e+mNKQiDj6lAGGekhkuG8pzpn5AE4I97vMbYV+rmIK6DmGX+/qwetWtUl7TM4UVrfX4tCZMeu3rxQcOjOGdDaH9SVwEOTEwhpWzim90YXtIDhz/7befuE8AMAvXzlZ4pHMHFSAVUH4pQjWOxQsbw1Wrzlpro45nduIjL5PgOF4Zu9zpgjGXeqIw6ZdYryQyfKUPq/JhafXFZ8oW6lekgmv7q9guV3drHGYKWfidiJCVcQIdAwXQffE1jh3bhOR6cA/I0+gayqJ7hRBuzeVd/Lurv1xBqYa9ByzaqmcCpYZYGa8wVc8oiGVNevuXAFWIqZZCpM7Ne18qbNSBFOoimqOALYqylMEnQFhWDMUNt5o2F2DB4gpgpJ90uCLnHWC7uttCjbtMde55vsMBcv7PbJrsOzn8eC+dzTlUUvFVgvu7zMPsJoS3mt03fx6vPz/bpqxdQIzCSL6KBFtJaKtvb29pR5OxfBCZz96R1O446J5pR5KQVnTXoe0nsPh3tL1JuKq0dp5pVVt1s2rx+7u4ZIaXeztGTH6l9ZM3124UljYnMBFHQ3YvEMFWPlCBVgVhG1y4QqwhMl8rUs5qYmHrUm4WHPEg43+MdN0QJIiaAVYMhdB3d8AI60btU88b9vRI0vPWWmBgNgjixtZiLU0/iqVezIsS5Fzu/LxYxmazIAx+CpY52LRzuEqY1ANlng+w1oI4RBZjYYd6Xweh0Fv8MVd6GTpg9IaLFMtmszongLx6mjYqnc7VwXLD35uz4wmHUqqMSbNqkGLaiFHvn9UUJWiksDcCqJcnz8gNiH2Xje8Rstz3UhNWvyVNDtFUJcoWGYNlqkSu+vdAGOBI+GqBRQDLk8NVpXx3ferEWw8h9pBhYNuAB3C/QXmtrw+lzF2N2NsE2NsU2vrzHPCKxSbd5xEdVTD685itlPpWE6CJazD2tM9jOqohqUtpe2dt25BPQYnMiVNXdt7cmRWLFzdvmEe9vaM4NAZ1XQ4H6gAq4K4dHEjLlnUiAvmOmXqWFizJmxu5UScKLsntomoZqcIShSsIXPl3dNHKWurI7Lmt36KQkb3pgiK+842GRYDM086osTkwV0TAxhpWvyY/WqwWs5jkmorWBIXwVRWqhyJAYZMwTLOqS4NMEaTRoDlaDRsqYyyIFizGg3HJQoW51xrsPzg6mBGZ57zbh2/S3EE7OvN04Ta0bfKmwbI38tT13eWFMGMpIbQXV8oU7AmUjqyOWbZ7vPjAiBcb94ayN7RlOd76Qiw3DVYXMFSgVSh2AJgBREtIaIogHcB2DzF5z4I4GYiajTNLW42tynyQCqr44HdPbh57VzP366ZxtKWakTDoZLWYe3qHsbaefUlM7jg8Bqw3d2lORfprKEkrpk38wOsN17YDiJgs0oTzAsqwKogFjVX4+e/e5XDSYzTYNX+eFPTOG7XvEQ0LK3BqnIFWOKPGW9i624mDAgpgjrzBDyAXzoX7z8kSR/UQsg40rn8a5Ci7gDDR8GKRULo9w2wzn/yagVYbgUravSBGktlPcoRt053N6p1NNqVNBoGDJMS8T6/7bSpd5pcpKwaLOfXvybqP7E/X0Rl1a3YVEWMnlBJ1/EDLgXLpwbLN0Uw61PXlxVMLlzug7IaQkd9oVtlNM/hSDLjuA9IUgQlCpa7fQJgG4IA3kCXf8/PJ41V4Q9jLAvgEzACo30AfsIY20NEXyKiOwCAiC4loi4AbwfwHSLaYz53AMCXYQRpWwB8ydymyANPH+jDSDKLOzbM7PRAwMhsWDWntmRW7XqOYW/PCNbOL31QccHcWmghKlkdllELx2aFgjWnLo4rljTjV6+cLIveY5WOCrBmCPVm0CVrNMxxT+QSUQ19Zoqgo0GqOUm0bdq9CpYsNc+YoHp7NrlVKj8lwjMZDjubCTsmw24lwjEOI40xldEd9WMAV7BS0vPBz9X55Fn71WDx4HZgPO1RsGJhW8FxB4qAYA8uKicaD7CMz0gaYEnqs8QaLHeKZCIgNe18iWgh67pKRNwpgiEkJS58gKCYSmzqATvtNOa43ozrZCItDz5Fp0CvcYq3eTV/nExJ4+8rS6e1FypkJhf+38vamH/KL3cQdTuJKvIHY+x+xthKxtgyxthXzG2fZ4xtNm9vYYwtYIxVM8aaGWNrhef+J2Nsufnve6U6hpnI5ldOoiERwTUrWko9lKKwur0We3tK02T3cO8YkplcSR0EOfGIhhVtNSVzErQdBGeuwYXIHRfNQ2ffOPaUQZuASkcFWDMEbtnsUbBE5cA1oa6KahgxU8zkKYJm7YirLogX9APy2h9ZzyYAlrolM7mwHQa9TWFT0iBKrjYYYzSel5QoWEbdmTctErCd/9wmItNhSUs1wiFCW50zSOOT6Im0NzWPq0p+dVYT6SwYcx1jxJki6HFRzBrHb9wXAizTRVCWIij2Scu3ggXYCqFMwdJzDOOprOP4AWcqqNPe31XX51KiAGDcbJTtbmztp3zyayqj5xw1hIDtnulncjEy6U2ntWqw+PfIYXLhbDosUhNgclFfFcEb1rfjupWqbkcxe5hIZ/Hw3tO4bV274/djJrNufj0GxtPoGU4W/b13dRnBTDkEWIAxjlIZXezqHkYiqmFJS3APyJnCrWvnIhwilSaYB2bHX6pZAHcXcysntcLquNutTJzkibd5QDUkU7B47U/KO7GPWjVTfulczBN88R9LmRseD7YsdzmJhXvKT23IGI1f3YpI3HQRBLw1aflwEbx5zRw88cfXo63W2YvI71wDdvNfv8m7FURJlL8RyT7+GmO8PstVQ5c0berdAaaoYLmVk3zAX1NWgwUYKaliMA+YpipZ3VuDJtb1SVJLATt90qmKOl0EZTV/7tfjrxmUqihTsMQUwRA5r1FHgOWjpALezyEUInzrvRfj8qXNUChmC4/sO4PJjD4r0gM568zgphTKze6Tw6iKaFh6lsbyxWLd/Hr0m81+i83u7mGsaa9z9IycyTRWR/Gala345SsnkcupNMHzoaQBFhE1EdHDRHTQ/N/T9Z6ILiKi54loDxHtJKJ3lmKs5U696S4mcxHkuCe2jqJ7cWIYdU0aJY1VRyaziIZDDrttPwVLbDRsuAh6AyyeziWrpbEmyj5qWUSTqw3pbM6j0sic3DjtZoPWjqYEzhUiwoJG7/Orfc61MSY7Dc7dzwrwCbBcQZQswBpNZqCFyNEvKR7WkM0xjKaynhosrqRURzVPj6V8wIN9t5IqulZ6FCzhs5QFmKmsN6APuqZ4aqkswIqF7bTTaNg7DrvRsL1PCxEiGtnptK50TMBQghOuZsJVAQoW/w7HwqEZX8yvUEyFn23rQnt9HJctaSr1UIrG6rl1CBFKUnu0u3sYa+aVT1BhBZtdxT0Xeo5hz8kR6/1nC2/aOB89w0k8d7i/1EOpaEqtYH0WwKOMsRUAHjXvu5kA8FtmnvutAL5BRA3FG2JlsKa9Fivn1HhW3mumqGDJVt4tF0FHDRZXVTIedShqpqalXVbsYS2EENlpgM50LuP2mJXO5Z0oj8uUCE2YeLuOmdttS10EA5Sky5Y04dHPXFeQRq1iWpxbOYqFjT5Qnia2ZzGyMPZ5J/ZiYOZV8MzgeSLjbTRsXh/5dhDkcIXQHVCIpiqeGiyf2ie3Kuqu3QOAcVOpdCumOWb0HRNfh+/jroTSACvr/YyMMdqptjFJLWOOQZKO6V+DFQsb1v2F+hwUikqia3ACTx/sxds3dZTNhL8YVEU1rGirLbqCxYOKckkPBIy+YKUINjt7xzCZ0WddgHXzmjloSERwz5bjpR5KRVPqAOtOAN83b38fwJvcD2CMHWCMHTRvnwRwBoAqQHDx/isX46FPX+fZLipYMpMLTpUkRXB4UlaDZaemeQIsLWQrCq6gJyIoBzGZ2uCjUgHyibKlNui6ZzLM08rcltrGsYhpWs7zQURYVqCUCHFC7VXVQnYNj6QGy071c7o5ivvk6YPegIW/d1rPOZpLi2MsRP0VYCszVT4K1tBk2nNuHAqWzH1S4lppmVxY15S379qYJMWVX6OyoF3sLea93kJSBSuqGc28jWN2BfqikhrzXoc18bBVE6hQzGZ+urULAPCOTQtKPJLis64EtUdH+sYwkdaxtoxsyXmwubPIARYPbssp2CwG8YiGN2+cj4f2nLacphXTp9QB1hzGWI95+xSAOUEPJqLLAEQBHPbZ/1Ei2kpEW3t7e/M70gqFO5JFNPJMDKsEN7e4a4KqhQxHNXfjVzH9LOapl5GnUQHOibJUpbKCKKdTICA20xUnyiStieHvxcfhnrA7FKxY8dKvxOBW1gfLnqALTYhDhBABoz5OgYBdC+euswJ4EOz9jPzGwc9Hvh0EOTzA8ihYZvCRlPXB4qqo63Pmqqist1rUc0150y6t9MGwJMVVl1xTQn2W7JyOSGqweDNvwHuuQyGyFK4ayXVYEwsrBUsx69FzDD/degLXrmiVpl7PdNbPr0PfWHFrj3acMIKKjQsbivaeU2FDRz12dhU32NzVPYx4JIRlraVttlwK3nlpB9J6Dr/YPtU+6wo3BQ+wiOgRItot+Xen+DhmfGt8vzlE1A7gBwA+yBjLyR7DGLubMbaJMbaptVWJXIChjmgh8qhXgG0dHtVCjpobIrICLtmEFzDSz+RpVHwy7O1nlNH9XQSlaYBhlxLhep5fvUws7N9o2FGDVcT6luqAFMF4RLP7KIWdn0M0HJI6BXpqsMQgQrOd7dw1TTIbcWuMBVewjNeVHb/sNmA3TfYLpJMZHXpO3mjYvqbEoJ3MffKU1LTOkAlQsKTXmxAgu0064j4BFmArqG6zFcBwC2xQAZZilvPUwV6cHE7iXZd2lHooJWH9guI32X3lxBBqYmEsLTPXvAsXNGBgPI2uwcmiveee7hGsaa8rSE1yuXPB3Dpc1NGAe146rnpinSMFv2oYYzcyxtZJ/t0H4LQZOPEA6ozsNYioDsCvAXyOMfZCocc8kyAi1MTC0kkcn+i6J7yAPTGUNeoFjMm7ZxIqOq1pzlx5UR2QOb6NB5hcWEqEI/3KMGtIZuQ1WJNpHdkc86gN/Lii4VBR/2j6GYoYYwpZNUGytMtRmRtgQH2WuM+vBgvwfu62glXYFEF3sC8GVbIaLD9VKaKF7OvGpUQBwjUlSUkd9zlvabOJtjeY06QNn/nzrKbO7oDWfKzMrIKn6MoWP754x1p85uZVnu0KxWzixy+dQFN1FDeuDkxumbGsaa9HiIrrJPhK1xDWz693ZK6UAxd1NAAAdpwYKsr75XIMe04Oz7r0QJF3XdqBg2fG8PLxoVIPpSIpdVi+GcBd5u27ANznfgARRQH8AsB/M8Z+VsSxzRhqYmGHgsJJBKyuWwGWZDIJmAYKEsc3mU07YFtg+zq+pbxBVKDJhTmhHk9nvWpZOIQxc3Idd42RH6s7Ta3Q+BmKAM60QG9Aq2E0KUkR1AIs3B0mF97X8xuHrWAVKkXQ7IPlY3IBwDNeq2myj5kJN0eRWf9PBOzjwZe7rss2zXAtEGghab2b+76nvs48Vvcxi9tkAdali5tmXWG1QiHSO5rCI/tO460Xz/d852YLVVENy9tqimbukMzo2Nczgg1mMFNOrJpbi2g4hFeKFGB19o1jPD37DC5E3rhhHhJRDT9WZhfnRKn/an0VwE1EdBDAjeZ9ENEmIvoP8zHvAPAaAB8goh3mv4tKMtoKpTYe9hg6ALaqIlewQo7/OXwCPJnR/dOopCYXhMm0bjbMddZSAfIJb9Sl0vj1OpKZXHBF20/BkZ2PQhLRQtY4PS6Ckj5jnKgWOouLYFCAJXfl47gDay1EuHhhA9YvaJj6gU0Duw+Wv4Llvd5sVdR9LBEtJFWi3LV7UodBSYogXyCQKVixcEja+43vk90G7JRB2XesKiqvSVMoFMC9L3chm2N456ULSz2UkrJufn3RFKx9PSPI6AwXdZRfUBHRQlg3rw6vdA0V5f14UMvTNGcjNbEw7tgwD798pcda6FVMnZIGWIyxfsbYDYyxFWYq4YC5fStj7CPm7f9hjEUYYxcJ/3aUctyVxsKmBBZKejvxlDBZ+pKtYPmbJEgVLImRhbFPk6cBctMB2YTX6meke95brEGKSQI993FweFAhUxQKDZ9Ie1IEJS6N1v1IcA2WbB9/jRyTpKwF1GABwL0fvxpvu6Qwbl12H6ypK1ixiNloWJq2Fzqrumns89ZgTaSzCBEcts8RLQQ9x5DK6FJVlP/AeFTGsBggetM/ZdsBW0GWKVgKxWwml2O4Z8sJXLq4EcvbyqsWqNism1eP3tEUThfB6IKrQ+WoYAHGuHZ1DyOrS8vw8wo3uFheJs2WS8U7L+3AZEbHfTtOlnooFUepFSxFEfjnd2/E373tQs/2hDXh914GfNLrVhTE+7IarGyOyV0ENZKrBp4aLH9LbenzpAqWfxAYL2WAZU6kZS6CHE+KnBayAky/PlhEriDCoaj4B3MyVaWQrG6vw8KmhMcKvyqgBiuqGfVphvLpX4MlTQP0UakAufLp2CdJEbTq5KajYAWk4fK0XVl9pEIxm3ns1TM40jeO91+5uNRDKTlcQSlGk92dXcNoq41hbl284O91LlzU0YBkJoeDZ8YK/l67uoexepYaXIhc1NGA9fPr8Z/PHkEup8wupsPsvnJmCfGIJl1B5zbtsnQ5fwUruF4G8J+8ytK5PEGUrJ+Rj9oQ9F5+Y7QDrOJPavlEOh71n6AHBouSNDhu8kFEwuO8/bI4YoAsuyYKyeKWajz1J6/F3Hrnj3csYExB5yaqhewgSvI4HnxJ+66lda/KKgRmgdeUO43RvK+FyPOafjbtgJ0iWMx2AQpFJXD3052Y31CF16+bW+qhlJw17XWgIhld7OgawoULGhy/J+XEhWb6eqHrsHI5hr1l1my5VBARPnLtEnT2juOxV6U+dAofVIA1i+EqjjxF0K8G6+zBgKxRq6NeRtinhYyeW4GGBAETXkNtkNeJycZfFWA6UGj4RDpYwfI/FlkzXfd292t4gwHBpr5Man9iYbshryztVHab37cbBnv7p8nSTh2BueQaBUxVNCDt1O96i4e9f06DFNNEREM0HPIEZQrFbGZn1xBeOjKAD169eNarB4CR+bCstfBGF8OTGXT2jpdl/RVncXMCdfFwweuwjvSPYyyVndUGFyKvX9+O+Q1V+PenO0s9lIpC/fWaxfAUpSCb9kDHu4BV/qDJsGipDRjBgqw+SwyivDVddp3RtBQsc1+iBHUvloLlU6fjvg34n1PeIwsI/hy8pgv2fZmqUgqMvmvBrpWAn4Llr4oG2bRPBAXtaf/rDZAErfxzkJxP/ti45Du2bkE9Ni1q9GxXKGYz//70EdTGwnjnLO19JWN9EYwueApiudZfAcZvxYaOBqsZcqGwDC5UgAXA+N384NWL8eKRAewsksnITEAFWLMYnqIkq8HytWmPBE94ZbcBXi/jVRT4/Qlrn0yJkCgKkkDMGmNAgGEpWCUILhJRDRHNm0YWVIPlOBbNtc98nWBXO3+1rNg1WEFU+aip0YB0x2hYvG6cqmiIEHhNjUuCdn6fyYJ2x7Ut/4xkClZQiuD7r1iEH/32FZ7tCsVspWtwAvfv6sG7L19otXVQGE6CZ0ZTOFNAowuuCl04v6Fg75EPLupowIHTo5gwF9AKwa6uYcTCIayY5QYrIu+8tAO1sTD+/ekjpR5KxaACrFlMcB8sniLoNV2wbk9HwTId2tyvwe9LlQjuMJgJromZTl8iy0WwBHUvNbGwNB0zKCCcynEGK3j+wVexa7CCqPIL6AOOX2aIIt4fk6Skig6Dnl5XU7ym/NIuZQpWkMmFQqFw8r1nj4IAfOCqxaUeSlnBlZSdBTS62HFiCEtbqlGfKO/AdsOCBug5hj0nRwr2HjuVwYWH2ngE77qsA/fv6kHX4ESph1MRqKtnFsNVgyqZyYVPylYoRNbE1M/kAvBOeGWBk/jYVNZwaHM3fgUMRcFPbXA/xz1mP1e3Uji3rV9Qj4sXelPCpqpgTTnA0vyDgbAWQtg0CymnST8fZ9A1Nd3gM21eU7IarJzkmopOsa7N73pzjw+wFyrKSS1UKMqR4ckM7nnpON54YTvmNVSVejhlxfr59QiHCNuODxbk9Rlj2HFiqKzTAzkXmjVihTK6SGdz2Nk1JP2tnu188OolIBgLIYqzowKsWUwsHMIlixqlecZ+KVvG84xtgWlUAWpDkIGAX+AUpDYE1yDJU+RKMeH94NVL8P0PXebZLtZd+Zk8cDMQ2T73uQ5rIeux7uM33k8zHe/KxynKUrCmYaoSFGTLzFLc2wMDtiCTC5/gS6ZgBaUIKsoTIrqViPYT0SEi+qxkf4yIfmzuf5GIFpvbFxPRJBHtMP99u+iDr2C++8wRjKd1fOTapaUeStlRFdWwbn49thwZKMjrnxpJonc0hQsroKluW20c8+rj2FGgAGv3yWEkMzlculgFWG7mNVTh9g3z8KMXj+PMaOH7slU6KsCaxRARfv67V+ENF7Z79vnVYInbziWdTbbPkerlF2y5AoVgFz1/F8H6qghWzqnBmnl1KBeCbNWtIEqSqsC3Be3zU1WqIlpZWfH6tQVwBj1TV0wjPsH5VJ8TFLD5OT0GuQgqBasyICINwLcA3AZgDYB3E9Ea18M+DGCQMbYcwD8C+Fth32HG2EXmv48VZdAzgL6xFP7j6U68fv1c5dzmw2VLmrCzaxjJjJ731y73BsNuNnQ0FMxJcOtRI4jdtLipIK9f6XzqhhXI6Dl887FDpR5K2aMCLIWUQGe0qQRYgRPe6U+G3Y1fp5KyZdz2Tsof+vR1eO2qNpQLPAiMaiGEQu7jlCs7gH1+ZCqVnXInC5DlfdFKiX8Nltym3v1YT9Bu1lq5e4QFXYfnWl8Y86lXNPYpBavCuAzAIcZYJ2MsDeAeAHe6HnMngO+bt38G4AYqp9WKCuRbjx9CKpvDZ25eVeqhlC2bFjUirecK4ib48vEhRDTCmvbyWXgM4qKOBpwYmCyIirLl6CCWtFSjtTaW99eeCSxuqcY7L+3Aj148juP9qhYrCBVgKaTwFXfpBP0cDAn8ejh59oXs22FJY2HrOYKa4a7pCuoDVY7EfOrdgLMoWD4pguLj/azDq6LldV782gIEK5/+1xTf590uV0vd9wNt2n3q5GSfX5XPcSnKlvkATgj3u8xt0scwxrIAhgE0m/uWENF2InqSiK4t9GBnAicGJvDDF47j7ZcswLJW5drmB1dUthzNf5rgC5392NjRWDF/py5fanzdXuzM77lgjGHr0QHVPuMsfPKGFQhrhK8/vL/UQylrymuWpSgbuMlFkOudtwYrINXtLBbugBFQiQoOEdlpcD4KhfS9AuqzypG4T/0R4H+uAfieG/G1pCmCYa3sFJW4z3iDlMqga4rflxmqTOn1plFfGAv4rqxoq0FbbQzzVdH+bKAHwELG2EYAfwjgR0QklQSI6KNEtJWItvb29hZ1kOXGNx45CBDwqRtXlHooZU1TdRTL22ryXoc1ksxgd/cwrljWfPYHlwnr5tWhJhbGC539eX3dw71jGJzI4FKVHhjInLo4Pnj1Etz3ykns6xkp9XDKlvKffSpKgp+iAAQEWAFOgVMxwHCrBkH7pjLhjYZDZVVn5Efcx0EPOItKNRUFS2pyESq7AMtP6XGqoi41agqKafB1c4427X4mF5LPYUNHA1763I1orI569inKkm4AYofbBeY26WOIKAygHkA/YyzFGOsHAMbYNgCHAayUvQlj7G7G2CbG2KbW1tY8H0LlsP/UKO7d3oW7rlyE9nq1CHE2Ll3ciK3HBpEzW57kgy1HBpBjwBVLKyeoCGshXLq4Ec/nOcDactRwabx0SeWci1LxsdcsQ20sjL9/UKlYfqgASyGFp5D51fCI/3MCa7AC06/kroTi8zx1W1OYDMtMB8oRP1dGINjIwprYS/f5px2unVdfViYfgL+K5zQA8e/J5lfX5z5voRBZqafTMrkIqvkLqMFSVBxbAKwgoiVEFAXwLgCbXY/ZDOAu8/bbADzGGGNE1GqaZICIlgJYAaCzSOOuOBhj+Ov796EmGsbHr19e6uFUBJsWNWE0mcWBM6N5e80XOvsR1UIVZ0t+xdJmdPaO57X58pajA2ipiWJxcyJvrzlTqU9E8LHrl+HRV8/g2UN9pR5OWVIZM1BF0QlMEYzIJ69TtdT26z8kU7DsNDiSbne/r3hfVn9UjkQ0QoimV+8GnLu69eU3rcPfvOXC8xpzvvGr+ZuqquQNlsjxv3Ofj7o1BSv2iEb+RiQVEtAr/DFrqj4B4EEA+wD8hDG2h4i+RER3mA/7LoBmIjoEIxWQW7m/BsBOItoBw/ziY4yxwvhqzwA2v3ISTx7oxadvWqkU3ilymams5DNN8IXOAWxc2FBxC0RXmimNL+TxXGw5OoBNi5oqIvOlHPjQ1UuwuDmBP//FroK4W1Y6akagkNLRlEBUC2Fhk3clxw5gpr7KPxWHQbdToHPfNOpvAlK2yhEiQjyiyQOsgDqroBqsSjsH8+rjaK6OTitoD+qT5hdEiY+dVq82Ta7aimOstAmKQg5j7H7G2ErG2DLG2FfMbZ9njG02bycZY29njC1njF3GGOs0t/+cMbbWtGi/mDH2y1IeRzkzOJ7Gl365FxsW1OOuqxaXejgVw4LGKsypi1mpbOfL8GQGe04O44qllVN/xVnTXofaWBjPH85PmuCp4SRODEyq9MBpEI9o+Ou3rMex/gn806MHSz2csiNc6gEoypOOpgRe/fKtntV6QEhpm4YCEA3oW2VNhgMCBfdEmad6ZXPM22g3ZChClTThNQKsILv1gPqsoPTBCjkH77tiEd68cYFn5VAM4v0ULLcVO98me477eY73CnCmDFIEbZOLyghmFYpS89f378PQZAY/+PDlngbqCn+ICJcubrJ6NZ0vvP7qygoyuOCEtRAuW9KEF/NUh7X1mHFOVYPh6XHVsha8/ZIFuPupTtx+4byyKz8oJWpGoPBFFlwB/pP3qfYROhe1ISj4cr8XESEWlitC5UosHJL3upqKShXgPlgp5yCshVCfiHi2T8V9UpYG6BeYBz1vKs6U8jRO/yBYoVA4ee5QH366rQsffc1SNRk7By5d3ISTw0l0DZ5/D6IXOvsRDYdwUYU0GHZzxdJmdPaN43Qe6rC2HBlAIqpVTC+wcuJzb1iNxkQEf3bvTuh5NGCpdCpj9qUoK/xqsIKdAo37RPCsWPL6qqDJsEylCdoXDYcqJrgA4J8i6HOujW2a43/H82ZIXVBYC1nXi1//NKk5yhSum3NpNByUqqkULIUimLFUFn/+i11Y3JzAp25QtuznwiZTYdmahzTB5zv7cXEF1l9xeGpjPuzatxwdxMaFDQhLfjMUwTQkovj87WvxStcwvvuM8vXhlPRKIqImInqYiA6a//tqs0RUR0RdRPTNYo5R4cXP9S4UIl9zgagwqfVN5wqqwZqmkUMsHKqoH40bV7fhmuUtnu1WEBUUfAWqW5VzDvyIaiGp5X6wvT9PO/VXt9znTQsR+Ft4zDYs23vvezXXRFETC2NRc/VUDkehmJUwxvCnP9uJ4wMT+OpbL6yov8/lxAVzjdqjl84zTXB4IoO9PSO4cqn3d6dSWDOvDrXx8++HNZLM4NVTI6r/1Xlw+4XtuHnNHPzdb/bnLYW10il1qP5ZAI8yxlYAeBS2G5OMLwN4qiijUgQSlH5mTURdqgpP8ZNZik8liJKmgZ3leZWk3nzuDWvwgauXeLZPRTkJ7oNVOefAj1gk5GNF758GOBVV1L2PiHz3BQWztfEIXvnCzbh2ReVOVBSKQvPdZ47g17t68Me3XFCRpgrlghYiXL60GU/u7wVj556O9dLRAbAK63/lRgsRLl/ShBc6z29C//SBPqMWTV2X5wwR4Wtv34D5jVX4+A9fxpnR/NnnVyqlnn3dCeD75u3vA3iT7EFEdAmAOQAeKs6wFEEEBlg+AUHMUhQkE96gibKlbvmbPMjGURMLoyburempNPyaOovbgtStmRBgcQXLTSQgiAyq6+NKqdQcxCdoDWrcDHD1SxXrKxQyXjoygL954FXcvGYOPnbd0lIPp+K5Ze0cdA9NYnf3yDm/xvOH+xELh3DRwob8DawEXLG0GUf6xnFq+Nwn9L/ZcwrN1VFsUgrWeVFfFcG333cJRpIZ/P6PtiOr50o9pJJS6tnXHMZYj3n7FIwgygERhQD8A4A/OtuLEdFHiWgrEW3t7e3N70gVFnZvJv+gx2sg4K9ETc3kQvY8PlH2juPv374Bf3TzSv+DqBCm5BQYEJjOBOOFWEQeYAUZWQQ1aA5STCM+QWvQ6ykUCn/OjCTxiR+9jIVNCfz9OzaohYg8cOPqOdBChN/s6Tn7g3147nAfLlnUWPG/EVwNPddmt8mMjsf2ncbNa+coR8s8sLq9Dn/95vV48cgA/u7B/aUeTkkp+GyBiB4hot2Sf3eKj2OG1i3Tuz8O4H7GWNfZ3osxdjdjbBNjbFNra2uejkDhZv38elyyqBHVMXmAFSJ4CkUD0wCnUEvjZ2Th95rr5tfPiJqYc1ELAaA6FkZUC0kD2krDT8Gy6vpkwfc5BvR2raDzeby+UDYOhUIhZ2A8jfd/9yWMJrP4t/ddjLoZkFVQDjRWR3HF0iY8sPvUOaUJHu4dw6unRvG6C9oKMLrisqa9Du31cdy/69yCzecO92E8reOWtXPzPLLZy1suXoD3X7EIdz/Vif94evaaXhS8DxZj7Ea/fUR0mojaGWM9RNQO4IzkYVcCuJaIPg6gBkCUiMYYY0H1WooC8pqVrXjNSnkAe9bJcGCg5D9Rnm4N0kwhKA0y6Pjff+UiXLG0eUasFsfCGkKSVINIgLo3FZVKGnyZ16C7hpC/z0xIuVQoisHwRAbv/+6LONo/ju994FJcMFfZX+eTW9fOxV/ctweHzoxhxZzaaT33vu3dCBFwx4Z5BRpd8QiFCHdsmIfvPnMEA+NpNFVHp/X8B3adQm08jKuWqRrafPKF29dgYDyNv/r1PsTCIbz/ysWlHlLRKfVsYTOAu8zbdwG4z/0Axth7GWMLGWOLYaQJ/rcKrsqXaFgLNB2Yjm02INRuTXMSPVMINLkICL5aamIV2TxSRjR8DkF7gCo6FXMQv/M9k681hSJfjCYzuOt7L+HA6VF85/2X4CqJQ6ri/Lhl7VwQAb/ZfWpaz2OM4f92nMRVy1rQVhcv0OiKy50XzUc2x/DraapYWT2Hh/edxo2r56i/7XkmrIXwjXddhBtXz8Ff3LcHP9lyotRDKjqlvqK+CuAmIjoI4EbzPohoExH9R0lHpjgn/Nz7eJ3UdFzdzrYvqD5ppsCtjGWWxkHB10wi5hdgTaEP1rkH+151Kx7RlLW0QnEWzowm8f7vvoRd3cP45nsuxvWrKj8NrRxpq4vj4oWN+M2e6QVY208M4fjABO68qPLVK87q9lqsnFOD+7Z3T+t5Lx0ZwNBERqUHFoiIFsK33rsRr1nZij+9dyf+69kj5+V8WWmUdGbGGOtnjN3AGFvBGLuRMTZgbt/KGPuI5PH/xRj7RPFHqpgqMS0kn7jySe00lYipPa/y0+D8qItH8PV3bMCdF8337JstxgsfumYJPnKN13nsnI0sghRTnxpCAPjSnevw4Wu8VvoKhcJgV9cw7vzms9h/ahTfes/FauJaYG5dOxd7To7gxMDElJ9z3/ZuRMMh3LJu5nw2RIQ7L5qPrccGp3UufrPnFOKREK7zKXlQnD+xsIa7338JbrhgDr74y734s3t3IZ2dHe6CM3tmpig60XBIasUeFAxZdS8Bk2FZE2KesjUT6oyCeMvFC9BaG/Ns72hKIKIR5jVUlWBUxeOWtXPxhgvbPdsD7f2nYnLhc735KYI3rZmD1e2qjkShkHHfjm687dvPIUSEn/3ulbh1Bk3gyxUewD44RRUro+fwq509uHF124wzHOH1ZJtfOTmlx+dyDA/uOYXrV7ahKqoyEwpJPGIEWb//uuW4Z8sJvOffX0DvaKrUwyo4KsBS5JVo2E/BmkoaoH8zYb/nySzKZwur2+uw70u3oqMpUeqhlIRoQKB0tuvG+F8efMmeo1Ao5PSPpfDpH+/Ap+7ZgQsX1OO+T1yNtfPqSz2sWcHC5gTWtNfhgSnWYT1zqA/942lpRkSl09GUwKZFjbhvR/eU0tC2nxjC6ZGUWggoEqEQ4TM3r8K/vHsjdp8cxq3feGrKn1WlomYSirxy67q5eNPG6aWzTWUyrEwH5MhS2WYLQTV4XBUNMsDws75XToEKxdlhjOHn27pw49efxK92nsQnX7ccP/zIFWip8artisJx27q52HZsEIfOjJ31sfdt70ZdPIzrV83MlLg7N87HgdNj2NczetbH/mzbCUQ0wutWqxrBYnL7hnn4v9+7Ggsaq/Cpe3bgg/+1ZVppnZWEmkko8so7NnXg91673LN9arbZQale3n2vWdmK22eAzazi3LAd//zTAIP6h/kF9DO9pk2hOB8YY3j81TN4y789h8/89BUsba3Brz95Lf7w5lWzfsGrFLz78oWojYfx5V/tDVQDJtJZPLT3NN5wYXvFNxf24w3r2xEOEe7bEWx2sffkCH685QTee/miGZcqWQlcMLcO9378anzh9jV46cgAbvrHJ/HlX+3F6ZFkqYeWVwreB0uhAAAtRNBCNG3b7CBDgjs2zJsRfTwU58bZAqVz2ReLKFVUoZCRyup4eO9p/NsTh7Hn5AjmN1Thq29Zj3ds6kAoNLPrYMuZlpoYPnXDCvzVr/fhsVfP4IbVc6SP++dHD2EireOtFy8o8giLR1N1FDesbsMPXzyO916+CAubvenzjDH85S/3oL4qgk/fuLIEo1QAxpzwg1cvwc1r5+IfHtqP/3ruKH7w/DG849IF+MBVS7C8rabUQzxvVIClKBpRn/qW4JoY/3QuxexGCxFC5JN2eo7B14euXozTIzO/+FahmAq5HMP2E4O49+Vu/GpnD4YnM1jSUo2vve1CvGnjfFWvWCb81pWL8aOXjuPLv9qLa1a0eBSqZw/14TtPHca7L+vApsVNJRplcfiLN67Bbf/0ND55z3b89GNXeq7R+3edwotHBvBXb1qH+oRSr0rN/IYqfP0dF+HTN67Evz5xGD/ecgL/88JxbFhQjzdvnI83bphXsWnHKsBSFI2IRj7pXAH1MgETZYXiymXNWDffW1Af5FoZ1KD5kkUze/KhmBpEdCuAfwKgAfgPxthXXftjAP4bwCUA+gG8kzF21Nz3ZwA+DEAH8EnG2INFHPp5wRjDsf4JvHRkAE8f6sOzh/owMJ5GPBLCLWvn4s0b5+PaFa3QlGJVVkTDIXz+jWvwge9twX89exS/c90ya9/AeBqf/vEOLG2pxl+8cU0JR1kcFjQm8NW3XIjf+9HL+MYjB/DHt1xg7UtmdPz1/fuwur0O775sYQlHqXDT0ZTA37xlPT590wps3nES977cjS/+ci/+8ld7sXZeHa5Z3oprlrdgQ0c9aiskrVMFWIqi8ZaLF+DyJd4J7NTSudQPusLLDz9yhXR7cB8s/4BeoSAiDcC3ANwEoAvAFiLazBjbKzzswwAGGWPLiehdAP4WwDuJaA2AdwFYC2AegEeIaCVjTC/uUQSTzuZweiSJo/3jONY/gSN949hzchh7To5gNJkFALTWxnD9ylZcu7IFN62Zi5qYmi6UM9evasMNF7ThXx47hCuXNWN1ex3CIcKf/OwVDE1k8L0PXopEdHZ8hm+4sB1PHejAvz5xGFcvb8FVy1owOJ7Gvz15GN1Dk/iHd2xQiwRlSlttHB+5dik+cu1SvHpqBA/vOY2nD/XhP57uxLefPAwAWNJSjbXz6rBqTi0WtVRjUVMCC5sSaEhEyqptz+z4tinKgi/esVa6nSsJssnwirYazK2LS/tAKRR+BAVRNbEIQgRURWZmobfivLkMwCHGWCcAENE9AO4EIAZYdwL4onn7ZwC+ScYv+50A7mGMpQAcIaJD5us9X4iBZvQcHt13Bhk9h2wuh0yWIZXVMZHWMZnRMZnWMTyZsf71j6VxZjSJwYmM43Vi4RAuaK/DHRvmYf38emxc2IiVc2rKarKiODv/741rcOs3nsId33wWEY0wv6EKR/sn8BdvXDPrrPO/cMcabDk6gI/9YBviEQ1nzL5Lt2+YhyuWNpd4dIqpcMHcOlwwtw6/f8MKjKey2HJ0ALu7h7Grexjbjw/hVzt7HI+PaiG01sbQWhtDYyKC+irjX008jEQ0jHhEQ1VEM7OpjJKVRc2Jgn03VIClKDmN1VFEtRDm1sU9+zYtbsILf35DCUalqGTmNVShKqJhoaRH2Js2zsPS1mqVf6/wYz6AE8L9LgCX+z2GMZYlomEAzeb2F1zP9fStIKKPAvgoACxceO6pSulsDh/7n22++2PhEOqrIqgzJxoLmxPYtLgRbbVxzK2PYVFzNRY3V6OtNqaMKmYAS1qq8ehnrsO2Y4N49dQo9p8axdXLW/ChqxeXemhFJxEN45vvuRh/+cs9WNCYwAVza7Fqbi2uXKaCq0qkOhbG9avacP0q21Z/Mq3j+MAEjvWP48TgJM6MJtE7ksKZ0RR6x1I43DuO4ckMxlJZ6Dm5w+Z7L1+Ir7x5fUHGrAIsRclpqYnhpc/dgPoqNeFV5Ic5dXHs+/Kt0n2JaFitYCpKCmPsbgB3A8CmTZvOudNmVUTDrz95jWUgFDEbvSeiGuIRTaVBzUIWNCawoDGBO0s9kDJgzbw6/Ph3riz1MBQFoiqqYZUZOAfBGENGZ5g0lf2MnkNazyGrM9TGCxcGqQBLURY0JKKlHoJCoVAAQDeADuH+AnOb7DFdRBQGUA/D7GIqz80boRDNutQvhUKhmA5EhsFaNBxCPYq3kK+qvBUKhUKhsNkCYAURLSGiKAzTis2ux2wGcJd5+20AHmNGl9fNAN5FRDEiWgJgBYCXijRuhUKhUJQJSsFSKBQKhcLErKn6BIAHYdi0/ydjbA8RfQnAVsbYZgDfBfAD08RiAEYQBvNxP4FhiJEF8Hvl5iCoUCgUisKjAiyFQqFQKAQYY/cDuN+17fPC7SSAt/s89ysAvlLQASoUCoWirFEpggqFQqFQKBQKhUKRJ1SApVAoFAqFQqFQKBR5goy63JkHEfUCOFbqceSJFgB9pR5EmaDOhY06FzbqXNjMlHOxiDHWWupBFJoZ9Fs1U667fKDOhY06FzbqXNjMpHMh/a2asQHWTIKItjLGNpV6HOWAOhc26lzYqHNho86FohSo685GnQsbdS5s1LmwmQ3nQqUIKhQKhUKhUCgUCkWeUAGWQqFQKBQKhUKhUOQJFWBVBneXegBlhDoXNupc2KhzYaPOhaIUqOvORp0LG3UubNS5sJnx50LVYCkUCoVCoVAoFApFnlAKlkKhUCgUCoVCoVDkCRVgVRhE9BkiYkTUUuqxlAIi+hoRvUpEO4noF0TUUOoxFRsiupWI9hPRISL6bKnHUyqIqIOIHieivUS0h4g+VeoxlRoi0ohoOxH9qtRjUcxeZvvvFKB+qwD1W8VRv1VeZsNvlQqwKggi6gBwM4DjpR5LCXkYwDrG2IUADgD4sxKPp6gQkQbgWwBuA7AGwLuJaE1pR1UysgA+wxhbA+AKAL83i88F51MA9pV6EIrZi/qdslC/Veq3iqN+q7zM+N8qFWBVFv8I4E8AzNrCOcbYQ4yxrHn3BQALSjmeEnAZgEOMsU7GWBrAPQDuLPGYSgJjrIcx9rJ5exTGH+v5pR1V6SCiBQDeAOA/Sj0Wxaxm1v9OAeq3Cuq3ykL9VjmZLb9VKsCqEIjoTgDdjLFXSj2WMuJDAB4o9SCKzHwAJ4T7XZjFf6g5RLQYwEYAL5Z4KKXkGzAmtrkSj0MxS1G/U76o3yr1WwVA/VaZfAOz4LcqXOoBKGyI6BEAcyW7Pgfgz2GkXcx4gs4DY+w+8zGfgyG7/7CYY1OUH0RUA+DnAP6AMTZS6vGUAiJ6I4AzjLFtRHR9iYejmMGo3ykb9VulmA7qt2p2/VapAKuMYIzdKNtOROsBLAHwChEBRqrBy0R0GWPsVBGHWBT8zgOHiD4A4I0AbmCzr89AN4AO4f4Cc9ushIgiMH6wfsgYu7fU4ykhVwO4g4heDyAOoI6I/ocx9r4Sj0sxw1C/UzbqtyoQ9VsloH6rLGbNb5Xqg1WBENFRAJsYY32lHkuxIaJbAXwdwHWMsd5Sj6fYEFEYRsH0DTB+rLYAeA9jbE9JB1YCyJjFfR/AAGPsD0o8nLLBXBX8I8bYG0s8FMUsZjb/TgHqt0r9Vtmo3yo5M/23StVgKSqNbwKoBfAwEe0gom+XekDFxCya/gSAB2EUyv5kNv5gmVwN4P0AXmdeCzvMVTGFQqEoNeq3Sv1WcdRv1SxEKVgKhUKhUCgUCoVCkSeUgqVQKBQKhUKhUCgUeUIFWAqFQqFQKBQKhUKRJ1SApVAoFAqFQqFQKBR5QgVYCoVCoVAoFAqFQpEnVIClUCgUCoVCoVAoFHlCBVgKhUKhUCgUCoVCkSdUgKVQKBQKhUKhUCgUeUIFWApFhUFEjxPRTebtvyKifyn1mBQKhUKh4KjfKcVsJ1zqASgUimnzBQBfIqI2ABsB3FHi8SgUCoVCIaJ+pxSzGmKMlXoMCoVimhDRkwBqAFzPGBst9XgUCoVCoRBRv1OK2YxKEVQoKgwiWg+gHUBa/WgpFAqFotxQv1OK2Y4KsBSKCoKI2gH8EMCdAMaI6NYSD0mhUCgUCgv1O6VQqABLoagYiCgB4F4An2GM7QPwZRh57gqFQqFQlBz1O6VQGKgaLIVCoVAoFAqFQqHIE0rBUigUCoVCoVAoFIo8oQIshUKhUCgUCoVCocgTKsBSKBQKhUKhUCgUijyhAiyFQqFQKBQKhUKhyBMqwFIoFAqFQqFQKBSKPKECLIVCoVAoFAqFQqHIEyrAUigUCoVCoVAoFIo8oQIshUKhUCgUCoVCocgTKsBSKBQKhUKhUCgUijyhAiyFQqFQKBQKhUKhyBMqwFIoFAqFQqFQKBSKPKECLIVCoVAoFAqFQqHIEyrAUigEiOi9RPRQqcehUCgUCoVCoahMVIClmHUQ0VEimiSiMeHfNwGAMfZDxtjNJR4fI6Ll03j8E0T0kUKO6XwhotcS0S4iGiKifiL6BRHNL/W4FAqFQqFQKPKNCrAUs5XbGWM1wr9PlHpAM5y9AG5hjDUAmAfgIIB/K+mIFAqFQqFQKAqACrAUCgEi+gARPSPcv5mI9hPRMBH9KxE9KapFRPQhItpHRINE9CARLRL2MSL6GBEdNJWbbxERmfuWm681TER9RPRjc/tT5tNfMZW1dxJRIxH9ioh6zff5FREtMB//FQDXAvimqMQR0QVE9DARDZjjf0fAMT9BRF8momeJaJSIHiKiljyeVjDGTjPGTgqbdABTVukUCoVCoVAoKgUVYCkUPphBxs8A/BmAZgD7AVwl7L8TwJ8DeAuAVgBPA/hf18u8EcClAC4E8A4At5jbvwzgIQCNABYA+BcAYIy9xty/wVTWfgzje/o9AIsALAQwCYCnNH7OfN9PcCWOiKoBPAzgRwDaALwLwL8S0ZqAw30PgA+aj48C+COfc7LQDBb9/r3H7w34c83x/xGAvwsYj0KhUCgUCkVFogIsxWzl/1yBwW9LHvN6AHsYY/cyxrIA/hnAKWH/xwD8DWNsn7n/rwFcJKpYAL7KGBtijB0H8DiAi8ztGRgB0zzGWJIx9gx8YIz1M8Z+zhibYIyNAvgKgOsCju2NAI4yxr7HGMsyxrYD+DmAtwc853uMsQOMsUkAPxHG6R7LccZYQ8C/HwUcx3EzRbAFwP8D8GrAeBQKhUKhUCgqEhVgKWYrb3IFBv8uecw8ACf4HcYYA9Al7F8E4J94kAZgAAABEM0bxIBsAkCNeftPzMe+RER7iOhDfgMlogQRfYeIjhHRCICnADQQkebzlEUALhcDSADvBTDX7z0Cxpl3GGMDAL4P4D4iChfqfRQKhUKhUChKgZrcKBT+9MBI3wMAmPVTC4T9JwB8hTH2w+m+MGPsFIDfNl/3GgCPENFTjLFDkod/BsAqAJczxk4R0UUAtsMI0ACAuR5/AsCTjLGbpjuus0FEC2EYVvjxO1M8H2EY6Yh1MAJThUKhUCgUihmBUrAUCn9+DWA9Eb3JVFp+D04V6NsA/oyI1gIAEdUTUVAangURvZ0bVQAYhBEk5cz7pwEsFR5eC6NuaYiImgB8wfVy7sf/CsBKIno/EUXMf5cS0eqpjC0IM82vJuCfNLgiorcQ0SoiChFRK4CvA9huqlkKhUKhUCgUMwYVYClmK7909cH6hfsBjLE+GHVLfwegH8AaAFsBpMz9vwDwtwDuMVP3dgO4bYrvfymAF4loDMBmAJ9ijHWa+74I4Ptmet87AHwDQBWAPgAvAPiN67X+CcDbTIfBfzbrtG6GYW5xEkb6398CiE1xbIVgPoxxjwLYBSOYfHMJx6NQKBQKhUJREMgoK1EoFGeDiEIwarDeyxh7vNTjUSgUCoVCoVCUH0rBUigCIKJbiKiBiGIwLNkJhoqkUCgUCoVCoVB4UAGWQhHMlQAOw0jPux2G++BkaYekUCgUCoVCoShXVIqgQqFQKBQKhUKhUOQJpWApFAqFQqFQKBQKRZ6YsX2wWlpa2OLFi0s9DIVCoVCcA9u2betjjLWWehyFRv1WKRQKReXi91s1YwOsxYsXY+vWraUehkKhUCjOASI6VuoxFAP1W6VQKBSVi99vlUoRVCgUCoVCoVAoFIo8oQIshUKhUChMiOhWItpPRIeI6LOS/X9IRHuJaCcRPUpEi4R9OhHtMP9tLu7IFQqFQlEuzNgUQYVCoVAopgMRaQC+BeAmGE3FtxDRZsbYXuFh2wFsYoxNENHvAvg7AO80900yxi4q5pgVCoVCUX4oBUuhUCgUCoPLABxijHUyxtIA7gFwp/gAxtjjjLEJ8+4LABYUeYwKhUKhKHNUgKWYNuOpLLYfHyz1MBSKkjGSzGBn11Cph6HIP/MBnBDud5nb/PgwgAeE+3Ei2kpELxDRm/yeREQfNR+3tbe397wGrPDnlRND6OwdK/UwFIqSkNFzeO5QH/rHUqUeyqxEpQgqps3PtnXhy7/ai11fvAVVUa3Uw1Eois4PXziObzxyAPu+dCtCISr1cBQlgIjeB2ATgOuEzYsYY91EtBTAY0S0izF22P1cxtjdAO4GgE2bNrGiDHgWkdFz+Ov79+F7zx4FAFy3shUfuGoxrlvZqr6vihlP/1gK//vScfzghWM4PZJCW20M//a+i3HJoqZSD21WoRQshS96Tv67PzKZQTbHkMzonn37ekbw0pGBQg9NoSg4GT2He146Lv0ejCQzSGVzSOs5z75cjiHn891RlD3dADqE+wvMbQ6I6EYAnwNwB2PMWh5mjHWb/3cCeALAxkIOVuGldzSF9/7Hi/jes0fxgasW4zM3rcS+nhF88L+24K3ffg4ZyXdWoZgpPLH/DK786mP4+4cOYOWcWnztbReiKqrhXXe/gB88fxSMqd+mYqECLIWUEwMTuOAvHsD+U6OeffwHSvZD9Y1HDuALm/cUfHwKRaF56cgAPnvvLuw44U2HzWT9vwOfvXcnfv+e7QUfn6IgbAGwgoiWEFEUwLsAONwAiWgjgO/ACK7OCNsbiShm3m4BcDUA0RxDUWCO9o3j9n95Bju7hvBP77oIX7xjLX7/hhV45k9fhy/evgbbjw/hB8/PivZqillIKqvjC5v3oKOxCo/84Wvwgw9fjrdv6sDmT1yDa5a34C/u24MvqvlZ0VABlkJK99AkMjpD1+CEZ19aZ+b/3snlZCaHlETZUigqjcm0bv7vvc7tRQbvauCx/gmcGPB+bxTlD2MsC+ATAB4EsA/ATxhje4joS0R0h/mwrwGoAfBTlx37agBbiegVAI8D+KrLfVBRYL5y/z6Mp7K493evxp0X2aVz0XAId121GNeuaME3HjmAgfF0CUepUBSG7z17FMf6J/DFO9ZieVuttb2+KoLv3nUp7rpyEb7//DFsOaqyjIqBCrAUUtIBK/RBk8uMT9qUQlFpBCm1fJHB7/vBvz+KyoMxdj9jbCVjbBlj7Cvmts8zxjabt29kjM1hjF1k/rvD3P4cY2w9Y2yD+f93S3kcs42tRwfw8N7T+Nj1y7BmXp1nPxHhL964BuNpHf/48IESjFChKBy9oyl887FDuOGCNly7otWzPxQifPa21ZhTF8Pf3L9PpQoWARVgKaTwiWNKMlEMmniqyaVipsAXCmQLBvzal13raV0tMigUxYQxhr954FW01cbwwasX+z5u5ZxavPfyhfjhi8ek6e8KRaXy9w/uRyqr43NvWO37mKqohk/fuBIvHx/Cg3tOF3F0sxMVYCmk2AqWRKUKmFxm9JwqIlbMCKam4kr2ZZlaZFAoishDe09j27FBfPqmlUhEg82RP33jStTGI/jyr/aqVXzFjGB39zB+su0E7rpyMZa21gQ+9m2XLMCy1mr83YOvIqvmagVFBViznP94uhMHT3tX8tJB6VFZ//SotK4ml4qZQdB3IDBNNmCR4b+fP4o9J4fzOEqFYnaT1XP4u9+8imWt1Xj7JWfv+dxYHcUf3LgCzxzqw3OH+4swQoWisHztwf1oTETx+zesOOtjw1oIf3rrBejsHcdPtnYVYXSzFxVgzWL0HMNf/Xof7ttx0rMvaPU+HZQeldWlk04A+NIv9+I3u0+dz5AVirySyzF86p7t2HbM3ylQfp2fJUXQZ5Hhr369D/e+7HH9VigU58hPt3XhcO84/uTWCxDWpjalec/lC1EbC2Oz5LdPoagk+sdSeOZQH959WQfqqyJTes5Na+Zg06JG/OMjBzCRzhZ4hLMXFWDNYoJToJjjMY59gemDDGk9J029+Nm2E3jywBnPdoWiVIyns7hvx0m80Oldyba+A5LrPMhJM53NSb8bjBnqrlJ4FYr8wBjDvz/ViQ0dDbh5zZwpPy8W1vC61W14cO8pldKuqGge3nsaeo7htnXtU34OEeFPbr0AvaMp/N92tchQKFSANYvhE70gI4ugAv/ppk6l9RxSGfVjpigfUgHfAStFMHCRwcfoZZqLFgqFYvq8fHwInX3jeO/lC0FE03rubevaMTSRwYudyrJaUbncv/sUFjYlsFbinBnEpYsbsaKtBj9/WaUJFoqyCLCI6FYi2k9Eh4joswGPeysRMSLaVMzxzVRSutHnx28VHjAK9j37zjn4YkjNkNXCo33jyOW856ZvLIWvP7Rfuq/SeOXEEO556bh0X99YCsOTmSKPKP8EpsKeq8mFWYfoVnGDvjcKhWL6/PzlLlRFNLx+/dRX7znXr2pFIqrhgd09BRiZQlF4hicyeO5QH25bP3faCwxEhLdesgDbjg3iSN94gUY4uyl5gEVEGoBvAbgNwBoA7yaiNZLH1QL4FIAXizvCmcvZ6kiA6U8u/V5TzzHouZlhgHFmNIkbvv4kHn3Vm+74+Ktn8M+PHcLR/sr/g3XPlhP46m9ele77+P+8jC/9svJ7qBbkO2Buy7qC7KCaLoVCMT2SGR2/fOUkbl03FzWxYOdAGfGIhtde0IYH95yCPgMWxBSzj4f3nUY2x/D6aaQHirx543yECLhXqVgFoeQBFoDLABxijHUyxtIA7gFwp+RxXwbwtwCSxRzcTGYqq/dBqU5Bk0v3vqCJbKUxNJGBnmPoH0t59qUCzlulkcrqvp9X31gKfZLjrzSCDFsCTS6sdD/nxIzXWcmex99Llo6oUCimx8N7T2M0mcVbLz67c6Afr1/Xjr6xNLYcVWmCisrjgV09mN9QhQsX1J/T8+fUxXHNilbc+3L3jMi6KTfKIcCaD+CEcL/L3GZBRBcD6GCM/TrohYjoo0S0lYi29vb25n+kFQpjTGo6ETi5nMI+Wfpgxqf436730qcz9LIkqHbN2jcDas1SAYYMQfsqCf45BX4HAnrBuRcSRNXKd5HBJ/hWPXkUiqnz85e7MK8+jiuXNZ/za1y/qhXxSAgP7FJpgorKYiSZwdMH+3DbuumnB4q87ZIF6B6alBo9Kc6PcgiwAiGiEICvA/jM2R7LGLubMbaJMbaptbW18IOrED55zw78yc92erYHpkedg7rF0wBlrxkUzFUaPEiUHctMUrDS2RyywmcqksrmZkawbNYhTkeNFbe5rwHxse591rUhOW+nR5JY9Re/wc6uoWmMXqGYnZwZSeKpA71488XzoYXOfXJZHQvjupWteGD3KbWCr6goHtt3Bmk9h9vWzz2v17l5zRzUxsP4mUoTzDvlEGB1A+gQ7i8wt3FqAawD8AQRHQVwBYDNyuhi6hztG8ex/gnP9uA0wLPXmARNLt0ugjOpwD8oiJppChbg3+9sJn2WMvOVwIbaPgsQoqrrPj/8sTLls2c4iXQ2h6OS76lCoXDyi+3dyDHgLeeRHsh5/fp2nBlNYfsJby88haJceWB3D+bUxbCxo/G8Xice0fDGC9vxwK5TGEupnlj5pBwCrC0AVhDREiKKAngXgM18J2NsmDHWwhhbzBhbDOAFAHcwxraWZriVRyqrS9WG4AJ/PrmcenpU0Or9TKrBsiblGck5tZwZZ4C6cxalbiYEkfk2uUgHLTIEvBe/lmTXlEKhsGGM4ecvd2HjwgYsa60579d73QVtiGoh/HrnqTyMTqEoPOOpLJ7Y34vb1rUjdB4KLuetFy/AZEZXqbJ5puQBFmMsC+ATAB4EsA/ATxhje4joS0R0R2lHNzMw0rmml84WNBnM+Kzsi4/1r8Gq/Ek5Dyxkqoe1bwYEH3aPKOeknzGjmfSM+CwDr/Oz19q567PSQYsMAWmyygBDoZga+0+P4sDpsbyoVwBQG4/g8qVNePZQX15eT6EoNFuPDSKVzeGG1W15eb1LFjViUXMCm19RTYfzSckDLABgjN3PGFvJGFvGGPuKue3zjLHNksder9Sr6ZHKyA0J+GQusMYkcJ/Lhlq475c+6KdgjSQzFVPkP5WJsuy8/eCFY/jt/y6vS3dX1zBu+IcnMJL09rTyC4qzOQbGKkuNTGaCVdzgGix/MxdviqCoYMn3ya4NKzCvoHOqUJSCR/aeBgDcsmZO3l7z8iVN2H96FMMTld/bTzHz2Xp0AFqIcPHC80sP5BARblk7Fy909mNUMhdQnBtlEWApCouRIjj1Wipx23SK/501WH4F/t7X6x9LYdNfPYJnD5WXi82bvvUsvvX4Ic92K51rmi6Cr5wYwotl5tSzt2cYh3vHcWrY2/3AT+H0U7YA43O/9CuP4Fc7y2sl7KM/2IYvbt7j2R6o1FpumVPfJ1737usjNSUFS6UIKhRBPLzvDDZ0NKCtLp6319y0uAkAsPXYQN5eU6EoFC8dGcDaeXWoPof+b37cuHoOMjrDUweUkpsvVIA1C/BLEZzS5DKo/sQnBUr2vKD36htLI53NoWuwvAr8D58Zk3Y4n0pgKk0fzOaQLDOFIhmQ0ujbzyngsxxLZtE7msKR3vJqtNw1MIHuIW8QGaQ4+i0y5HLMsmMPrsGa+nnjgdVMSC1VKArFmdEkXjkxhJvylBrFuaijARGNsOWoMrpQlDfpbA47Tgxh06KmvL7uxQsb0JiI4NF9p/P6urMZFWDNAoyeRdM1uZi+uuWowfJZ2ZfXghljS5ZZgX/SR/kL6p0UZICRyhiNe8vJDjhpqXGS8WblSl1QPR3fliwzJSaZ0X0/E2B66Z6ZnKBSncN3IDAwL7MAXKEoJx7bdwYAcGMe0wMBw0lt/fx6bFUNhxVlzu6Tw0hlc7hsSX7SAzlhLYTXXtCGx/afQXYGOASXAyrAmiGcGUniucNeaTer56DnmI+CxR3vJE2IfYr49RwDjw+8NVjC5DKgyaq71sqelJfPl1rPMWR05uMU6J/OlZpC8FFOk+hkQO2PX1onvy/rkWUHy+VzjIBxbQWmyU6r15XQTDjrX4fotwDhp24a/3uvqdFkRq0qKhQAHtl3Ggsaq7BqTm3eX/vSxU3Y2TVcdgt9CoXIliPGIsAleVawAOCm1XMwNJHBtmNKyc0HKsCaIXzvuaP4yPe9BgpJYVLvDmxslUpeSwME15hMp8lqOiD44opQOf2wJQPqrIIUrCDlrxyVumTWX8HyUzjFx/o10y2nYwS4ycX00mSnotROpw5RfC/PIkNAoHvfjpP48Pe3on8s5dmnUMwWJtM6nj7YhxtXzwHR+VtTu9m0uAlpPYedXcN5f22FIl9sOTqIJS3VaK2N5f21r13ZiqgWwiNqQS8vqABrhjCazGAirXsVBWGi69uXZxpGFsE1JuLqvfy93LcBe8I+WUaT8qmkzsnd4AICszJMn7OOU6I4+akq4rF59pmvU06fJWMMk2dxEZTXIcp7wQUGUQEmF1NpxC37HHjzx/FU+ZzTmQwR3UpE+4noEBF9VrL/D4loLxHtJKJHiWiRsO8uIjpo/ruruCOf2TxzqA+pbA43rs5veiBn0yIj5WqLShNUlCm5HMO2YwO4dHF+0wM5NbEwrljWjIf3nq4YV+dyRgVYMwQ71Wvqk2F7hV5iQ20GS576k3NdvQ9yVwtw3isVk1NwCpy2gmUpdeVznH4pgjy1FDiLGukTLJfTZ2mkpQYHkdMxuZhKvzfjefJUWNnzeGAuC76TAfsU+YWINADfAnAbgDUA3k1Ea1wP2w5gE2PsQgA/A/B35nObAHwBwOUALgPwBSIqzExoFvLI3tOojYVx2ZL8p0YBQGN1FCvaalQdlqJs6ewbw+BExnK9LAQ3rW7D0f4JHC4zo6pKRAVYM4RJHyUiFaQcmZM8XVJLYylYQfUn0yjwn4qCVU5pZcmAYCiolirto/qI28rpOFM+St1UUjqN5zn3Jcsy3dP/87J6wU0jWA5SoqacJuvzXQwKAifT5XNOZzCXATjEGOtkjKUB3APgTvEBjLHHGWPc8vQFALzj7S0AHmaMDTDGBgE8DODWIo17RpPLMTz66hlct6oV0XDhpi2bFjdh67FBz++hQlEOvHTEqI26tIAB1g2mQqzqfs8fFWDNEJJp+Sq3OHH2c4Nz3xbvBxtZTN/kQvZe5V2DNU33xUAr7jI8zrM4BUr3BaqR5ae2+AWRwBRNLjxKrWhyMf0aLPdtY4z+gTm/Xsop7XIGMx/ACeF+l7nNjw8DeGC6zyWijxLRViLa2tvbex7DnR280jWEvrEUbsqze6Cby5Y0YjSZxYHTowV9H4XiXNh6dAAtNTEsbk4U7D3mNVRh7bw6VYeVB1SANUNI+ri3iSvigaqST0qfX8NgILgPVtDqvV+KYDlNIINS3awarGk6BdoBVvmkz/n1wUoFBVhBNVhleIxB6Z78uDM689jn+6UIBi0kiK6C52ICIxtjOaqCCoCI3gdgE4CvTfe5jLG7GWObGGObWltb8z+4Gcaj+85ACxGuX5nf/ldueG8hlSaoKEe2mPVXhTB5Eblh9RxsOzaIwfF0Qd9npqMCrBkCTx9yT8KmOlGeas+eoBX6oPTBTNDqfRlae08lrWy69VlBdTalwk+pm2q6p6+CVUbBQFJwffRz0nTfBsRm2/7P8SxATFXF1eXmIPIgsPzO6QymG0CHcH+Buc0BEd0I4HMA7mCMpabzXMX0efpgLzZ2NKA+ESno+yxorMLcujheUg2HFWXGqeEkTgxMFrT+inP9qlbkGPDc4f6Cv9dMRgVYM4RJn1XuIEvtwMnluazeT9Hkwj25LMcV+qmkCAb1VQrskVWWxykPlIBp2rSXoYugeF15FxlEl017H2PMdhGczsJEgAnMVNIuZdcGD8jL6ZzOYLYAWEFES4goCuBdADaLDyCijQC+AyO4OiPsehDAzUTUaJpb3GxuU5wHg+Np7OwexrUrCq/0EREuXdKELUcGlIuaoqzg7paXFSHAunB+PeriYTx9UKUvnw8qwKogJtJZfPvJw9ICXN+JssOQYBoqhTnhy+acqVN80lgV0aZlZDEl1UMSsJSKwLQyS6UKqM9yTa4ZY2WZPuen1AWZowR/lvKUw1LiCLAyU7tmHSmtPgsJVREteAHC852yv0fe76l/2mmQ4corJ4bw0J5Tnu2Kc4MxlgXwCRiB0T4AP2GM7SGiLxHRHebDvgagBsBPiWgHEW02nzsA4MswgrQtAL5kblOcB88e7gNjwLUrW4ryfpsWNeLUSBI9w8mivJ9CMRVePj6IqoiG1e35b7LtJqyFcPXyFjx9sE8tNJwH4VIPQDF1njrQi68+8CquXNqMDR0Njn1JnzSiqU6UZav3US2EtJ5DJpdDLKSZzzG+bNUx/8llVUTzGGAE1mDxCWQZuaSJaWW5HEMoZOc8BylYfrVb4vHLlLrJtI5QCIiFtfMfvIThyQzq4mFP7rZlchGYWhrgMOhxESy/dLZJh4KlA4gI9+VBFVevqiIaklkdjDHr3PHr3PgOyI1eolpoei6bATVYVp84yffj7qc78cqJIdy8dq5nn+LcYIzdD+B+17bPC7dvDHjufwL4z8KNbvbx9IE+1MXDuHB+fVHeb535PntOjmBeQ1VR3lOhOBt7ukewZl4dwlpxdJFrV7Tigd2n0Nk3jmWtNUV5z5mGUrAqiDGz0eh4OuvZN2lNbOUTXiDYDU62ep+IaZ59fNKYiIZ9a1OqY9NTt0rZgPfEwAT2n/I6RonnzWNTLjQaFld3cjk7rcz7nOAA60P/tQV/+cu953AEZ2dgPI1Lv/IInjjglfv9an+m4nhnPM/P5MJ7jLkcw+P7zxR9RSzpGG/AIoPEoKI6poExOFRjvshgfAfkr1cVlXwHgmzaA10E/dMuJ1JZTJTRwoRCkU8YY3j6YC+uXt5StInl6vZaEAG7u4eL8n4KxdnI5Rj2nBzG2nl1RXvPa1cYivHTknmDYmqoAKuCmDADKz8FBPCf8LpvB+3jQUJ1NOy4b9zmAZZEwZrCxNN9WxxzKVSPrz7wKv7wJzs824PSyvi5YsxIoeQ4VLoAN0dZKmTX0ARODEx4tueD0yNJpLM5dA1Oevb512DJlR33fd/PUnKML3T244Pf24KdXcWduDhbFQT1+/LWYyXO8h3wnhtD+Y2GQ942BlNRsCRpgNZnJPveZ3SMp7wLLgrFTOBw7zhODieLUn/FSUTDWNZagz0nR4r2ngpFEMcGJjCe1rFuXnFUXADoaEpgSUs1nj7YV7T3nGmoAKuCGDcVLPeKdS7HfJWDoMllKptDRHOmPQH25K8mFvbdVx3zBlEZPQctRIhHJOlReg48O81XwfKpMbntn54u2CRyYDyNoYmMZ3tgipzPRDkoKBFfwy9AHivQMfJzNylRPqfiIjgdC3f+WD3HPNfA0KRxngcmCmP9+pMtJ/A7P9jq2S6eb/c1ls7a16Usnbba/A7InAOrY2Gpy2Y0HDLSayVBFP+++V0fMhU3qA/WZFpHKptDVtLHS6GodHiRPV9NLxZr59Vh70mlYCnKgz3mtbimiAoWYHzvnu/sl9YGK86OCrAqCK5guQOsqapUsrS92njEs0+sMXHvS4ur9z4TyIhkcpnRc1bA5jcpl00gd3UPY1/PCLqHvOpLPhhLZaXvG5Ra6Xe+nUGJ/2ckCyQn0zrGkoUJsEatAEuijviYUjicAgOCxaDjdJ9Xft0W6jhfPDIgXW0Ta5dknyW/LmXXeU1gmqy8DjGiEaJheQ2W7Psm3s/ozGNiE5giaB7bRBnVvCkU+eLpg31Y0lKNjqbCNVaVsXZeHU4OJzGg+gApyoDd3SOIaISVcwpvcCFy7YpWTKR1vHxctS04F1SAVUFwBctd7D6Z8VdHUoH1J7p8chm4em+nD3pqsLI5IT1KMrm03kuusnFDCcexmcc6WqBJ+VgqawWusvcF5MYhIYkax485HCJvUCKmCLpejzGGiUzhFCwe0ExknK+f0XPWZN6vNikcImkwYB2/6ziTAdciV9AKdpypDCYzuucaSjoCYq9SVxvzTwOslqm4Z/kORLQQIpr8vMm+b8a4gtIu/RVeK8BKqQBLMbNIZXU8f7i/6OoVACsVa49SsRRlwJ6Tw1g5pxbRcHGn7FcsbUI4RMqu/RxRAVYFwQMB90p2UAqUM0XQqzjJgihRpQLk/a2qY2FpH6xoOCRVsFLZHGri3vdyj8s9Rm7oMZr0pvHlg9FkFsmMN7BLBpy3VFaXKhH8dm08HKgIyVI1GStc4GGnCPpfN361e7XxsDT44scfmD7o2sev24IpdcksGPOm2Z1NjbSuS9kiQ/QsabJSFdf4DsjSZPn3zW39HmgcEpAiyI9NZnyjUFQyLx8bwmRGL2r9FYenYs20Oqze0dTZH1ThJDN6weYLpYAxhr0nR4pqcMGpjUdw8cJGVYd1jpRFgEVEtxLRfiI6RESflez/QyLaS0Q7iehRIlpUinEWi3Q2J3Va4xNwd4pgoIKVNeqi+Ou636dWskLvWb3Pelf2a2Ia9JwznSljTi79LKqnsnrvVT0Kq2Dx4MM7KQ9WPex0R2+QUhuPeCfQASmC/BjHU9mCOOyN+QZYQeomD7Ai0uNPRDWEaHq1Zvy6HS2YgiX/fjiO01ODJai4UpML/0WGmpjX5CKjM8TCU1FxvcEX/566Pwt+bcraGEwI146brO5dOFAoKoWnD/YiHCJcsbTwjVXdNCSimN9QNaOcBP/r2SO49CuP4P/93y7P7/NMYe/JEdzwD0/i1m88jTOjM6OP2amRJPrH01hbRIMLkWtXtGBX97BKlz0HSh5gEZEG4FsAbgOwBsC7iWiN62HbAWxijF0I4GcA/q64oyweE+ksNv3Vw3hQ0jyUT6bcZgXOdDaZ2uINBgAzUIh766LcJhcy17iENDBjRoAlmVxm9JzlyObXaBgIqNspwKQ8q+es9/NOyuUugrxhcF2VqeD4KFjuIDkoiOT1MzkmVynOFyvwCFA+/RQ3fizOfTnEwiHEwlpgfVpQIFkIeBA+XaWuRqJG8uOwFF5xkUH4DnidNG0FSxZEydQywFCp6vh3UThvumD97742cjlmbRuXpAi+8+4X8PcP7fdsVygqgacP9uHihY2WWl5sDKOLmaFgPbH/DL70q71Y0lKN/3nhON73Hy+if2xmqVn37+rBW//tOeg5hoHxND7639vKqh/jubKn27gGS6FgAcC1K1vBGPDMIaViTZeSB1gALgNwiDHWyRhLA7gHwJ3iAxhjjzPGuIf1CwAWFHmMRaNvNI2RZBadfeOefeM+K/QO1cCTXpRDIqL51tJUS1bU3QqWcx+vP/Gu7Kez3OSCHKoXYEwuo+EQYmFJ+mBAfZKlehRA8hcnpVNVd/jx10rSHcUAy72PH5cWIl+VDihM+hx/TbcCwq8bLUSe68YRLEqUmChXaYI+y6xPsFywFMGM432scfikCDLGkNYFVclRg2Xcli0yZExHzHhYQ87dI0vPIRImxCQmFxld/n3jz7PSLn1UQPd1I55fWR1hZ+8YDveOebYrFOXO0EQau08O4+rlxa+/4qybX48j/eMFS90uFgdPj+L3f7Qdq+bW4Ve/fw3+8Z0bsP3EEO745rM4eNrbA7IS+cYjB/DxH76M1e212Pz7V+Mf37kBO04M4U9+trPofRfzzZ6TIyACVreXJsBaP78edfEwnlMB1rQphwBrPoATwv0uc5sfHwbwgGwHEX2UiLYS0dbe3sosyhsxJ4mySailYHkm6P4pUMlsDrGIhlg4JK3BklmxW6v3PkEUIO8PZARRGqJhr7uaaIAhUz14KpZH9TCNGQoxKR9N2UGbLGitimjWbXE7AGtSLjMRsSfK3n118bCvsgMURqk7W+pcnbRmzAgiqqPefWKw7FWE7PPmDloLqUYCtoLlDjaSGd26vsTPJJtjYAzS1NWMS8Fym1xwpdbzPKEGSxaYxsMhaCFypCPyBtV1VV6FVwyqJgOum3HXuWaMYSyVxchkZU8OFbOT5w/3gzHg6uXNJRvD2nl1YAzY11O5KtbAeBof/v5WxCIavnvXJlTHwnjzxgX46e9ciWRGx1/ct7vUQzxvdncP4xuPHMSbLpqH//3oFWirjePWde3441tWYfMrJ/HNxw6Veojnxe6Tw1jSUm39FhUbLUS4Ymkznj2sAqzpUg4B1pQhovcB2ATga7L9jLG7GWObGGObWluLXxibD6wASzIJ5YXsgS6CkgL5mERt4JO6WknKkqVS+dRnhQiIR+S1KVFTwZLV9FgKlqRup95MuXOPn6tMI4VQdoRz7J6UT6aFMUmDqCkoWBLb9vqqiETZsd+7oAGWT4pgfZW8ziqqhRCLyD8vK1h2B/SZnHDe3NepaVhSgGNMZ3PWZyNTI/mYRFt5KxVWZnLhalWQybqv85C0p5W1kKCFvCpuVt4jiz+/NuZVsAJTS4XjnHCd01Q2h4zOHIsICkWl8OzhPlRHNWzoaCjZGHjNy54KrsP6yq/34dRIEv/+W5dgXkOVtX1DRwN+68rFeKFzoGAtUIrFz1/uQlQL4S/vWIdYWLO2f/z6ZXjLxvn4h4cPVHSQbBhclKb+inP18hacGJjE8f6Jsz9YYVEOAVY3gA7h/gJzmwMiuhHA5wDcwRibWcnDAnzFWTbRnvBpNMwDLGPC660xsetlhMmlVah/dpt2TxAVFiaXktV7mclFRmdmgKVJ1RJrUu4+tgKqHqIq5pmUZ3U0JLwTXtH8QbxvPI5PlL1KBL9dXxWRqHQFThHkRh4+CpYRYMnrrKQNc7M5xMKmKioJvvh5S7qeZ6cI5n/SL14fbjVnMmMHy7LPxE7bk5lcyFMEI5qRBig+lt+OhkOIyEwudHlqJf8+WAqWJGU2Gg5JAlZ/BYunEysFS1GJPHeoH5cvbUZEK90UZU5dDM3V0Yp1EkxmdDy45xTefNF8bFzY6Nn/5o1GotD/bfdMtyqGrJ7DL185iRtWt6E+4azVIyJ87g2roYUIv9p5skQjPD8Gx9PoHposWf0Vh6fqKhVrepRDgLUFwAoiWkJEUQDvArBZfAARbQTwHRjB1ZkSjLFoBKUI+ilYfOLVmPBO3lNZHbGw5pnUiVbsRD4ughJTCm5DHZVMLnkPIJnJRSpoX8Y2jfCoO1z1KPCkXJY+FzQplxmHWEpEQPBVVxXxBMGFThG0avdcfbD4dVPnF2BFvNcNINZgnSVYLqJhiXh9yFIEawPMXGR9sPjj/BoN8zRAft96TT24D5asT1xKt90nAed3gH+fGxMRXwMYwKtg8XM8MoPsihWzg5NDk+jsG8dVy0qXHggYE/S18+uxu0IDrKcP9mEslcXrL2yX7l/YnMClixvxi+3dFVun9PTBPvSNpa1g0U1zTQxXLG3C/btOVeQx8uB+XYkVrGWt1ZhTF8Ozqg5rWpQ8wGKMZQF8AsCDAPYB+AljbA8RfYmI7jAf9jUANQB+SkQ7iGizz8tVPLyOxD0JZYz51mDxiWxDVVRq0x6LhDw1WHzyx/tWpWQBFk+PcjVg5SlQgLt/FrNez9MfKKsLiog9RsOVT0eDJB0PEE0uCpsiKDundlqZ97zJ0sp44CQLvvhtQ8HyVyIKE3z4BObCmPQcQ9ZRh2ekAbqVT2NfULqnPB0PsK/TgtTTBaqROVRFw56asSBTEm+jYWfwxa9zwNXGIMssdUsMvLihBk8RdNTuWbVw3uuNf0YNVVFJTZu/asfPh9EbrPImForZC5/EldLggrN2Xh0Onh71/A2sBO7f1YOGRCQwUH3zxgU4dGYMu7srM4i8d3s3GhMRXL+qzfcxr1/fjiN949jXU3mGHrzRdakVLCLC1cta8PzhftX6YxqUPMACAMbY/YyxlYyxZYyxr5jbPs8Y22zevpExNocxdpH5747gVyx/th8fxFGJU+DIpLHi7LayTmVzlluZrF4IABoSEiUiY6ZzRULSNMCoFkLMlQZmr95LUgSzzLl677Kv5iqVOCE1XoNJ06OyOYYcg3/dTqlSBB0KljdQqpM1Gg5SsKw0sIhv6hxQGAtzf+XTThEEvOpOLCJ3CkxbaaeSlFQhMC2m5b4YYHkMSzI64tZ4xc/LeFxCktIZZHKR0ZlRgxX2LjJkTKMXt8mFbhpqGEGrc0GDPy7I5IJ/t8UfN/G74v6bwK8jPcc85wMAHtpzqmB2+QrF+fDc4X40V0exak5tqYeCtfPqkM0xHDxdWW6cqayOR/aexs1r5gSmWb5hfTuiWgg/f7mriKPLDyPJDB7acwq3b5hnZdTIuGXtXIQIeGB3TxFHlx/2nBzBvPo4GqujpR4Krlregv7xNPbPEOfJYlAWAdZs5NM/3iHtUcNTetxGAOIkKWii7FWwdGOirPkrWO5JtHf13pUeFaaAySVZk0tx5TxtKl9uJU2sTQL8J+WFVrDcE9RURkdNPIwQBacIykwuZL3FUmZ6WCKiBdq0F8IAggeSExnd8ZmIJhd+4/VL9+TXjSy1UGYOAjiD5XyrKmKKoMdlM6MjHtEQi2iu4MW4Las1s0wuZDVYfCHBrEP0pgiSaXLhfb1IUA2WxKad77PrAe3nOQNz5zGL17Y7TbBneBIf/cE2/N+Oyq29UMxMGGN49lAfrlzWjJDZeLuU8NSsSms4/MzBPoymsrhtvTw9kFOfiOCG1W345SsnK6758G92nUIqm/NND+S01MRwxdJm/HpXT8Wp+btPDmPt/NKmB3K4o6dKE5w6KsAqEWdGU+gf83bGtlIEk/IV6aqI5nGDm8wY6VzVsbDXRVAwuZBNIK2UPkmgYE0uxcmgUGMCSIIvM4gy7ht/zPQcg54TmhD7uOsBshRBO9Up3zhUD0mPoXhEQyzsDIjcaWWy9EGpi6CZIhk3AyzxDz0PCEJUGAVrLJVFiADG5OqITKlLZ217/4zOHMpJWpdfU7wJcyIWRljS74t/loVoqBwULCczOuIRr608/w7ETNMWt0oFiGmykkUGzWvTzuus3CYXomLsVw8pa16dElIEAed54wFWVUTzHLN4PtzfHf5358zIjPUKUlQoh3vHcGY0VRbpgQCwsCmB6qiGV09V1qr9r3f1oC4extXLzn4e33LxAvSPp/H0wcpqbXPv9i4saanGRVNwmnz9+nZ09o5XlPqSzOg42jdesv5Xbtrrq7C0pVoFWNNABVglYDKtYyKtY2jSW4DulyLIJ1Mttd5aDD6BjEdCEpOLnGVyIas/kU343DVY7tV7sQZLZnLhtq/2qGWSnluW85wwgczoOWuiWyiTC27yIZ7TrPm+VREjtVI24bXSACXHUietwTJS7uKREHLMWdMzkdYR0Qi18Uje65NSWR0ZnaG5JgbAeZxu9dDZ00tHTOz1JB5nRhfUSO/rxcIhVEU0aT0dTzvN93GKQYRbzUlmcsZnGVCH6An8zdsJySKDbWQhdxG0nTSZFUiL7+Vutu2p3XO4CJrfj2rv92NS+JvgrsFyKFiuvzNDE8b9gXHvAo9CUUqePdQPAFMKDIpBKERYMacW+ysowEpldTy89zRuXjs3MHWOc93KVjQmIvj5y5WjaHcNTuCFzgG8eeN8EJ1d6eRpgvfvrJw0wUNnxpBjwAVzS58qy7lqeTNeOjJQcWpnqVABVgnoHzdWjocnvBMcns4zntatmivjvjFhaqmJOeqxAGPSVRX1qi18n1UvI5lAyoIej0171mVyEfZzUGOu4n8zwBLUMk+Bv2B7TuQ0RuBBZaNZf+KuBTpfxlNZ1MTCpgIgOLeZ72OpHhKVSuqwmDV6hFVFZAYYRqDL+4c5neKM5rw1sXDeUwR5INNqBliiUpfM6CCSpzRaNVjmZ+l2kuTqlizAjIVDiEU0xzHqOUPdaqs1xpH34zRfrzER8VmA0DwtAsTxyhYZIhpJ3TKtIEqaJmvXGor7HN8B9/eNK1iSFEHbIdSrYPHbLTUxr4tg0j9FcGjS+LvD/w4pFOXCs4f60NFUhYXNiVIPxWLVnFocqCDl47lD/RhNZvH69XOn9PhoOITbN8zDw3tPe+YP5cr9u4xA6WzpgZzW2hguW9KE+3efKuSw8goP6leWQS0i55rlLRhP63jlxFCph1IRqACrBPCVY5mC5ViJF9J+eA+sFq5EuCZa8YgxeZfbbUvSklwugumsmAJm3I6FQ9BC3tQpcfU+7Q6+JBbujtX7iOaYXPI/6PFICPGw5jwuc6I8py4O4NzNEdLZHA73eouUR1NZ1MTDSERdAZY1Jn5OvSpNPBLyqoJm8BmLeIMSXgsX4wGWy6AgEQ2jNh6Wpgj2jqYcAbUfQxNpzw8kV3Pa6rwKVjKjIx7WEDebM7qPMyqke/LPkDHmaELsVr2Mc6OZaqokGDADLLeCNZnWpaYvU2UkmUFUC6EhEXUEkTkzsIuZY5KruJon6PEqteJ1bppcSPaJNu3iPodi7DaVydiKsbvmz3YINWsURWt283ZzdbCC5U4R5AqWLEVZARDRrUS0n4gOEdFnJftfQ0QvE1GWiN7m2qebTrcz2u22EOg5huc7+8tGveKsnFuL/vE0+sYqY0Hi17t6UBsP45rlrVN+zmtWtCKdzVXMxPnFzgEsbalGR9PUA/E3rG/HoTNjFRMsHzg9img4hMVltNhwxdJmENlKsyIYFWCVAD6xmUjrHvtXcbVZnGzbClbUfK7TAY+nQKUFpzE+GTaawmqeCT8Au0eW26xCC4GIjH4+siL+sDMNkD8votm1Kfz9rNV7s/hfloplqDvOFEd+jG1mgHWuaYI/evEYbvunpz3By1gyi9pYGFVRp/JnBVhhb1qZqPx53BczZs8xierDUzXjZsCSchynoUBWx8KeIHIincV1X3scP95y4qzH+eZ/fQ7/+PABx7bRlHHOWiUpgslMzlDpJAEhV7BiruCLuz5yNdKZOmgrQnGXmQd/X65guT+L7z13BK//56fP2Q55LJlFbdxQIyeF74YYELsVLP7ZxSIhj+tfWs8h4tNQ20iFJTv48gSf3n0eBUtSgyX7nnI1Vdb0ejKdtZTPoBosd4rgsHm/X6UIeiAiDcC3ANwGYA2AdxPRGtfDjgP4AIAfSV5icia53RaTXd3DGE1mcVWZ1F9xuJthJaQJZvUcHt57GjetmTOl9EDOJYuMRsRbjw0Wamh5I5dj2HZ8EJsWe5snB3HLurkgAh7YVRkq1qunRrG8tQbhEjbbdtOQiGLdvHpVhzVFyueTm4E8vPc0vvnYQc92cWIzPOGc/IxMZtFsWnKOOepK7BRBAEimnZMwrrYA9qTSnQIlqz+JWYGCc2WfTywjmix1KoSoZhb/S/bFAhQs9zh4SqBsUj7hmpS7V+L7xlJTWo3a1zOKdDbnWbEf4wpWxDlBtdzl+KTcJyD0WN8HKlg56xiN95CnCI656of6RtOYSOvY1T0UeIwjyQyO9I3jaL9TBbJSBM1z6DxOO3UOcNdgOdVIfpyO6ybik3IX8QbLdoBlBsuuAOvk0CQm0jpODEwGHmdWz2HL0QHP9lEzwPJVI8O8nk5UHI3bMlXJvcjgThGMhkOIhJ1GL1lzYSMisXDnabbGOdVcqZXmOMJcFZS5CJopgsL3ngfmiZhX+RxL2n9HRlzfm0Hz74+sBuvk0CQ+/eMdnjTLWcRlAA4xxjoZY2kA9wC4U3wAY+woY2wnAFWIkEf4pK3UDYbdrJpbOQHWq6dGMTyZwXUrp65eAUBjdRTL22qwrQICrM6+MQxNZLBpUdO0ntdWG8faeXV48UhlqC8HTo9a1145cfXyFmw/MajafEwBFWAVkB9vOYHvPNXp2d4vpBqIaYKMMYwmM5jXUAXAOQnlKUAtVi2NMFFO2yYXgD2pdNTE+Dio8aDH00zYnCBGXQ6DfOLpnlzmcsybPsgnl5aCpXnGkRJUhKqI5ugRNWGlCMoDrG88cgDv+fcXzmq9esQMOgZcNW9jSbMGKyBFMBZ2prrxya9VT5b1BiUxM/j0qltigOU8zkTUDLBcKh0fc2dvcPrcEXP/oCtg58onD7DEFEw7MOcBoctF0FQ3AR/DEs35WSbFYNlVD8ivV56q6E4RHBw3xn22NMHNr5zE27/9PI65AsnRZMYIlmNhVz2d6bQXlaiRmQDjCdOwBfAuMrhNLjzXeVhoxG0pWMY4IhJLeFH5c48xmTUMUHjNnzs1uCqioTqqSW3am2uiiIZDXpML8/7gRNqTevrUgV78Yns3dp+sLFvqPDIfgCgXd5nbpkqciLYS0QtE9Ca/BxHRR83Hbe3trSz3tkLx7KE+rG6vs37jyoWWmiiaqqMVkVr28nEjQOKK1HTYtKgRW48OlH0j2S1HzWOcpoIFAJcsbMSOE0PIlrlJw/BkBj3DybKqv+Jcs7wFGZ3hJclCp8KJCrAKSPfQJEaTWc9qsLhyPCRMiMfTOnIMaK83VvnFFYIJl4Ll6ItlTrTcBgpiTYx7AinWhEQ0kqRAmQFW2GvhLnNQy+ScNV2AvWrPXzuikXQiC3BFSHPVmBjHPMcnRbBnKIm+sTROn8Vu+og5aR8clyhYsQgSUc1TmwRA6iIoWnvL6tpijpQ7t4ugHcyIBhBciaiJhT0T5UEeYJ0l8OjsG5Me46hLwXIfJ7db52O0x6tbgQc/NvH4+b4cg/Vj5XARjAarke5USP6dOHKW49zdPQIA6BlOOraPpbKojUWQcFmW8+ONS9TIoLQ9blYBwNPGwKo1dAVR/HqXGWCkhO+bR012nFNvumo8rKEq6lw84ceWiGpIRMOYzDhNccZSWVTHwqiLRzwKFv+bw5h9fXH4d6l7MFhJVPiyiDG2CcB7AHyDiJbJHsQYu5sxtokxtqm1dXpqw0wkmdGx9dggri4z9QoAiAgr59RUhMX3tmODmFMXw3xzkXY6bFrchJFkFock9crlxNajg2iqjmJpS/W0n3vxokZMpPWy/ywPmuMrJwdBzqbFjYiGQ3j2oEoTPBsqwCogXYMTAIAzo87JYN+YGGDZt/lKM1ewHCmC5kSxyUz7SboDrKigRJgr4rKVcZlttKwmxDm5dBb4R8Li6j2ztgNwppXpTiVNdFDj47BrwUIeEwJ3Wpl7Ut5nTspfPTUCP0aTGfSOGpNGd0qUEWBpXhfBDK/b4TUx3pQtwwBC8wSLsok333e2FEFZDRYPmHpHU4E1aJ2WguU8Rh6wtUoCcztF0E/Bsj9LK+00YwfEnn1CXZ8RKHhTBFt9AqypBpL7TxuftTvdczTpZ1hifpa8nk7S0ywWlvWC063P0bhmhe9AlrkWGczvlNhM2L0Awb8fllrmvaakClaGB+bGdePug5WIalY7BXHfmOmQWVcV9rgIDk/a5879neB/q/jfrllIN4AO4f4Cc9uUYIx1m/93AngCwMZ8Dm6msvXoINLZHK5eUV71V5xVc2px4NRo2as7244N4pJFjVOyLnezyVS9ZCnY5cS2YwPnfIxc2Xu5zFMhed+1lWUYYMUjGjYtasSzhysj1bKUqACrQAxPZiz1wK2wDIynrKJ1MUWQT4TmNXjrVCbMnk18MuWZKAtucLaCZdfE2M5+zsmgEfQ4a0K4SxwAqbol64PFa7EMkwtuDMAcj+GpU4zZ9SrihN2TVsYDLJ8UQZ5qGZQbf6zfniiKwQdjzKrBqoo63QsdzoYup7y0qV6EQiTtLRYLG/siGnldBM3UOeM9vLU0NXEjwBJ/xMUJcFCaYKeQIiimTI5xkwtJimDKbXLhrsEKSHWTqVuioUQ8EvKodIDRcyuqhTyfJT/Os6UIvtpjfNZui3Feg1XlViNFFdfT08wb+HOMhQTjOpalyUbCXgt30czF3YTY03dOYtMeNQNwd42icT69gflk2giQea8u0aqdm37UxiPSPlj874/bGc1SsIZmrYK1BcAKIlpCRFEA7wIwJTdAImokoph5uwXA1QD2FmykM4hnDvUhohEuWzy9uppisWpuHcbTell/L86MJNE1OImLF04/dQ4AFjUn0FITxbaj5Rt89I6mcLR/wgoGp8v8hirMqYuVfa3ZgdOjqImFMc/MZio3rl7egn09IxXjrFkqVIBVIMQUm9MjTgWrfzyNZa01AJwKFp90ttcbCta4qwYrETVW6AFvP6N4VLMmynzyLqpDbjc4p007udKjXPUnngJ/O4jigVVGWL33M7mQKiJiDVZUg9RF0Ef14CrGqwEBlqiIiMFKMmP0EuMpgg7zB0dqpXvCm7OOT9Y/TKxdk/fBkqR6ZQwlotbsOyZ+tmJQyNMAg45TzzFHSthYMgsi2x7dHXw4TC7M8eo5hmyOOWuwXJ+XYdPuMlURg+WI5lBZ+flNWIGks/aQH2dQimDvaMoyiOnzKFgZ1MaCLff9DEuCTC4AeEwuvFbszkUGwwAjwOhF4j7Jx+GuUUyagXmVLMDKOBUs0ap9PJVFdTSMunjYE8wOTmSsvz/+Clb5TiQLCWMsC+ATAB4EsA/ATxhje4joS0R0BwAQ0aVE1AXg7QC+Q0R7zKevBrCViF4B8DiArzLGVIA1BZ491IeNCxut3ovlxqq5xvelnOuwzqf+CjBSITctaiprJ8Ftxwx1bdM5BuJEhIsXNmLb8fI9RsBYNF45p+acVLpicI3p9PmcUrECUQHWefLsoT5c/dXHLOtjjrjSdWbUGeX3j6WxsCmBcIgcNVh2iqCZEidMjCbSWVTHNFTxYneJTbutjnhNLgInypLVe/74WFiyeq8Z/bGI7Amk+Hp+q/eiw6A9DmeKoDsFCjCarEbDIUeq00Q6az02KMDiikhdPOwIVrh9uZFWFvbYlwOiTbtYS6X7BlFpPWcFKzFJ/6xYgBJRFQlbkwvxcx+cyKAuHoYWIl8FK5djONI3ZqWPinVYYykd1dEwEhF/5dOdIujoW+YKvhzXlOZ8nvVZWgqWmOrGzSbCnlqzsVQWGZ2hIRHBqZGkx3KcIyqVA4KCxdXI2njEqkfiKqCoRnqMXrK2U6A7WA4yubCMXnxMLiKONFGJiuuuXTNTconI21ss43QIdboIZs1FF+O6ERdkeI+3uqqI43vDGMPwZBrLWo36BXeq5RlTwZIFWN9/7ije/K/PntVUptJhjN3PGFvJGFvGGPuKue3zjLHN5u0tjLEFjLFqxlgzY2ytuf05xth6xtgG8//vlvI4KoXB8TR2nxy2Jm3lyArTbCDot6bUbDs2iGg4hLXz6s/5NTYtbsTxgQmccS0KlwtbjxrHuG5+3Tm/xiX/v703j4/sKu+8f8+tvUqlXWqppe5W7/tiu93GW+MVOxhsIDhAQjAE4ncmgYHJMsk7ZLJnJskkBAhkEkIYPNmAgeTFYCeAbbCxzeI2brfd+76o1S21dpVqr/P+ce+599x7z62W1FV1q6Tz/Xz601LdUtW5S9U9z/k9z+9Z1YbzY+m63UfGGI5ensbGnoXvY7XZ1teC5mhQ1WFdBRVgXSNPHb6MwYk0jgzZ64DEGgbnB3k0lUVHIozWeEiaItieiCAS1GyKTSqrK1gxc6KlTxQZY8gUSoYhg33ybrm6iZNoScqSM1Bw2LTLGg0T6b1+shIHNacBhjMdUXx/Wx8sjxTBWCjgWonnE8OORBgnh2dsYxQ5fSWFvtYYeltittV6HsTwPlheKYK6i6D92PBj6bRpLxd88RRBU2U0tjHGMJsrIBbW0BQ1AizhvI+ncuhujmJFW8yzPmloKoNMvmSmhohuiTPZPJoiQQSN82zfz5K5j4ClQMkVx6JrG98X81yKfbA8zmXcsKMXzyV3EOTjP3NFXv/Da+06EmFbYDBrmMNwm3bAUiGd9XT5IjPNIMRzKVWwBKXSafQiNXMRAyxHnzjR6EVW12ZeU64+WLrKGDBSUp2NuGPhgOkwOCt8J6Syeo+35mgQU2lxoaaIfJFhoDMBInvLiGKJYWTGShF01pt8//gIXjk3gUt1OjFRNCY/ODUKxoBb19WfwQWnORrC8pZoXStYL58dx87+lnn1v3JS7/2w9hn7yBf+FsL1vA6rTlWskeksJmbz2Lisye+heBLQCDev7cDzJ64s+gW3a0EFWNfIgQu6nfFJh7owOJ5GNKShvy1mSxGczRWQyZfQ0RRBSyxk64PFJ53N0aDRE8mhYIUDrhRBPmG027S70+9c/YyMpsB6vZDmSoESTS5kFtWAUZtirtB7O6hZNu0SJU20yg45jBGM+hNNI8PCXAiwjInhzWs7kCuWPGt3Tl9JYaAzjrZEyJzIA1YQ0xTR1Z18kZnjNAOscECqRIlBlLO3GFcuZPU+PHVO3++ieYxKDIiHg2gyUr3E8z6WyqE9HsaariZPBeuU4frEGy+KClYqWzRTyPT6JHcfrKChSDrNKqQugo5UN75v4t9FggHTRZB/+ZrBsiRFkAeE169sBQBXLy/OkUvT6GyKYF13ky3A4p+bJiHA4gqZLUUw5PwMFG1BlKzWEOBpsvp+FI1Gy1zFDWjkTgOU9InLFt3HTfwsWgGW0/q+ZH6uo0F7y4BZwxwlbqYI6schndcDTu4iKJqj8AWdjkQYbfGwrWXEaCqLYolhfXcTcoWSK7+ef8e9en7JWrgrqsDzJ66gKRLEjv5Wv4dSlo09ybrthZXJF/H64NSC6684W5e3IBrSsK8O67DSuSJeH5xccHogZ+vyZoSDWt3WYXGHw3o0uBC5bV0nBifStjp3hR0VYF0DhWIJB41+Macc1qYXxtPoa42hpzlqSxEUlZfWeNiWtsZTBJPRkGl4wEnliohHgogENRBZClZamEBajYaNlC2bO5k91UucQMoml2Z6lOCgxhgz/o7Mbfmy6VGO9EGJIpI1+vwENEIsFLC5vPEUKH5MxIkinxjeaqSVeKVunL6SwurOBNriYYeyY03KY2F7+pytOa3EfZEfS+mkXKKI8ONmN7kwzp+g0jVFdOMBMdVrfDaHtkQIqzsTOH1lRupixQMvvvoo9sLSU8X0141LlDp+zYgTe2lqqTMVNCipwRIC+mgogBKzAu90rgiN9NdMOhYPeEB4nTE58KrDOnppGpt6kuhsiuCKkCLIg7VkNCSk0NoVrJjELTGbt6tUzlpD+0KC+zrX/ydhIcFyCgx5KFiRgLu3GK/P48fc7iJYNK8Zp/U9t2k3FSwjqJwRAs7mWAjZQsn8O36sW2J6bx9R1eXpgfw6uiCkOecKJZwb02+kBy5MQKGoFC+euII3rGk3P1P1yoaeJE6NpDyzJfzk4MVJ5IolU51ZKOGghp39rdhn1DrVE69emEChxBZscMGJBAPY0deCn5ybqMzAKgwP4jfWYQ8sET73euGkShP0or6/0eoImQx67PKMOYE76QiwBifS6GuLo7s5YlOwuPLS0RRGWzxkr8HKFBA11CanYjOb1RUsIjJ6/fBJoqUMOFO97LbZbiVCnFwWSsycvOeLYuoUmZNL7vwnTi6dNVhiCpTpWOio9xKfnxUCFlkNFk+JdCp6PFDds7odAY2kVu3jqRwm03kMdCTQlgjba5MyloLFAyxxUq6Rvi/RUABMCBTENECZaYKYPigLPEIBgkbWxF9UdrjSNO2owWpPhLGmK4FMvoQhSXrW6SspJMIBs+u7fT/zpjLmsqM36sL0fXGPV1Sw3OmDAUkNlr12TX+PormfsZB+/SYc1zaf5Pe3xdCdjEgDrGKJmZ3tO5rsKYJTQrqnpfBaag5g9cESxykqtWIQBTj6YAWtIMpKA7RSaHOS4Mtt0+5eZJArWAFbDVYmXzTPUSxkBcjFEkO2UEJMULW5gjUtqLNJI+2UX1O8VrQtHtJTLcUAyzC44KvgYh3WubGUmVrJVXsnKlVEMV/Oj83izOisOVmrZzYuS5bNlvATrsZcq4IF6JkQBy9OedbC+gXfx4WaeIhcv6oNr12YtGUL1AtHjUyNjjpruO1kdWcCy1uieOGECrC8UAHWHDg5MoOdv/dtvOi4kF4bnAAAbOtrdqUIXhifNSaMUXNlGLCK89sTYbTEwjZzjOlMHs2G2uDsiTSbK5omCGLNUFpQW9yNhnn9ibyWRgywAPtqu6zRsDhJBOwOg7IarJzENMGtiBTNyWU0FEChxMzi/9ls0Zw8Jp01WMbEsLclirVdCWnqBq9ZWtOVQLuhFvIg0pYiaCpY+mNc2SEitwFE0e4i6EoRlChYorsekR60ZRznT3cRDNnGxhjDeCqH1ngYazr1fGynUgro1+eariYkI0EENbIpdalsEU3idWMEWKWSrqpFTeXEGpMtiHJeG6JNu6sGqwgSAlPA6teWzhdMdcmpznIVty0RNpQ69wTm7GgK2UIJm3qS6EhEMJnOm9ecWU9XTo0MuRcgxBqskMQRUjS5kDkF6sfI2iYGXyFH+qSz2ba4LZsXgvaQJEXQXIAIuJTruNGgGrBs2lPCtc2/T7j6yxd0WuNhI1C1vpu4Rft1Rqqm6IR6Ylg/J9v6mnHgwoQrmPrQY/vw0S/th0IxH140Vr8bIsAyFrDqsUnty2fHsaojbrbjuBZ2D7SjWGLYf37i2gdWQV46M4b13U1ojYev+bWuX9mGXLFkNq6vJ/SFxPqtv+IQEW5Z14kXT47amtwrLFSANQc+9dRxTGUK+Pr+i7bHX70wieZoEHdt7Mb58VlzMpfKFjA+mzd6LkQxnS2Yk3duL93ZFNFNLmwpggVzxdmZRpUyarAA+0Q5LShYToc60UDCpWA5Vu/5Y4C3TTuvt7KlThUt1Ys/ZtlXux3UIs70QaHAP+owgJjN62mRAE8RFBWsrF5/Eg5iY0+zNEWQrzRyBavELCMRW4pgyG4SwI0F9GMnMSQQVJ+c05XOpm453PWEQJIHwbYUwajdDW46W0ChxNAeD5uub7I6rFMjKazpSoCI3EpdtmCmHooKiBV8c9dDUcGyxuuqF5KpWzY1UjODSMCu1JnBsuPaHkvlENQIyUgQa7oS0hVifn439TSjvcnuljhtBlghM10u7VB4RVMO6SKDcS3zADxntCPg2yyVyqniaq4aLLEOUdymERCUOGk6a7DEOkTdfdIKsMzPhvF9Yq/BcqQIGo2GAUvlmzCaDLfGQ+hIRGwpglxpH+hMoDUeshn1cIX+bbv6MJUp2PvLpXJ45shlPP7qRbzmoW4pFDK+f/wKupIRrO+u/wnl2q4maAQcq7M6LMYYXj47gRsqoF4BwPUr9Nd5pY5S6BhjePX8hLn4c61cv0p/nXprOFwqMRy7PIONy5r9HsqcuG1dJyZm82apjMJOXQRYRHQ/ER0lohNE9JuS7REi+rKx/UdENFCrsZ0YnsY3DlxEKED47tFhWw3MgQsT2NHfirXdTWDMamrLLdp5yhNg1TfwCU17IozWWAipXNGcaE1l8miO6ZNh5yr/bNYKNuKhoKC2WDUmUZ6WlbdWxgG7yYVXDRZ/zNwmqFR5YSIIwOzxI26zpUdJFDG+zZrkCpPykJXCpo+fBx8F015cV7CEGqxUDh3GRHtTTxIXxtOuPlmnr6QQ0Agr2uNoT4Rsx38641awLPfFknksI0F30GoaWThUj2xRXp8l1jQB3KxAf0wMkBMOkwseQLQlwuhKRpAIB1zqTiZfxMXJNFZ36gFYu6OuTw+wrMDcrewIKYISF0FugCHbF2eAlckXbemeAGyBJD/OTZEgMiMEwfAAAGCgSURBVPmSec3odWZhEBEGOhIYNVI7RY5cmoZGwPplTeg07Oj5YsWMzXKfm1wYn4+CbhKhq5HumjHXZ6Do/nx41Rry/50LCbLA1OlKKL6XWAvGA3OuEPFGw4D++TAVQTO1NIhwQENQI/M7YVpYPEgaChav7+QKVksshPZEGOOzeVMxvjylu5uGAro5j9hq4tRICj3NUdy8Vnd6e1Wow3r22Ihh/EH41NPH4BdEdC8R/S0R7TJ+f9S3wSiuSrHE8PyJK7h9fWfd9vsRiYYCGOhM1J2CdX4sjSsz2Wuuv+K0xEPob4vhsMMZ2U8uTWUwPpvHtr6FW9CLdCejWNkerzujiwvjaaTzxYZQsADgtvW68vzcsRGfR1KfXDXAIqL3Gf/ewW9clYSIAgA+C+CnAGwB8B4i2uJ42gcBjDPG1gH4CwB/UulxePHpp08gFgrgN+7fhOHpLA5e1L90MvkijgxNY3t/i9m0k6/y8tSa/jZdwQKs1eHRmSwiQQ3xcACtcX3yw1eVpzIFW4ognyTmCiXkiiWbgjXrmGhFQvpkOKiR1KxAOrnkwYDL1Yw5FCynSsVNLoTaFEHdCmnuFXoiIKiR6a4m9sGy6pbstVA21cMIOPnE88pM1sxR5sWgzjTB06MprGiLIRTQ0GakFXADiJlswUzXikvSykRlRzxuTpMLboBhGoDY3OAcipCoROSLtveMhwNmXRMPsKxgPAQiwpquJlet35nRFBgD1hjXoOiWyPtDcWUsLiifYjNlfbwB13Vjd0v07pElBl9WEOkIlvNFM33PqdSNp/JoN84PDxSdKtbRS1MY6EggGgqY533USLedlqQImim0OZka6VawnM2xXSYXZg2eswaLXGmyoYC70bDYV8v5GbD1TwsaPbJ4Hy9BTRVrFMUUQSJCPBwwnRPlKYKGgjWb0xdjQgFzgYJ/JkamM+g2vq/6WmO2GqyTIzNY253AhmVJRIKarQ7r6SPD6GwK4yN3rcdTh4f9VLF+AcCvA3gvEd0FYJdfA1FcndcGJzExm8cbN3T5PZQ5s3FZ/TkJvnxON6SoRP0VZ0tvMw7VUYB10Ejl29JbOWXnhlV6w+F6qh3lteQb6tzggtPZFMHW5c147piqw5IxFwXrTuPfuwA8RkT7iWh3BcewB8AJxtgpxlgOwJcAPOR4zkMAHjN+/iqAu6kGS17HL+vq1SO3DODt1/WBCHjmyDAAfUW9UGLY2d+CNUb61slhffLLU2v62+JY1mwoWIaT4Ggqh86mCIgILcakklu1T6fzthRBPiniK9PcUS8mTNDNBq62ybvDrCAgqcFyWLED9smlmLLktXofDrjrT8JBzbB+t9tXiw1d+WN8jGLqnDhG3ucH0CeLJWYFJGOpnKlkbOrlTSDtN4TTIylL2XE04U1lC2iKBEFE0rod16RcMA4RAw9mTIZzgnrBj0POVHbs20Q7+rSZ6qWf20QkYKZ4cbWBB4druhKuFEH++xphP3kNVrZQQrHErNo9IUXQ6g/lDgjFGiznvpS7pngzZQDmMZWlCPKaIX59jxlOiYAVYDmVuqOXps3zzAMDHoDy9LdEOCgPloMe51IIbJzNsfO2zwfZHhdfy6bi8kWGoGhyYaUciteG+F7iNWV9BvRzly8yqYugaI4C2BdkxPpCK0XQUrD4wk5Hwh6oXp7Kmt9X/W1xDI6nzcWDkyMzWNvVhFBAw5blzWYQVSiW8OzRYdyxsRsfuHUALbEQPvmUbyrWNGNsgjH2awDeBOBGvwaiuDrPHRsBEeq6wbCTDcuSODtmlQPUA69dmEIkqGFDBfsmbV3egtNXUjZHWz85NDQFImBTBQOs7X0tGJnO2lye/ea4MYdc3yABFgDs3dCFn5wbt2UYKXSuGmAxxj5g/HsXY2wngI8D+P+IqFJdAfsAnBd+v2A8Jn0OY6wAYBKA6/2J6FEi2kdE+0ZGrl2y/PQzunr1i7evQUdTBLtWtOKZI5cBWFbFO/pbEQ8H0dcaM9WFCxNphAMaupoi6E46FaycOdlvMxUs/cK0pQhGgsgWSsgVSmZtBU8hi4sKVt4+0dJrOKz6E14T4240XPSc8NkbDZPtcf0xQd0yJ5fWxNu5LSdJjxKtss20MkeKYypXEBQs+0q8eBz7WmNIRoK2lUXGGM6MpjBgTNh5kMKDj5lMwQw8eOCazltpl2bg4Qj6bM1pheOWc+y/6DDoShEUjAyc568pak2UeQBhBlidTbg4mbbd3LnpBQ/yW+Nhd22SaXIRlFrR6/spdxHk/7ts2iW1RNlCUTBk4OdSdBE0TC4i9obK4ynrXK7siIPIHmDN5go4OzZr5qV3OFMEM3qwHNAIcVc9nexcus0lxLS9khHYSE0unIsM4rGxmVyQ7b3y0nRE8TNgmVzwsZmNwkNW8CUqc4C1sCJ+J4h9wVwpguk8WozvGH7Mx4zjeHkqY6Y097XGkM4XMZbKYWQmi+lMwQzid/a34vWLkyiWGF4+O46pTAF3b+pGMhrCL96+Gk8fGfbLyv0JnnEBYB+Ar/sxCMXceO7YCLb3tdS9W5rIhmVJMAacGHabDfnFoaFJbOptRrCCNvdbljeDMe/2J7Xm0EU9g4HfOyrB1uX6/aSe6oeOXZ5GX2usovtZbfau70KhxPDiyVG/h1J3zCVF8FfEfwA2ApgA8CfG73UDY+xzjLHdjLHdXV3XlnZw/PI0vmmoV3wicvembrx6YRLD0xm8en4SnU1h9LboAdSaroTpJHhhPI3lrVFoGqE5pveu4qskY0LtUGtM/58rFc4UQUBXWrg7mKlgialejomyU8ESlShArhw567PyDnVLplLx/10TT24MENRcCpZ8HEWJ6iGmCHKTCz4pz4MxhtGUlSJIRNjQk7TdDIans5jNFW3KDiAYIxgKln5c56Bg2WrGNNc20Yqd77+sAS+gnytZiiCgqzC8hkZ01wP0a4wxe/BxaiSF3paoeZza42FMpPMolZgZwCSE/XQqn7IUQT7xtzW/zdvPpaZJappsBiDOVD0rWG6KOgKs2ZwZREaCAfS1xmz7eOzyDBizXLyaoyEENTId8KYzlvJrWe7bHSHt58ut4oppsvmSd4BZTsXliwyRgJ6251R4Q5L3co5Ddk1Fg1aA5XndRIKmTbuV/hpAIhyARoJNu6BgdRrfQ6OpHIolhiszWTOlub8tBkCvJz1pOAiuNYwIdvS3YDZXxInhGTxzZBihAJm5+I/coqtYn3rqOGoNY+zrsDIuHgbwcBUyLhQVYCqTxyvnJ7B3feOkBwIwVaJjdVKHxRjDoYtTZrBQKbYYr1cvaYIHhyYrmh4IWPt4sI6cBI9emq6oElkLbljVhkQ4oOqwJMxlySMp+acBiAOoxJUwCGCF8Hu/8Zj0OUQUBNACoKrh8hdeOG2qV5w7N3UDAL53dMQ0uOCZimu7mnBqZAaMMQyOp9FnTFCICMuao7YaLD7ZN2uwZnPI5HWzCz5RFCeh81KwQppg0140V+3LNhoWUgRLJYZCyb56z3tkmY1UyxT4y9wHy1nCy1IExVV656R8KlPAVKaAfJGZE0RAn3wfvTRt5lPzCTpXsOJh3XJcVLD4sY46ar/sLoIyYwSeOmfV0rgVLHfj3qipRAgmF45Ur2TU6hE1lsohoBGajXHK0udOXrHSIAE9GCuWGKYzBVstDsD7YOl1bGbaosTkgv8vnrNsmXOZtQX0VqAPOBUse4rgTKaAUolhfDZvBlh8P8+MWvt41Ej93GQEWJpGaE9YvbBmhGBZbxNAcwqWc4WS6Wop1kw5z6UtUHI4aeopgo7PQFCu/joVLFtg6jBVEZsD8/HHxNTSvD3AiocDZqPhlHA8iAjNsZCVIpjOmQs7/HtodCaL0ZksSgxWDZbx/XVhPI1TV/TVel5ruqO/FYBudPHMkWHsWd1uKmWiiuXHKn8NMi4UFeDFE1dQLDHsbaD6K0C/n4QChGOX60PBujCexlSmUPEAa3lLFK3xEA5d9D/4mEzncX4sbQZElSIZDWFVR9ysq/ebQrGEUyOphqm/4oSDGm5e24Hnjo/UVT1bPXBVHZIx9nvi70R0L4BHAXyUMVaJkPUlAOuJaDX0QOrdAH7W8ZzHATwC4AcA3gngGVblM/nbb9mKt1/Xb05CAL3Asqc5im+8ehEnRmbwwI5ec9vargRSuSIuT2VxYTyNu41gDACWNUcwPJU1lBe9BgvQ3XoAXcHiEyCeIpgU0qhcCpYkVcgshBcalYoTt3JOgbZUN0kKFADkSyVJECXUWTnsq3Vra2viKXsvwDEpN40R9EluocTMCWSz0DCVKxcdQoC1qSeJf/rROVyeyqKnJWoGITz4ICLdYS9lTcp5gOZWsEq22iT9MSFFMOTel5JxOYpKhKwPFj9XGY9Ur6ZI0OzxxQMPHsSvMa3a9Zs7YwynR2bw4K7l5nEw3RJnc7ZUMUAP4krMmLy7TC6EGixnPZkt3dNKqwtohKBGpuKVyYs9zezBl1hPlxQWD6YzBRRLzFTpAL2e7F9+MgjGGIgIRy5NIxYKYGV73HxOR1PEZnLBX5MfS3uA5UgRFPtghax9BPRjY1mxW82E3S0HuNGLhrSRfuf6fDgUXqdKVV7BspwExQArndcfN2v3jO+ERDiIS8YizkzGMjbhx5unCI7P5s16t9Z4GBrpgTzvgbUsadVgAXo96aXJLOLhAHqM4GtNp56q88SBIRwfnsG796yEyCO3DODmtR1Y54P1tkdWxQT0jItDjLFP1HhICgnPHruCpkiwYrbbtSIU0LC6M4HjdaJg8fS2rcsr467HISLd6KIO0ueOGCpapQMsQE8TfG3Q/30EgLNjs8gVSw1Vf8V544YuPHV4GGdGZ20LvkuduaQIfsH4989E9AqATwB4Z4WCK15T9WEA3wJwGMBXGGMHiej3iehB42l/B6CDiE4A+BUALiv3ShMLB7BndbvtMSLCXZu78f3jV8CYXovA4au7By9O4spM1lwBBnRL0MvTGaRyRWQLJTNoSxp1IxNpazLMA4lERKJgmSmCQavPjzFJs0wu7MoJn5yVM7kQVSXZ5BowUqdcDmp2lcr2d0F7epRTLbNbe9sn5Zl80WZDDcDs5TSTKQjuelbu/nbDvvWjX3oFRy5N4cyVFMJBDctbrPPQlghjzHDYS2ULaDJW3UMBierhqCXKFnR1T9wXc6JcLArHzR6wMMYEF0Eh1ct4bDZftDWmTUQsBWs8lTPr9AA9wO5tiZrGFqOpHKYyBbMJMQCzCeNYKidVsPj+ZR2ppTYXQYeCFQkFpH3L+HOykpRUsek1Y0zvaWaaXFgNlbmiyANDQF8lns4WMDydxRdfOI2v7ruAbX3N0DTL16YjETYD0WnhXPLjJLYxcCpYYiNuWeqqFURZBhjFEjNMJ5wpgnYzF0B3y9S32c1BvG3aLXv7iBCYOo1IYuGAaXwx66zBilj1ddPZgvldAegpldMZXbmcnM2jxVCwAhqhLR7GlVTOVNi5gtUSCyEZCWJwPG00sk6Yx1/TCNv6mvGskRIiLiYB+srwDavs3501pNoZF4prhDGG546N4Ja1HebnqJHYsCyJY8P1EmBNIaCRqe5Xki29en9J3sbBL3ia4tYKpwgCemB6fiztagviBzxob7QUQQCmEq3SBO3MpZLuWeP/FIBTAF6ptHrEGHsSwJOOx35b+DkDPafed+7a2I1/+tE5AMD2fmvViNcnfP+4blfZLwZYzRE8eyxrFpPzIn0iQmsspCtYxgec12CJKYKmi6CQIpgrllAolpDOFaGRFfREhPoe0QLdVBvKpAjagyhLpQJ0NzRnHyxb/YlE3bKbZrhrTPj/YuAB6AFAynROtKse05k8AsZEr0NQPa5b2Yb//vbt+NNvHcEDn34erbEQBjritkl5eyJk1jWJNViA25kxGrYCD0CfBJtBlEPByuRL4J8I5yQ6X2RSkwsxRZDvN99P06bd6A8lsqYrgW++NoQfnBo1VZXVXdaKEbc7n5jN2dzkxGM5myu6XQRDMgXLOAaiTbsQmPN9stI9rUBBDObyRT04cdVgCcGyM0UQAN76l89jeDqL29Z14g/ets12HDqawjh3TnfrnM7kbZ83MYU2k7dSE50ugp4qrnMhIcg/AzIVV7OpuGHDVIZvExcgQpLPm/OYiimCReOiEoN2QA8Q3bV7ATOgTmXtil5zVE8RTBvXcKsQtHc0hTE2kzNrRLmLIKCnCV4wAiynBfTO/lb88NQY1nQmzDTceqAGGReKa+TUlRQGJ9L4pTvX+j2UBbFhWRLfPDCE2VzBzCrxi4MXp7C2K2G7h1SKLcubkS2UcPpKyldV5eDFKXQ26b0gK41Za3Zxyuzx5xdHL82ACL4o/9fKqo4EVnXE8dyxETxyy4Dfw6kb5pIi+NjVnrOUuHVdJyJBDZ1NETPVDwC6kxE0RYJ47rh+D+9rtSZ8y5qjmMkWcN6wbxdT21riIUyk86bVNLdVTgp1Kry/DV+VNifK+aLeXygUMCd10ZCGKzP6a4mKAuC24pbZtJt1VnxbULJN5iJYLEEjmMGPqGCJq/e8+N9SRMTmtNak3DmBFNPK+MSz0+E+9bM3rcRPbevBJ75zDP/4o7O41WH/2xoP47CRb607z1k3JZfq4VQUBNMBWXNa5koRtNwHrQDLCtoykjozQD/HorseV0Y5v3THOnx9v1WimIgEcfMa68ZgOsOlcsgY72sqWLYAS5Ii6GhQzQOMcFAzj40YmPNtooIVdQXLJZcayZtHT2cLZsqmmIq7YVnSWDTQ8NfvvR73be1xNSLtSEQEk4uCqfzy/UwLNYpWHymHI6S0VYG1kOAywCha14BXo2Hx2OgtDiybdrFOjB9LXtvoNKPJFooolIxFE6cJjHH+iKznxwWHyJlswbb40BwL4syVWdNMpzVmBVjtiTBGU1lcnsqAyP6Z6m+L4cTwDAYn0nj4BrFM1qrDusuhXvkNEX3B+DEGYBP0e1zFMi4U186zR/VT0WgGFxyuMBy/PIOdK1p9HcvBi5O4ZW11bO552uGhoSlfA6xDF6ewZXlLVZpRi06CfgdYx4ansaIt7nvQvlD2ru/CV1++YFtoXeo05pn0kVg4gPe+YZWZwschIqztSuBVoz9Mv1Avwq2PeWf0DiG1rTUWwuRs3uwh4HQRlClY5uTVmGjFhAm6WN8jWqAD9n5GUrMC2+q9e7Xdtc0xgRTTPcTV+7xD9XD2VYoI5g+AfVIeF2pMiHSTCz6RbHeoO4CeBvgHb9uGR/eucVmdtsf1HlGFYgnpfNFMVdPfx6NuR1AUzDRIhyJiq8FyBl+FkhmwiEodD0r01DlrnE1RfaJc5OYPjn28dV2nK3B07j+gO/MZvWqtGiwhgPVyEWSMGf2hLCUmHNQwkXafL/53Vqqbdb0FjF5o6XwRs3m7GqlphCYjFZKnCIoK1vLWGP79Y3uxsj3uuTLb0RRGKqenknKbdk7CZkdvBX1BjaCRvg+Fot5nSuz1BRjpnh6BdF6ozxL7YImLDDwotbYVzW0ykwtnMBcR6hCDAb5oYlcF08YCRFxYWElEAkgZBiYzmYKtXi0ZDWE6k7cCLJuCFcHhoSkMT2fQkQjbPsP9bXE8dVjv+7e2265S3by2A9v7WvDTN/S7T46/VD3jQnFtPHd8BGs6E1ghXKONBA82jl2e9jXAujKTxeWpbMUNLjhruhIIBzUcvDiFh3Y5O+fUhlyhhOPD01UzQ+lORtGVjNSFmcfxy43nICiyd0MX/v6HZ/HymXHc0kC97aqJCrAWwH97yxbp42u7mvDqhUkENDKLxQGY1sc8l1gMDFrjYVyeymAqbfQscqQIprKWgsVX/sVUr3TevloQDYn9l4q2Cbqtzsaj6F5mxQ7oAVTesc3ZZDXsDLCEYE4MIsKGw55enyR3npvNSSbl4SCmM7oFeXM0aAvanMhu3m2JMCbTeTPfukmiehSKurmGzNrbslt3pzvyOVxZC3chRTBnTPCdKYJij6jx2ZytNmkuJMIBhAMaxlJ5M6CweiVZPaK4uiWaeZSMpsnZvCQNUJJayrdlba6V1jZuR+9UI/l+zmTzUgULuHone25QMjydQTpfND83gH4ueW85USHV+8EFpIGNLU1WkgYI6OpWuT5YYhog32YuQAjbghqBiAffDnUzZF1vRUPBiro+HyXdlVH4TMXDQTCmb5uRpggWMGEEs61CMNuRCJsmF7xnH0dU4Z1KansijG985DbUGyrjor7J5Iv44alRvPvGlVd/cp2yqj2OcFAzm8L6BXe/q4b5A6B/x21clvQ1+Dg+PI18kVVtHwFdxfLbSTBX0B0E7968zNdxXAs3r+1AKEB49tiICrAMGq/CtI7hLm+9LVFb0z9e13B4SC9iFFMEzRos00XQUmwAPf1pNldANKSZrxl3pHrZFSxNqCVyGxLkjGDAZlEtpkeZq/fk2CY6DFq1KebkUnCXA+y1OdK6nYLbUCMU0BDUSK8xcdjPA3pANJMpYDSVW1BzyvZ4CIzpvX0AKw0TsJznZIEHoB9LZ6DE7dpz5dIHJdvEVLV0vuAKPABgaDKtu+vF3SpdOYgIrfGQWYOViARNlcNKESxIGw3rY9LPi1P5lKWWmtvy3LDEkZJq2Io7nS4B41waJhfhoGY7BnOBG5ycHdXTbkUFS7csN9I9C/bPRySk6fV0HudLVCqd6YP24IsbWYhOmvZj47Jpd6bJFkvIGg6MfFvUrPmTmFwIClY6V0AsbL0XT3dN5Qo223pA/06ZyRZMUxBRwWpPhDExm8fFibSt/gqw6kiJoJyhFBXhB6dGkcmXcMfGxkwPBIBgQMParibfe2GZDoK9lXUQFNm6vBmHhqZ8s9/mwV21VDr+2idGZsx7oh+cGU2hUGINrWA1RYK4caAdzxwZ9nsodYMKsCoIX+UVC+4By5nrxLBuNy2qOa1xXVWZzuiKA59EBTRCIhwwXATtrmB85TqdL+j218LE1W1yIW7TbDbU7gL/olSlAnSFytwmbbLKXCmCskbD/LXFehZxUh4NBZDOiSmCdgMI3aY9Z6sxmStczTs/pgdYTgVrVpI6R0Sm4iZzSuT759wmphZysxGzTk4I2pw1WHxMfIzzDbAAfdI8ltIDLGcQqb+vbnLBGwbbxpsvup0CbW54RdNdj+8vr0FzXm9RI5jxVrCKGE/l0C5Y0c8VvkjB+2UlnefSUCPzRWYGLXy8siAqLC4ySAxbAMNlk6fJylTcIpNe5+Y2ySKDpWAZ140Q6DqvRbFfWzpfRDxkV7AAviBjT3/l6t6Fcf2a4n2w9OOoB1UnR2ZMpZ3Drdr7WmNVKaJXLD2eOnQZiXDA93qXa2XDsiYc97kX1sGLU+hvi5ntXqrBluXNtjYOtebQ0BRioQAGOqq3wLN1eQuKJYajl/wLmI+ZDoKNZ9Eucs/mZTg+PIOzQh/LpYwKsCoIdxLsa7WnpyUjQURDerqQMxWqNR7SV/JTOSSjQdtEMxEJIpUtYDZbNOuvAGElO1ey1ZgAvNGw2zabb7taGqBXH6xcUeYwqKeVcftq7rYGGMGX2QfLPrnkE3ZzchmyT8ozhaLpiCZOIpPRkLESn7WpgHOFH3tuNuJUPdK5glRt4QYQWcekXEwftAIsR02PsZ/OIBKwzDzE9+K1d+fHZm1jng9t8TDGZ3OYyRRstYJO5dNeS+VUsNzXDd8us2kvlBhKzB4sxww7eme6J8AbKucxPpu3KSpzpdNQsM5cmTVez15Pl8671Uh9PwPStE3xfDkXIPhzpEYvQhpgviCpQxSOmz190J6qKDO54AGWq42B4SIoKnO8CfmI4QaYEL4vuAHIOeOastVgGddXvsjMWlEObzXhTA9c7BDR/UR0lIhOEJGrJQgR7SWinxBRgYje6dj2CBEdN/49UrtR1z+MMTxzZBi3r+9q+CL4DcuSGJxIm7XTfnDo4lRVlR1At2oHLLWs1hy8OIVNvUnTPKsaWEYX/qUJHrs8A40a/7v2HiPFkdfuLnVUgFVBVnXE0RQJumReIjJXhzub3AEWoCsWzTH7RLMpGsS0RMGKC6leoksaoKcYcXcypyFBOOBYvXcYWeSLzNOmXZx4iqv3+t+V3CYXV6lN4coOYJ+UcwUuLUsRjOg1WKMzC0sR5GoQn2iKClY8HEQ6b9VZ2Y6pUddWNogqE3zp58H+egDM/bQFHjzAMoJAp8nFXGhPhDE+m0cqV3CpdADM/XTuoz5e3ZTDHhBbdX3udM8AsoIa6XzNtOBYGBOCZV3B0l0EFxJE8gD7rETB4o6QTgVIH69mc3aUqbjOz4fdZdO9yMAVvJxskcH8DBQd17mHgiUonxnHMRVdBJ3KJ1eweD8rWw1WjH/HzCIa0mzHQ1SCux0KVls8hM6mCLb1VXcSV08QUQDAZwH8FIAtAN5DRM6i23MA3g/gnxx/2w7gdwDcBGAPgN8hojYoAOgT2KHJDO7eXF/OkwuBKw1+1WHNZAs4fSVV8QbDTjb1NoMIvtRhMcZw+OKUGeRVixVtcSQjQd+CSEA3uFjVUR27/VqysiOO9d1NePrwZb+HUheoAKuCRIIBfOdX9uL9tw64ti0zCsidk8kWY/JzbmzWdBDkJA2ntVTWPpkSJ8pinx/APVG2pwgGbOlsViNVMv/Gq/hfWoMlpE45LarF+hPRpl0fh2YLSmyqR1h32ONpZeJKfDIaxGQ6j/HZhaUImgrWmFvB4iYXZt2LY7yiyYVU+fPaJqQIcpxuiTabdoeC1bYAdac1HsJ4Sm9e7dxHAOZ+RqUKVtGlYDndJyPOYFloXGwzuTD6fclSBBOCi+BCgsh4OIBIUMNpaYBlr/2ypdCGdMXNK93TZmQRdNchutoRGJ+BgqHiOlME8x4pgjx90NlzzKwFy1vBl5eLYMymfOo/8wDLniJoKVhieiBgrwd1pggSEZ78T7fhI3etxxJiD4ATjLFTjLEcgC8BeEh8AmPsDGPsAICS42/vA/AdxtgYY2wcwHcA3F+LQTcCTx2+DCLgzjqz9l8IllW7P2ll3JG42gpWUySIgY6EadBVSy6MpzGdLVQ9iNQ0wmafjS6OXp7G+gbsfyXjni3L8OPTY3XRvNlvVIBVYXpbYtL0hy6jgNypvHBHr8GJtG2SCFgpgqlc+VSvqCPFDrCUE3ES7awlkvWmKrd6b9afaHaVhv+dl8lF3mPC7nRQ4+NPC3U7Yv1MMhrE4EQaJYaF1WA5FSzxmHKTC0/VQ6Y2WJNht922lXLnTtU0lIhC0dNF0KzBWrCClcN0Ju9qpgwI103QHnjwfZHa+5t1Vk6bdu9gOWqmCMprsHgfrPYF1JkRETqbItJgmb8Pb2LstJWXLSTI6qycn4Gs5DoXDTCcSq3NSdNh4R42LNx5YMpfk9vbZwtFZApFhAJkBnOii6DT3IYrWMPSFEE92BqcSLvSMcWWEc4UQUBXtRp9VXWe9AE4L/x+wXison9LRI8S0T4i2jcysjRadD19eBjXr2xz9S9sRFa0xRENaTjmUx3WwUHD4KLKwQcAbO5N+hJg8ffc3Fv9uqSty5tx5NIUiqXam3lkC0WcHZ1t+Porzj2bu1EoMTx7bGl8r5VDBVg1gitYzsCAN/0slphLweJpVLNOBctR7C5TsFK5IgpCnx9AKPB3OJfxn2X1J9bKfsns88ONEZwNisuaXNjei6eVSVQPniKYKyAWCpjvBeh1Nnx8C0kRjIUDiIUCGBx3m1zwup20NMAK6M5zHmqDOCl3KiI8MLMFkWavo6LRB8sdYJ0bm0VQI5tJxVxpi4dRYsDFiYwtMA8FNLM3lTMwt/X7krg+ivtpt2kP2AwZnIqpvdGwowYrW8BE2t3ra650NIXN68Fu067vM++xJUsRdKV7ikGUqw5Rvwa5AYYz3VXfVpL2e8sXGYol/R93neTbZE6afEz8mEaD7s+22QfL0aAakKcItgjfMS2ONOSWWMgM4JwKlqJ6MMY+xxjbzRjb3dXVuI56c+XSZAavDU4uivRAQFc91nX75yR48OIUOhJhl/NnNdjc04xzY7NmXXStODI0DSJgY08tAqwWZPIlnBqpfcB8aiSFYolhfQM7CIrsWtGG9kRYpQlCBVg1Y5mpYNknk6JLHLdo5zQZrnluF0HRrtlt0w4Ak0ZTUaly5FihB/QVfD0NsGj87l69z0uaCQO6g6BshT5fZvU+my96qx75IlKOCSRgt1VfiMkFoKs7BWOVSjym0XAAjMGUtZ3GIWLNmDN9kqtURHqPI32fLCt2V38o4+fpTAHFErO5SvKAKJ3Xe5gtpHs9T4XUmynbr6lYKHDVFEFnSqPNAENm0+6pYNldBGMOpY4xgDHdPn8hiIsVthRB4314jy2pGuk4l6KKm3cEPTwwyhdkqbBC8Cn5fGQL7v5x/Odc0VJFnQGtbnJhr90TXSBncwXbdROfQ4ogAJeCpWmEtngYRO760CXKIIAVwu/9xmPV/ttFzdNH9MnWPQ3c58fJhmVJ3wKsQ0NT2LK8eUH3h/myqbcZjOlpbLXkyKUpDHQkbN9z1cJPowt+DdUikKwFAY1w16ZufO/oCApFZxb10kIFWDWCrw63J+wrTqLFalKiYKVyuu2y6CIYDmgIaKQX8hdKUiWCBwqylXGn2gIIClbBoWDZmqw6VCrRYdDD5EK2eh8JOW3a7av0XPWIOQIsUXHqSCxs5a7NaNybCAdszkR8Us7TymLOSbmkbseZWhkOWFbsYvqkM0WQn68JicISDmrmcxeSOqfvozzwAAQDiIKHgpWXB1HWvkj6nQmmEWIgGTOC5dl8AeGAZusNJ57LhSpY/LMUCpDt+DpTBJ1tDMRzKauZMlNhTadArmCVXO0I7AYxzKHu6a/nNNTgf2dPrbRfb5k8r6G0L4IENDLNUWzuk2VSBMUgW2b735EIo7MpYjs/S5iXAKwnotVEFAbwbgCPz/FvvwXgTUTUZphbvMl4bMnz9OFhrGiPLZo6E0APsC5PZWtea5IrlHD88kxN0gMBYJMx8T8yVOsAa9p872qzrrsJ4YBm1rbVkmOXpxHQaFH1Grxnczcm03nsOzvu91B8Rd1Ra0Rvix5gOesckpEg+DxfmiKY0RuHimoLESEeCiCV1VOdohJ1xAywHJP3sgFWsYSspJkwIHcK5AX+fFJqnwxq9sbF4qTctGl3uwjyRsmzDtUOsAegC1Ww+ASzSRJ4ANak3O0i6Hae42Pn22RpdVYNljvVayyVN97bEUgaE+KF2Jfr+2j9XcKpYIUDSBtNbCOyGixJQMiDhnSuaFixy+rT3DVz0VBAqrKK+wgszIoesBSXZDRkW8mNR5zn0qlGuusQAcuYxTK5sKu45kKC4BRofj64wit5PWfzbv6+OY903UjIspIXx05EiAY1TGcKyBeZ7bqJhjQQAcNGv5qkoGAFA5p5vGU9c7qbI+b301KHMVYA8GHogdFhAF9hjB0kot8nogcBgIhuJKILAB4G8DdEdND42zEAfwA9SHsJwO8bjy1pZnMFvHDiCu7etKwmikut4EYXtVaxTo7MIFcsYUuVDS44/W0xNEWCOHKpdsHHbK6AM6MpbOqpzT6GAho29DT5Umt27PIMBjriDd+6QOT29V0IBzQ8dWhppwlWX3tVAABuHGjHZ3/2ety6rtP2uKYRWmIhjM/mpSmChRIDHGlkgJ7SJluh5xPcKamCpZkucYBzcqnZel25Ldz1beIk0emuFgq4A4yU0QNJVu9lWXu7UwSdfX4Aa1JOtLAGvID1d7LAA7DSypxGDldT/pyBh70PVhERIbDm+8sVLPH8Afp5H12gfbm4jwA8UgQLyOaL0hTBTL7oNiwxnjdl9HyRmZlwS3GZi6DTKdE5roWeSx5kO/eRv9e4Zw2WvPbJDHo8PgO8ZkqaJmsuQNg/H6L7pjS1Mu8eR8RwZiyWmMtgIiZ87sVjSkRIhPW6NsCuYAFWzZvTRRAAfuetW5Ar1L64u15hjD0J4EnHY78t/PwS9PQ/2d9+AcAXqjrABuP541eQLZRw75bFkx4IwJz8H7k0jRsH2mv2vtwyvdr25RwiwqaeZE0VrGOXZ8AYsKkGBhecLb3NePrwMBhjNV0IOHppGtv7a6NG1opEJIib13bg6SPD+PgDmxfVwsp8UApWjdA0wgM7eqUN87iToCxFkOOcMMXDAXMCKQYiXLGyUgTtk0vRvU+WsuSsFwkJgYJ7hb6cyYW+nzMZI8ASJp5WHYzcRTBTkE/KecPU9nh4wY0HedDiNI+wJuW8BsuRVuYxXnFS7kzHBARFSBIEmwGyYz+5crfw1DnvACseDkjdJ13jFffRSO+0zqVdbWEMZgG0K92zoBt5VEPB4mmizjRIHrCOzhgBVlByLmWfAdM63ej3ZlyzTgt3zxqsgtumvVBiLqdA+3tJVFFDwXKmcQL6MZV97gHrGo6GNFe6H1fHZarouu5kzVbDFUuPf3/9ElpioZoGIbWgtyWK5mgQR2qsehwamkI0pNU0pWxTbxKHL02BsdosxPBjurlGChagB1ijqZyZZl0LZrIFnBubxeZFUn8l8qaty3D6SgpHLvlTp1gPqACrDuCTnmbHRNFuPe2eRMomkK4UQZeC5TGpc6zeh5yr9x5F/IBlfiCrTeEr6nIFS5IiGCxjcmFMEhc6IQe8UwRjTtXDVRNjWWqHJMGi03nPpWBJarD4e7nUHSGQXAjxcMB8f5eCZbglZgpl+mB51GDxc+lsXg3IFdOoEXxNpfOe+wgsXMFqN1ME5cGyNEXQUIeyMlWJq7hFez2ds1WB7DrnCxAyC3du8mFTeAPOVgVupdlpRKLvi/W5dyqfXJUVDS44XB1vjS0s7VShWAiZfBHfPnQZ921dZvtsLAaICJt6m2s+gTx0cQqbepoXvMi4EDb1NGM6U8DFyUxN3u/IpWkkwgH0t8Vq8n4AsMWoaatlU+WjxrVTq1TIWnL/1h5oBDxxYMjvofjG4vrGa1D4pKc5NncFS0wViobdSoRVg+U9UZYV+OeLdjc8m1Ogo4jftbJvq00xUgS9AqxiSdoHiwcA6VzBtNs2j4cxkV5o/RUAtBsmF25lx6rb0cgRRHEXQaOflyh3WwqWPYgKaISgRtJ+ZPx5XC1zpQheYw0WEZl1WK5USNNF0KMPVsHdGJn/PC1VsOzpg07FFNCPaTzkqKczgoBoSHMpMXOl01CwnAFF3GnTHrbvpy3dUzBf4X2r9CBKTPUTTC4kDYP1bW4TmHLHLRwsv9jBbdqdefmxkDxFUPzdGXDqj3EFSzkFKmrHc8dGMJMt4IEdy/0eSlXY3JPE0UvTKNWofxJjzHQQrCW8F1Wt1LrDQ1PY2JO0tWmpNjwdsZZ1WLyurZapkLWioymCW9Z24onXhmqmfNYbKsCqA6wUwbkrWPFwwJxA2vtg2RUsWRqYmerlrMEygoiQsHof0AgaCXVWEvODPFdwJCv7vAbLvuofQLHEMJtzKyJc9ZhM501nP07SDLAW3vuDp905J+WxkKV6xEIBWxDF+2Bl8yXXKqwZLBY8tklS7jSNEA5qZr2XV/pcJZQ6V/qcR4qgaGThFURMS2qwLAXLfS5jgpIUrbBKB1iBtlP5ddbTOVMECyWGtOTa4yqulxLFAyJnnRUgN4HhP3suMgjmIK7eYkYzYaeCFQsJn3vHdwJPLXUuxojHaKFBu0KxEL55YAht8RBuWdvh91CqwqbeZsxkCxicSNfk/S5OZjCZztes/orDm+DWQq1jjOkOgjXex+ZoCCvb4zVVsI4MTSMZCaKvtXZKXS15y45enL6S8sX+vh5QAVYdwJt/ulwEo2UUrFDQXIV3mkQAoqIgmyh7q0r5AkMk4A4UzEaqAYmDmmGAIWvAOpOVTCBDjnFIVv0n0nmbNT1gBR6d1xB4tHsEHmJambvuxVIbnIqCXtNTdNXf8H2RKUIAEA1qQoqgY6IcubYaLMAKzpwKVjwcwHQmjxKzXzfBgIagRuY5kRl2TEvqrKxzaQT0kobKuoLlTGfTf6/EProdIQ0b/HTerUZeRVWyFCzJQoKsHYHx2mZg5nAKBASjF8dr8gWNsEMV5U6H2ULJdjz5Nv65dypY/Jg61VnAUsdVgKWoFZl8EU8dvoz7t/XYPjOLCW4jXit7b9PgosYKVjIawor2WE3289KUHkT6UZe0pbe55grWpt7kojWBuG9rD4Ia4YnXlmaaoK/fekTUTkTfIaLjxv9tkufsIqIfENFBIjpARO/yY6zVxKrBKpMiKFGwOHYFq7zJBQDMZI1tAbuCwW2jQ45gQGyYKluhz3GTC8mqv3T1nqseGb0/kpgGwMfPmHsCGQ0FcNu6Tty0ZuGroW1m4OFOuQRgpPO5g6hCiWE2W3AFSrY+WBIFK53XFSFnYBYNBTCRlqcIJiug7lhKnTNFMGi+r3s/tbIq1YwZfNnVSEA/l4BbjQT0Y+o8l5FgAOGAdk0qXTQUwB0bu7DbUTwfCmgIBzQwpj/HrkZa115QI9u1Z/bBclznmpHuaS0yuK/zdL4IxtyqMCCvQzR7weVLrmvKShG0m6MA9mvFed3Ey9Vg8RRBiYugQlENvnd0GLO5It6ySNMDAV3ZIaqNsgPoARYRatYfSmRTT23qzXgQV2sFC9AD1zOjKfM7u5owxnBkaHpR1l9x2hJh3LquE988cHFJpgn6vaz0mwCeZoytB/C08buTWQDvY4xtBXA/gE8SUWvthlh93n5dH/7rmze5etSUrcGSBFWArowAcpOLcgpWSFCwxBV/QJ9g5w13Na8Cf3ePrPLpUfo48q7Jpbhfsg7u//Chm/Dm7b2ux+dKu0eKYNxRpyMiqh6uAIurHkXZRDlgBizO1+SpkEB1UgS9lLpYWDPf1zl5j4QCUuUz6lQcJfVZ3ORCDD6iknRBkaZocMEGF5wvfmAPHtzpnsDx93MGIXyfpzN5V0DMWxU4HSH5Nt5MWKbU8utcpm7JFxn0NNlM3q1uWk6HkhRBcWHF5T7JFSz3sX779X34b2/ZsuB6N4VivnzjwBA6EmHctLr96k9uUBKRIFa1x2vWI+rQ0CRWdySk98Zqs7kniVMjM8gYac3V4rBhB7/RhyByc28zGAOO1uB8Dk6kMZ0tLMr6K5EHdvTi/Fgarw1O+j2UmuN3gPUQgMeMnx8D8DbnExhjxxhjx42fLwIYBtBVqwHWglUdCTy6d63rcTH1yeUi6DHR4qleUxKTC66iTMtW1APy+hPA6ufjTAPkP2ckDYNDzmBOMimdyhSkgYe5X6HKTwa7miL4xdtX494t3fb3laS2cSzVwz0pF/sZybZNS1QfwB58ONWdVR1xNEeD6LyGWrP1y5qwrDniel/xOoq6JvaaPH00YAUlzm2iyYWXGqm/r/tc/tIda/Hwbmk7oWvGsiz3OpfeaqRTqQXsTYhlSq3UKdCRJisLzKazBUnaqe50KLNpj5U5pvzcOlMmAWBtVxM+eNtq1+MKRTWYzRXwzOFh3L+tx9UyYLGxqae5Zj2iDg1NYbNPLRU29TajxIATwzNVfZ8jl6bR1xpzZfTUAp56WYs6LH7NLGYFCwDu29KDUIDwzSXoJuj3N98yxhg/6pcAlO1ESER7AIQBnKz2wOqBWCgAPl8tlyIom0SWSxGczhQQ0Mhm82oW3Usml3rqFHOpNGavq6zbvrycgiWqHu7UOe/AoxJoGuHjD2zBuu6k63E+eXWqBlz1mEq7J+WmvX2xhLBkoixz19PfQ/89qJHreD+4czl+/PF7rklteO9Nq/Dsr9/pyu32Uj7d45XV08lSBPm5dB8bu4LlnvR/6PY1uH19ddZK+LFzq5H8XMqDZT2IYvJtkmbCzmMz5zTZMqpoJCSmlnovQDidGa0aLFVnpfCX7x4ZQTq/uNMDOZt6kzg9mkI6V11lZyqTx/mxdM0NLji1qjc7MjRluhbWmuUtUbTEQjWpw+Kqpx9KXS1piYdw+/ouPHFg6bkJVj3AIqKniOh1yb+HxOcx/ch7Hn0i6gXw9wA+wBgreTznUSLaR0T7RkZGKroffkBEpkmBV1NRwK30REMB5I1mqdKJsqE2iIgqlXubsHovK+KXpEdxy3azwF9q++1OEbRNICXF+tWEH1PnsbaP177NtNuWpJWVVbCC8vcC9PPuDH7mi6bJXyNWNjAPSMcrqj6AuykuYBybMmpkNYLlcvAFCS81UpYiGBZSBJ1psqGAprtlFuSLDGaj5TLpgzIVd0YyjmjQ+vzKGg2bP4fl6qQsRVChqCXfPHARXckI9izi9EDOph49rezY5eqqWFzx8Ksp+KqOBKIhrap1WJl8EaeupHxTdYjIMLqoQa3ZpWmsbI9LTYkWGw9s78XgRBo/OTfh91BqStUDLMbYPYyxbZJ/Xwdw2QiceAA1LHsNImoG8ASAjzPGfljmvT7HGNvNGNvd1bU4sgiTkSDCAc09CSuTSme3ZpcFNgXP1Xtnw1zAqk3xShGUWbFbBf5uF0Hb6n2ZsTud56oNf2/npNxyZnQft0iQ27QXpdtkqZri77UOPOzKp3tMUxLl01W7J6m101PuvM9lNdI9yxHzCJajZkBYcC0kiJ8BuYrrTh8MO1MExV5wDpML22cxUF7BMsfrUaMY0Mg1fqsGa/HfsBX1y3gqh6cPD+OB7b01bYbrF2aPqCrX7Ry6qNewbPVJwQpohI09zVXdzxPDMyiWGDb7tI+AHsAeGZpCoShdx68Yfip1tebercsQDWn42k8u+D2UmuJ3iuDjAB4xfn4EwNedTyCiMIB/BfB/GGNfreHY6oKmaNBlVw7Ya2m8JmgBjWz572I6k1cKlNMljW8zTS5k9SdlgiipumU6z8kUrOqmCJbjanU7MxIXQbNHlkT5C9sUIflEv9aBR/QqKYJeFv6A4D4pBvAh4diUq6fz7VzKPxtTHmokV7DkdYjuZsLONEB5q4Ly29yBufc54vsTd7gjAoKLoA+1CwoF519fGUSuWMK7blzh91Bqwoq2OOLhgGnOUC0ODU2hsymMruTCa3Ovlc09SRwemq5aqhdXx/w0ftjS24xsoYQzo6mqvUcmX8RpH5W6WtMcDeHN23rxjf0Xq55KW0/4HWD9MYB7ieg4gHuM30FEu4no88ZzfgbAXgDvJ6L9xr9dvozWBxKRoKv+CrAmkJGg5up2zhUYt4lBmdV7YwKZzUtW7wOa1KKa13HJ0gDN1XtZypkxScxILKrrYVLuVbcDwDMwlaUIRoIaCiV3qiYgBFg1doOyKViSnl6y8QY1ApHQoFqi4PC/FxGvP9+CZY8UwYzMlEQ0epGk0Fo1WJJFBonJxdycNOUmFxyXyYWHMgdYaZEqRVDhF4wxfGXfeezsb/FVhaglmkbY2JOsvoI1NIXNvc2+9kza1JPEWCqH4elsVV7/yNAUIkENAx2Jqrz+XOApmNVsjnv88gxKDEtGwQKAd924AtPZAp5cQj2xfA2wGGOjjLG7GWPrjVTCMePxfYyxDxk//wNjLMQY2yX82+/nuGtJUyQonZyWm2jxAMGZfhcuo8RYTVHlfbBkNVj6NvJQqezpg7K+SrIx2ut2aht8xLwULJsTo3tSnvWwaZfVnXF48FFXKYKSAADQ89K91K1yx8bPGqyYYQAhqzPjuFQqIQ3QHXyRtJmwZfRSZpGBK7ySz4Bcwbr6MZUdz7gyuVD4zIELkzhyaRo/s0TUKw7vEVUtZSdfLOHYpRnf6q84PGiulsvewYtT2NST9DW1dG1XE8IBrapGF4eNYHypKFgAsGd1O1Z3JvDlfef9HkrN8FvBUlyF9+xZifffOuB6POZRLyQ+JlNUOLLVe0BfbXet3gc15IrMw75aQyoncREsa4DhPYEsZ0NdbeJXMUbQf3ZvYwyuJrOuv/MIJOsqRVBi6c8JB+RqnMylUvb6sZA/Sp1XuqfzZ0BQcQvy65w3Exa3ERFCAcJsztvIgn8Ggpr78yEbR6TMOTLrBCXXzfUr2/DwDf3YuaLFtU2hqAVfeuk8oiENb5X0plvMbO5NYmI2j8tT1VF2TgzPIFcs+eYgyNnap3+3VKOnEWMMr1+cxLY+f7+/wkEN65c14eBg9QKsI0PTiIUCWNker9p71BtEhId39+PHp8dwaqS6Vv/1ggqw6pw3b+/Fz920yvW4l+MdYCkT8wqwbDUhzkbDhKxhGy0LzPjkUlafJVvZL6vs+FiDFfOq27lKiqDXtvJKhGZ7z1phq92b134K2yS9nvTXs+9LQCMz6K55sBwpX4MFSAIsISCSmVzIrnNAPx6yXleiuhUOarbUnjlfN85Gw2UUrJZYCP/z4Z1IqhoshQ/M5gr4xqsX8ebtvb70MPITrkQcrlKa4IELEwCAHf2tVXn9udIUCWJNZwKvVyHAOjc2i+lMwfcACwB29LfgwIWJKtaaTWFjT9JV3rHYeef1/QhohK/sWxpmFyrAalC80tnEx9xqi7faECqjYIWD+uq9+Dzx78qZXMxkCyCyr96XU4RE9ajWKYJxD1UpOodJub5t7sfbLwXrav3TZD+Lv4cCZLspiOfcWfMnvkfNA6wFpAiKZiYyk4tZSRAF6AGXGXx5qLgRyWfK+b6y370aDdf6s6FQXI0nX7uEmWwB775xpd9DqTm8l1G1Gg7vPz+J5mgQAx3+Kx7b+lqqEmBxVWx7HQRYO/tbMZUp4MzobMVfmzGGw0vIQVCkuzmKOzd242s/uYB8lV0a6wEVYDUoZjpbyHtS61z9Lrdqzn/3So+S9fLhfyevP9Enmpm8bhjgtXrvHKNm2E8TyfetmnjWYC1QwZL1i+L4FXjYUgTLpEJ6BR/O868JKpVzH8X3u9a+XvPF00XQoxYQsAIn/Zp198GSXed8m9TIIiB8pjxScmWvZ3MR9GjEXWvlU6G4Gl9+6RzWdCZw40Cb30OpOS2xEPpaYzh4sfKBBwC8en4CO1e0+mpwwdne14KLkxmMzlQ2HfK1wUmEAxo2LPM/8Ni5ohWAftwrzaWpDMZn80uq/krkXTeuwMh0Ft89Iu3KtKhQAVaDEiujgHilCHoZTbi2SSeQ7jor/ns5kwvZe0UC3soOH39MYkNdbbxTBOemUrn2cw4qhV9OiRq5z6VX/zTAuiZkQVTEo+ZPf03N9r61wjSBKaPSzS9YJmGRwZlCa30+vAKn8teGdy2c81r0S/lUKMpxYngaL50Zx8O7V9RFEOAHO1e04FUjla+SZPJFHL08jZ0+pwdytlWpDuv1wUls7Em6vnv9YH13E6IhrSrnkwdtPIhbaty5sQtdyQj++cfn/B5K1fH/SlYsCK8JJCBOeN01MTxVz8vkApCnAZopgrLUqbw7+OLF/7L3KmemAOiTyFpPyAErrcwZRNjGOx9V0KNWSXyPWk+UQwENQY0QCboD2LkEH85AQfw7aYAV9CelzcvkIhjQTIcqmZEHR5oK65kmS9IUWi9jF+fv8zFH4Z97Pz4fSwUiup+IjhLRCSL6Tcn2CBF92dj+IyIaMB4fIKK00E7kr2s+eJ/4/PdPIxLU8PDufr+H4hs7+1txfixdcWXn4MVJFEusbibkW/sqb2POGMPrg1PY1lcfqk4woGF7X0tVFKxXzk8gHNCWZIogoB/bn92zEt89OoITw9VJqa0XVIDVoJgTyHI27ZIJr5nq5WqyKk/hc76OrPif14F6pVzNJ/AAeIBV+xoTr0l5OTWufBBVrtbMH2UH0CfpsvRLcTLvpbjIVhdNdcsjWPYj3ZNfP3LFzeO6LHedB6zrXBZ8mT8LryHWHTrVwrm6Lzrr2kzlWgVYVYGIAgA+C+CnAGwB8B4i2uJ42gcBjDPG1gH4CwB/Imw7KbQT+Q81GbTPDE9n8C8/GcQ7b+hHZ5N/TXD9ZpcRAO2v8KR8/3ldKdrZ739tEqA3jR3oiOO1C5VTsC6MpzGZzteFwQVnZ38rDl6cqnit0P5zE9i8vFl6v1wqvO/mVYgENfztc6f9HkpVUQFWgxIKaAgFqKxNu6zuxUuJCAe8J9e2wv0yk0tP1cPxuCYoaU5FSB+35lvgAbgntUFD9QEkznuhMvtvHBsqk45X60bDgB7Uya4NMfBwqltWEFVGwfI4l36ke8Y9ziXgHWCVu5ZlDpnSv3NYuFufAeeCxtwULC+bdqVgVY09AE4wxk4xxnIAvgTgIcdzHgLwmPHzVwHcTUs1Lw7AYy+eQb5UwoduX+P3UHxle38LNKp83c6BCxPobYmiuzla0de9Frb1tVQ0RbCeDC44O1a0Ilso4eilyqksxRLDa4OT2FUnwbJfdDRF8PDufvzrK4MYnsr4PZyqoQKsBiYZDSEZdU/QLRdB2eRS3zaf1fuyE09b01X53zkfF19HtooTCwV8WaEvb31vHDdXPVmZibJwHpzzLz9raWKh8gGW7LoJe6iR4mPSYN+vdM9yjbiDHueyXI2i7TzLg89yf1fWAKVMXZ/zPMXDAWikmglXkT4A54XfLxiPSZ/DGCsAmATQYWxbTUSvENGzRHS715sQ0aNEtI+I9o2MjFRu9DUmlS3gH354Dvdt6cHqzoTfw/GVeDiIDcuSeKXCAdar5yfqpv6Ks72vBYMTaYynchV5vdcGJxHUyHRjrAd2Gce8knVYx4enMZsrYtfK1oq9ZqPyodvWIF8q4YsvnvF7KFVDBVgNzF/93PX4xb3uVUPT5EKiKHgpETJ7aWvb3IIvWVqV+L9Iucn8luXN2OpDx3qvFEFAVGm8lQgvIwu5lb6fKYLBssG3NMAqkyJo/p2Ho6UfwfLK9jg6EmGs7WpybYt4fD7KG714LyTYarc8gi+XTXvZwJwvTJBZL8aJhgL4u0duxLtuXOHcLYX/DAFYyRi7DsCvAPgnIpJ+kTHGPscY280Y293V1VXTQVaSL790HpPpPB5949JWrzjXrWzFq+cnUCpVpn/SxGwOZ0ZnsaPOmofzVL7XK+Sa+PrgJDYsS9ZV2tyK9hja4qGKKpL7z+mvtWvF0nPadDLQmcD9W3vwDz88azr0LjZUgNXAvGFNB/paY67HvUwu9MfmUn/ivULv2lauPmlOdTvubf/jHTvwh2/b7nq82mxd3oKdK1rlk3Kv1MoySkS5fYz6WEvjmSJo1u7NXfUByu/nbes6cfemZdc03oXQ3RzFy//tXmzudc9v53Iu57OQIAZVMgMM53PEx8XxOH/3mmzcuakb7YmwdJvimhkEIEav/cZj0ucQURBAC4BRxliWMTYKAIyxlwGcBLCh6iP2iUKxhL97/jRuHGjD9SvVhBHQ67D0/kmpirzeAaPOaVedKVjbllfOSVA3uJisq/RAQE/x3rmi1TwHleDVCxNoiYXqop9ZPfDo3jWYyhTw5ZfOX/3JDYgKsBYhXjbtgDWJno+l+FyCKMB7Elk2wKoju+kV7XF8/ZdvlU5ezXQ/l4V7uca13oHuhmVJ3LGxy5fUjwe29+ItO3pdj8/JyKJsaqF72yO3DOB3H9x6TeOtNF5KnT2IKpMG6PF3zoba4nOdnxuxPsvr81ZrYxAFAOAlAOuJaDURhQG8G8Djjuc8DuAR4+d3AniGMcaIqMswyQARrQGwHsCpGo275jzx2hAGJ9J4dO9av4dSN+yssNHFq+cnQARsq7OanZZ4CCvb4xVpODw4kcb4bL7u9hEAdvS34tjlabNFx7Xyyrn66WdWD1y3sg17BtrxhedPL8rGw+oOvggpV4PlVRNSPg1QWKEvZwzgpWDJVI+AdxBYj3ilNM6lt5hsH1tiIXzxA3vQ01L7wuVfuG21tCB9TimC80z3rEc8VdyytYbe51msNXTeOL2cNAErbdB53IgIkaBWV+kySwWjpurDAL4F4DCArzDGDhLR7xPRg8bT/g5ABxGdgJ4KyK3c9wI4QET7oZtf/AfG2FhNd6BG5IslfPKp41jf3YS7N3X7PZy6YX13EolwoHIB1oUJrOlMoDlafzWX2/ta8Prg1DW/Dn+NelOwAGDXihaUGCoSSKayBRy7PL3kDS6c/Mc71mJwIo0vLcK+WLW3MFNUHasGq0yq13xMLuaQOkUEV71I2cllmcl8PTKXAMutbslrfeqVcgpWWQOMRttPj1TIuZhVAPOrNQwLwZdrW1ADst6pvErB8gfG2JMAnnQ89tvCzxkAD0v+7msAvlb1AdYB//zjczh9JYXPv283NE2txnMCGmF7f2X6JzHGsP/8JPZu6Lz2gVWBrX3NeOK1IUzO5tESX3gA+PrgJAIaYVMdGVxwdhgZJgcuTOKmNR3ln3wVXh+cRIlBGVw4uGNjF/asbscnnzqOt13Xh2QdLiYsFHUHX4REF6BELHT1njuqyVbvy048r1JnUm9YjoBOx7e5KFiNso9zCKLKBMsyF8F6xGuRoVyjZbvJhTwN0Pm4uK1c2qU0oPVwelQo/GY6k8ennjqOm1a34+7NSr1ysnNFKw4NTSFjNB9fKEOTGVyZydadgyBne4WMLl4bnMT67qa6/L7rbIqgrzWG/RVwEuSqZr2eT78gInz8zZsxmsrhb55dXBnVKsBahETK2rR7pEeVUansE08PlapMEOVMKxS3NYzqMYfj5jVhbxyVTh54AFY6W/n6rEbZT/k1W9YRUwgevVJoZccm5JEGKD7f63NajxMOheJvnj2F0VQOH39gs6olkXDdilbkiwyHhq4tfY6rYLyuq96ohNFFvRpciOxa0VoRRXL/+QmsaI+hYwk34/Zi54pWvHXncnz++VO4NLl4+mI1xoxIMS+8LMUB71VzcdJYvvhfvk068V6gTXs94pXSWNZuu+H20VtxK2/T3mBK3QKC5bm0MZCmAc5hm+yYRkOBhrluFEuHS5MZfP75U3hw53IzfUphh1twX+ukfP/5CYQChM299Zc6BwBtiTAGOuLYd2bhZYanr6QwmsrVddrczhUtuDCexsh09ppe59XzE8qevQz/5b6NKJWAT3znqN9DqRjqDr4IaTNc8NriEje8OQQK87KoNieQ7pXM8jVYDTYpD8n3pVyKYDkXwXqknBX7XAwwGiUg8PwMlFFx52LhLjtuXL2db5psWzykrNgVdceff/soSiXg1+/b6PdQ6paeliiWNUeu2eji+8ev4LqVbXV9/7hlXSd+dGoMhQU6wL1wchQAcOva+qwzA4CbVuu1Vy+cuLLg1xieyuDiZAY7lcGFJyva43jfzavwf1++gMPXqP7WC40xI1LMi77WGL75kdtwl8TdyasGS9PIM9WpbJNVs/7Ee3K5OCbl8skwESEc0BAOSmrQGi11bg4NqufbaLge8QqWbSpVmUUGL+VrvipVuWP6qXdfh995a33Z2yuWNi+evIL/+/IFvP/WAaxoV318yrFrRes1BVgj01kcGprCGzfUdxPqW9d2YjpbwIEFpgm+eOIK+lpjWFXHfaG29bWgLR7Cc8dHFvwarxjXwnV1rNTVAx++ax1aYiH81399DcUKNev2k8aYESnmzba+FperH1DeKc5LjSrvrkbSx8XHpMX/gQYLPq6i4ESkqk9jBpHl1JZwYH59sOqRa7Vpd17P5fu9WSYwrm1l6rOWt8bQlVS5+or6YCZbwK//3wMY6IjjY/es93s4dc8Nq9pwdnQWQ5PpBf398yf0yfze9fUdYN28Vld3XlyAulMqMfzg1ChuWdtR17V8AY1w2/oufP/4FTC2sEn/j06NIRzQsHW5UrDK0RoP4/ce3IpXzk3gc881vuGFrzM/Imonou8Q0XHjf88EVSJqJqILRPSZWo5xsTGXOhsvG2pA1ky4zOp98OqNhhulkD/qoXrwx8qpPo0TeHgrUXNpQtwotuJefeK4GgmUX2QIaZVJky2nYCkU9cQfPXEIQ5Np/PnP7EQ8rLq7XI07NurZI88cGV7Q3z937Ao6EmFsXd5cyWFVnPZEGFt6m/HCidF5/+2hoSlMzOZx67r6TQ/k7F3fiZHpLA4PTc/7bxljePrIZdy8tqNh5jt+8uDO5Xjz9h78xXeO4cilxk4V9PvO/psAnmaMrQfwNKyGjTL+AMBzNRnVIqbsRNljRX0uTVbLm1x49+NqFHUnFgogoBGCHqrgYmimXC4gLJfSGQs1mk371ffTK30wqJGr789cUgTL2ds3yvWhWJp87+gw/vnH5/GLe9fghlXtfg+nIVjf3YQV7TE8c3j+AVapxPD94yO4bX1nQ/QYu3VdB14+Nz5vW3pe03TL2mvrL1UL9hqpmgtJEzx1JYWzo7O4R7U0mBNEhD94aBuaY0H86ldeRa6wsPq+esDvO/tDAB4zfn4MwNtkTyKiGwAsA/Dt2gxr8VJu1dxLjSrbTNicXC5w9V4yKa1H3rNnJT75rl3SVIZwUJPuYzCgoS0eQmeDpHoFNEJHIoxOiY1suVqit+5cjj/96R2muUq9U86OPuSR8rpQN8BQmc9bucUOhaIemJjN4Te+dgAbljXhP9+zwe/hNAxEhLs3LcPzJ64gnZtf4HFoaApXZnJ1nx7IuWVdJ3KFEvadGZ/X371wchTru5vQ3Ryt0sgqx7LmKDb1JPHcsfkHWDzIvlNSE6+Q09EUwR+9fTsOXpzCZ5457vdwFozfd/ZljLEh4+dL0IMoG0SkAfhzAL92tRcjokeJaB8R7RsZWXhB4mKmvFOcR22KsELvbibsXWNSLvha05XA2q5EXedei6xoj+OtO5dLt3GTCxlPfvR2vP+WgSqOrLI88Z9uxwduHXA9Xi4w70pG8DM3rqj20CrG6s4EOpvCaIm5O8Z7qVFzSgOcr017gy0yKJYW+WIJv/xPP8FYKoc/f3iXSm+aJ3dt6ka2UMKLJ+dXn8RVkts31H/qHADsGWhHUCO8MI/9zBVKeOn0WEOkB3L2bujCvjPjmM0V5vV3Tx2+jE09SfS31a+RRz1y39Ye/PT1/fjL757Atw9e8ns4C6Lqd3YieoqIXpf8e0h8HtOrB2UVhL8E4EnG2IWrvRdj7HOMsd2Msd1dXY2x+lNryk2Ur1aDJbWhnkOKoCwF6uduWoWnf/WOeYy8fomENM86q96WWENNTHpaotLxLqZ0tnu2LMO+37pXup9X6xM3H+XX9noewZfMfVKh8BvGGH7rX1/HCydG8T/esQPblb30vLlpTTsS4QCenmcd1nPHRrC5txndyfpXdgAgEQniupWt8zK6eOXcONL5YkOkB3L2ru9CrljCD0/Nvd5scjaPfWfHcbdKD1wQf/i2bdjR34qPfmk/Xruw8IbWflH12RJj7B7G2DbJv68DuExEvQBg/C/7JroZwIeJ6AyAPwPwPiL642qPe7Fi1svMw4o7ZDqhea/el51cLoJJeTnKKViLhUaz1V8oXopT2XYEXMUtV4coq10LB8zPo0JRT/z1s6fw5X3n8ZG71uGdN/T7PZyGJBIM4Pb1XXjm8PCc3edS2QJePjuOvQ2iXnFuWduJ1wYnMZnOz+n5L5y4Ao2Am9Y0ToC1e6AN0ZCG547NPZB89vgIiiWGuza5krMUcyAWDuBv33cD2hNhfPCxl3BxYmGunH7h92zpcQCPGD8/AuDrzicwxn6OMbaSMTYAPU3w/zDGyplhKMpw//Ye/PE7tqOvNeba5pXqdC0r9F5/t5i4ZW0n3rBmcRd/r+5MYFNPEpt66tvV6lrxbFUwh3rC+S5AvO/mVfizh3de24AVigrzjVcv4k/+/Qge3Lkcv3Kvqru6Fu7a3I1LUxkcmmPj1B+cHEW+yPDGBqm/4ty6rhMlhjmrOy+cHMX2/lZpmna9Eg0F8IY1HfOqw3rm8GW0J8LYtaK1egNb5HQno/jfH7gR6VwRv/DFl+YcxNcDfs98/xjAvUR0HMA9xu8got1E9HlfR7ZIaY6G8O49K+VmDVexqC5X4C9bvS/XH2gx8Wv3bcSv37fJ72FUlfZEGP/+sb0Y6Ez4PZSqwh0hnZ+PUJl+VuVqsPjfyZS/NV1NuHeLWtlU1A9ffukcPvqlV3DjQBv+9J07VPrqNXLnxm4QAU/P0U3wueMjiIUCuGHAs2NNXbJrRStiocCc0gRnsgW8en4CtzZQeiBn7/ounLqSwvmx2as+t1As4btHR3Dnxm5pT1LF3NmwLIm/eu/1ODkyg3f9zQ9weSrj95DmhK8zX8bYKGPsbsbYeiOVcMx4fB9j7EOS53+RMfbh2o90aRAOatBId7+zPV6mlqps8b8q4lc0GOGgNv9U2Lm0KljkiwyKxoYxhs88cxy/8bXXcNv6LnzxA3saqna0XulKRrCzv3VOdViMMXzv6AhuXtvRML0TOeGghj2r2/H9E1dvxvujU6MolFhDGVxwuF37945e/Xz+5NwEJtN5VX9VIW5f34UvvP9GnB+bxTv+6kWcHJnxe0hXRd31FSahgFZ2hb5c/Um5FEE1uVQ0Cl6W+5ZK5b2QUC6FdrGnySoal3yxhN99/CD+7NvH8Pbr+vD59+1GIqKaCVeKuzd149XzExiZzpZ93rcPXca5sVm8dWdvjUZWWe7f1oNTIym8eLJ8muBjPziLjkQYN6xqLJUOANZ2JbC5txn/+4UzKBTL92d6+shlhAKE29c3XiBZr9y+vgtfevRmZPJFvPN/vYiXz86vNUCtUXd9hUnEY3IZ0AgaWelOIuX6/CgbakWj4bXIEJmLyYVaZFA0GMcvT+Mdf/UiHvvBWXzottX484d3qmu1wty9WU8D/vr+Qc/nMMbwqaeOY6AjjrfukLcDqXfecX0fljVH8OmnvfsW7T8/geeOjeBDt69pSIWUiPDRu9fh1JUUvnHgoufzsoUinjgwhJtWdyAZbZw6s0Zge38Lvvofb0EyGsLP/M0P8IlvH63bZsTqm1RhEjbqT7y2la3BUpNLxSLAyxFyTimC8+yRpVD4RbHE8LfPncIDf/k8BifS+Ov3Xo/fessWaKpWpOJs7k3i9vWd+NTTx3FlRq5ifefQZRwamsKH71rvStFvFCLBAP6fvWvxo9Nj+PHpMelzPvPMCbTEQvj5m1fVeHSV401berCpJ4m/fOYEiiV5OuTnv38aF8bT+MW9a2o8uqXB6s4EvvGR2/DQzuX49DMn8Pa/egFHL037PSwXjflJVlSF3pYoelvlvTcWkj7Y0RQBoBskKBSNQGcygg7J9WqpuPPrBdfbGkUoQOhsUp8Bhf+USgxPvjaEN3/q+/ijJw/jjRu68K2P7cX92xozLa0RICL8zlu3Ip0r4k/+7YhrO2MMn3r6OFZ1xPG2XY2pXnHes2clOpvC+Mtn3CrWoYtTeOrwZfzCravR1MApqJpG+Ojd63FqJIVvSlSswYk0PvPMCdy3dRneuKGx3CAbiZZYCJ941y789XtvwKXJDB749Pfxm187MCcDklrRuFe5ouJ87J4N+OU710m3hQNydctKA3SvfN440Ibv/todWL3InecUi4ff/KlNyObl6QYhj89AuUWGm9d0YN/H70VLXKWJKPwjnSviWwcv4X997ySOXp7Guu4mfOZnr8MD23uVU2ANWNfdhA/ethp/89wpvOemlbh+pVV/9NThYRy8OIX/+c4dDatecWLhAD50+xr88b8dwf7zEzZ78s9+9wSSkSDef+uAb+OrFPdt7cHGZUl8+unjeMuO5TaXwP/+xGGUGMNvPbDFxxEuHe7f1oPdA234zDMn8E8/PoevvnwB77yhH++7eQCbe5O+fr819qdZUVHCQc2zuFlXsGQpUN71J0SkgitFQ9EcDaErGZFu09MHJe0Nyli4E5EKrhoQIrqfiI4S0QkicvVdJKIIEX3Z2P4jIhoQtv2/xuNHiei+mg5cIJUt4Jkjl/Gfv7wfN/zhd/CxL+9HoVTCp969C9/62F68ZcdyFVzVkI/cvR7LmiP47a+/bqaWMcbwyaeOYVVHHG+/rs/nEVaG975hFVrjIXxGULFODE/jydeH8L5bVjVU7ysvNI3w0XvW46RDxXr++BU88doQfvnOdVjRHvdxhEuLzqYIfvfBrXju1+/Ez920Ev/yk0G8+dPfx5v+4jl85pnjODE8Pedm35VEKViKOeHlrqbqrBRLBe86RL1YW5Y+qGg8iCgA4LMA7gVwAcBLRPQ4Y+yQ8LQPAhhnjK0joncD+BMA7yKiLQDeDWArgOUAniKiDYyxYrXGmy+WMDSRwfnxWZwfm8XhoSm8fG4ch4emUSwxtMRCeGjXcjy0qw97BtpVnZVPNEWC+PgDW/Cf/vkVfOzL+5ErFHHk0jTOjs7iTxeBesVpigTxC7euxie+cwxv/6sXQAAuT2URCwXwwdsWT03S/YaK9RtfO4AvvngGm3qS+MHJUaxsj+NRVXvlCz0tUfzeQ9vw0Xs24MnXhvD4/ov4s28fw599+xha4yHcsLIN169qw0BHAivaY1jRFkdrPFS1hSYVYCnmRG9LFL0tMdfjEcMJKBZuPEcghWI+REMBxCTOVy3xEKIhDctb5PWLioZjD4ATjLFTAEBEXwLwEAAxwHoIwO8aP38VwGdIv0s/BOBLjLEsgNNEdMJ4vR9UY6ATsznc8IdP2YrtY6EAdq1oxS/dsRa7B9rxhjXtDddXabHy1h29+MpL5/HEgYsY6EhgS28zfv4Nq/CORaJecd5/6wCOXJrCdKYAAFjTFcSbt69bVPXYmkb47M9dj7//wRkcuTSNf3v9EibTeXzhkRsb0iFxMdGeCOO9b1iF975hFQYn0nj++Aj2nRnHy2fHXT3p3n3jCvzxT++oyjjID9msFuzevZvt27fP72EsGtK5IgIaSZWqbx+8hJtWd6hUKMWi5senx7CsOYJVHe6016lMHslIUKVcVRAiepkxttuH930ngPt5s3si+nkAN4lN7onodeM5F4zfTwK4CXrQ9UPG2D8Yj/8dgH9jjH3V8R6PAngUAFauXHnD2bNnFzRWPcXsOPpaY+hvi2FFexy9LdFFo4YsRgrFEgolpibhiwzGGNL5IuJhpVvUM9OZPM6PpU3Ff213E+7ceG3NoL3uVepKUMyJcgrVm7b21HAkCoU/7Fnd7rmtWfU6UcwDxtjnAHwO0BcDF/o6RIT/fO+Gio1LUX2CAQ1KUFx8EJEKrhqAZDSELctD2LK8uervpZa5FAqFQqGwGASwQvi933hM+hwiCgJoATA6x79VKBQKxSJHBVgKhUKhUFi8BGA9Ea0mojB004rHHc95HMAjxs/vBPAM0/PtHwfwbsNlcDWA9QB+XKNxKxQKhaJOUHqmQqFQKBQGjLECEX0YwLcABAB8gTF2kIh+H8A+xtjjAP4OwN8bJhZj0IMwGM/7CnRDjAKAX66mg6BCoVAo6hMVYCkUCoVCIcAYexLAk47Hflv4OQPgYY+//SMAf1TVASoUCoWirlEpggqFQqFQKBQKhUJRIRatTTsRjQBYmPdt/dEJ4Irfg6gT1LGwUMfCQh0Li8VyLFYxxrr8HkS1WUT3qsVy3VUCdSws1LGwUMfCYjEdC+m9atEGWIsJItrnRz+YekQdCwt1LCzUsbBQx0LhB+q6s1DHwkIdCwt1LCyWwrFQKYIKhUKhUCgUCoVCUSFUgKVQKBQKhUKhUCgUFUIFWI3B5/weQB2hjoWFOhYW6lhYqGOh8AN13VmoY2GhjoWFOhYWi/5YqBoshUKhUCgUCoVCoagQSsFSKBQKhUKhUCgUigqhAiyFQqFQKBQKhUKhqBAqwGowiOhXiYgRUaffY/EDIvqfRHSEiA4Q0b8SUavfY6o1RHQ/ER0lohNE9Jt+j8cviGgFEX2XiA4R0UEi+qjfY/IbIgoQ0StE9E2/x6JYuiz1+xSg7lWAuldx1L3KzVK4V6kAq4EgohUA3gTgnN9j8ZHvANjGGNsB4BiA/9fn8dQUIgoA+CyAnwKwBcB7iGiLv6PyjQKAX2WMbQHwBgC/vISPBeejAA77PQjF0kXdp0zUvUrdqzjqXuVm0d+rVIDVWPwFgP8CYMk6kzDGvs0YKxi//hBAv5/j8YE9AE4wxk4xxnIAvgTgIZ/H5AuMsSHG2E+Mn6ehf1n3+Tsq/yCifgAPAPi832NRLGmW/H0KUPcqqHuVibpX2Vkq9yoVYDUIRPQQgEHG2Kt+j6WO+AUA/+b3IGpMH4Dzwu8XsIS/qDlENADgOgA/8nkofvJJ6BPbks/jUCxR1H3KE3WvUvcqAOpeZfBJLIF7VdDvASgsiOgpAD2STR8H8F+hp10sesodB8bY143nfBy67P6PtRybov4goiYAXwPwMcbYlN/j8QMieguAYcbYy0R0h8/DUSxi1H3KQt2rFPNB3auW1r1KBVh1BGPsHtnjRLQdwGoArxIRoKca/ISI9jDGLtVwiDXB6zhwiOj9AN4C4G629Bq5DQJYIfzebzy2JCGiEPQb1j8yxv7F7/H4yK0AHiSiNwOIAmgmon9gjL3X53EpFhnqPmWh7lVlUfcqAXWvMlky9yrVaLgBIaIzAHYzxq74PZZaQ0T3A/gEgDcyxkb8Hk+tIaIg9ILpu6HfrF4C8LOMsYO+DswHSJ/FPQZgjDH2MZ+HUzcYq4K/xhh7i89DUSxhlvJ9ClD3KnWvslD3KjmL/V6larAUjcZnACQBfIeI9hPRX/s9oFpiFE1/GMC3oBfKfmUp3rAMbgXw8wDuMq6F/caqmEKhUPiNulepexVH3auWIErBUigUCoVCoVAoFIoKoRQshUKhUCgUCoVCoagQKsBSKBQKhUKhUCgUigqhAiyFQqFQKBQKhUKhqBAqwFIoFAqFQqFQKBSKCqECLIVCoVAoFAqFQqGoECrAUigUCoVCoVAoFIoKoQIshUKhUCgUCoVCoagQKsBSKBoMIvouEd1r/PyHRPSXfo9JoVAoFAqOuk8pljpBvwegUCjmze8A+H0i6gZwHYAHfR6PQqFQKBQi6j6lWNIQY8zvMSgUinlCRM8CaAJwB2Ns2u/xKBQKhUIhou5TiqWMShFUKBoMItoOoBdATt20FAqFQlFvqPuUYqmjAiyFooEgol4A/wjgIQAzRHS/z0NSKBQKhcJE3acUChVgKRQNAxHFAfwLgF9ljB0G8AfQ89wVCoVCofAddZ9SKHRUDZZCoVAoFAqFQqFQVAilYCkUCoVCoVAoFApFhVABlkKhUCgUCoVCoVBUCBVgKRQKhUKhUCgUCkWFUAGWQqFQKBQKhUKhUFQIFWApFAqFQqFQKBQKRYVQAZZCoVAoFAqFQqFQVAgVYCkUCoVCoVAoFApFhfj/AWsLf3SrpE2KAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 864x864 with 8 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"V = lambda x: 0.25*x**2\n",
|
|
"x = np.linspace(-5, 5, 100)\n",
|
|
"the_first_few = 4\n",
|
|
"\n",
|
|
"E, Psi = SEQStat(x, V)\n",
|
|
"\n",
|
|
"fig = plt.figure(figsize=(12,12))\n",
|
|
"\n",
|
|
"for n in range(the_first_few):\n",
|
|
" # TODO: Should SEQStat return normalized eigenfunctions? \n",
|
|
" # Normalize the found eigenfunctions\n",
|
|
" prob_mass = np.sum((x[1:] - x[:-1])*Psi[:-1, n]**2)\n",
|
|
" Psi[:, n] /= np.sqrt(prob_mass)\n",
|
|
" \n",
|
|
" # Confirm normalization\n",
|
|
" prob_mass = np.sum((x[1:] - x[:-1])*Psi[:-1, n]**2)\n",
|
|
" print(\"Eigenstate n =\", n, \"yields total probability mass =\", prob_mass)\n",
|
|
" \n",
|
|
" # Plot the eigenfunctions\n",
|
|
" ax = fig.add_subplot(the_first_few, 2, 2*n + 1)\n",
|
|
" ax.set_title(\"Eigenstate n = \" + str(n))\n",
|
|
" ax.plot(x, Psi[:, n], label=\"Eigenstate n = \" + str(n))\n",
|
|
" ax.set_xlabel(\"$x$\")\n",
|
|
" ax.set_ylabel(\"$\\Psi$\")\n",
|
|
" \n",
|
|
" # Plot the squared eigenfunctions to give an idea about probability\n",
|
|
" ax = fig.add_subplot(the_first_few, 2, 2*n + 2)\n",
|
|
" ax.plot(x, Psi[:, n]**2, label=\"Eigenstate n = \" + str(n))\n",
|
|
" ax.set_xlabel(\"$x$\")\n",
|
|
" ax.set_ylabel(\"$\\Psi^2$\")\n",
|
|
"\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "0d94afc9b832f5bc50c097e0f64281e1",
|
|
"grade": false,
|
|
"grade_id": "cell-d87f69447d0eb6dc",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"### Task 3\n",
|
|
"\n",
|
|
"Now we turn to the full dynamical problem, which can be numerically analyzed using the Crank-Nicolson approach, which averages over forward and backward scattering finite differences for the time derivative. Your task is to derive the corresponding formulas for the 1D SEQ from above, implement it, and apply it to study the time-dynamics for the 1D SEQ. Applying the Crank-Nicolson approach to the 1D SEQ from above results in an equation system of the form\n",
|
|
"\n",
|
|
"\\begin{align*}\n",
|
|
" \\mathbf{A} \\vec{w}_{j+1} = \\mathbf{B} \\vec{w}_{j}\n",
|
|
"\\end{align*}\n",
|
|
"\n",
|
|
"where $\\vec{w}_j$ is the space- and time-discretized approximation to $\\Psi(x_i, t_j)$ with $j$ being the time-discretization index. $\\mathbf{A}$ and $\\mathbf{B}$ are $(m-2)\\times(m-2)$ matrices of the form\n",
|
|
"\n",
|
|
"\\begin{align*}\n",
|
|
"\\mathbf{A} =\n",
|
|
" \\left( \\begin{array}{cccc}\n",
|
|
" 1 + \\lambda_1 + \\lambda_2 V_1& -\\frac{\\lambda_1}{2} & & 0\\\\\n",
|
|
" -\\frac{\\lambda_1}{2} & \\ddots & \\ddots & \\\\\n",
|
|
" & \\ddots & \\ddots & -\\frac{\\lambda_1}{2} \\\\\n",
|
|
" 0 & & -\\frac{\\lambda_1}{2} & 1 + \\lambda_1 + \\lambda_2 V_{m-1} \n",
|
|
" \\end{array} \\right)\n",
|
|
"\\end{align*}\n",
|
|
"\n",
|
|
"and\n",
|
|
"\n",
|
|
"\\begin{align*}\n",
|
|
"\\mathbf{B} =\n",
|
|
" \\left( \\begin{array}{cccc}\n",
|
|
" 1 - \\lambda_1 - \\lambda_2 V_1& +\\frac{\\lambda_1}{2} & & 0\\\\\n",
|
|
" +\\frac{\\lambda_1}{2} & \\ddots & \\ddots & \\\\\n",
|
|
" & \\ddots & \\ddots & +\\frac{\\lambda_1}{2} \\\\\n",
|
|
" 0 & & +\\frac{\\lambda_1}{2} & 1 - \\lambda_1 - \\lambda_2 V_{m-1} \n",
|
|
" \\end{array} \\right).\n",
|
|
"\\end{align*}\n",
|
|
"\n",
|
|
"Derive this form and thereby the definitions of $\\lambda_1$ and $\\lambda_2$. Start with recapping the derivation of the Crank-Nicolson approach (see Wikipedia or *Numerical Analysis* book by Burden and Faires).\n",
|
|
"\n",
|
|
"Write your definitions of $\\lambda_1$ and $\\lambda_2$ in the Markdown cell below. (Double click on \"YOUR ANSWER HERE\" to open the cell, and ctrl+enter to compile.) "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "44809512ee599c3aed3922d7bf58c760",
|
|
"grade": true,
|
|
"grade_id": "cell-5934430865cb8756",
|
|
"locked": false,
|
|
"points": 2,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"YOUR ANSWER HERE"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "617d1c88d7513c16a283d6f779e735f8",
|
|
"grade": false,
|
|
"grade_id": "cell-c0e77a843337deab",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"### Task 4\n",
|
|
"\n",
|
|
"The equation system from above can be used to calculate the time propagation by multiplying the whole expression from the left by $\\mathbf{A}^{-1}$. The only needed ingredients are the boundary conditions $w_{i=0,j} = w_{i=m-1,j} = 0$ for all $j$ (not explicitly needed, just used for the derivation of $\\mathbf{A}$ and $\\mathbf{B}$) and the initial value $w_{i,j=0} = f(x_i)$. \n",
|
|
"\n",
|
|
"Implement the Crank-Nicolson approach for our 1D SEQ in a Python function $\\text{SEQDyn(x, t, V, f)}$, where $\\text{x}$ and $\\text{t}$ are the discretized spatial and time grids, $\\text{V}$ is the potential, and $\\text{f}$ is the function defining the boundary conditions. The function should return a two-dimensional array, which stores the eigenfunction $\\Psi(x_i, t_j)$ at all discretized spatial and time coordinates.\n",
|
|
"\n",
|
|
"Apply it to the SEQ from task 2.2, with $V(x) = 0.25 x^2$ and $f(x) = \\operatorname{exp}(-x^2) / 2.5$. Use $-5 \\leq x \\leq +5$ with $100$ steps and $0 \\leq t \\leq 50$ with $1000$ steps. Animate your solution (see exercise 9)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "101995c7f2d3fae58c008aba5249bc03",
|
|
"grade": true,
|
|
"grade_id": "cell-0285caf76b42668f",
|
|
"locked": false,
|
|
"points": 3,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def SEQDyn(x, t, V, f):\n",
|
|
" # YOUR CODE HERE\n",
|
|
" raise NotImplementedError()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "dd33620bad76db58026f0f3969c4deef",
|
|
"grade": true,
|
|
"grade_id": "cell-908842d3cfe8780f",
|
|
"locked": false,
|
|
"points": 3,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Animate your solution here ...\n",
|
|
"\n",
|
|
"# YOUR CODE HERE\n",
|
|
"raise NotImplementedError()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "ff153ed7134e0e5ce02e07496c481fed",
|
|
"grade": false,
|
|
"grade_id": "cell-c7b697a60de4d952",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"### [Optional] Task 5\n",
|
|
"\n",
|
|
"What happens when your initial condition is set to one of the eigenfunctions you obtained from the static 1D SEQ?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "b37536c5609e25f4d50e90d48c2086fe",
|
|
"grade": true,
|
|
"grade_id": "cell-9db256b1ad3624d2",
|
|
"locked": false,
|
|
"points": 0,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# YOUR CODE HERE\n",
|
|
"raise NotImplementedError()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"deletable": false,
|
|
"editable": false,
|
|
"nbgrader": {
|
|
"cell_type": "markdown",
|
|
"checksum": "2187f548a079c7c24ed4d26569038579",
|
|
"grade": false,
|
|
"grade_id": "cell-c3897fb054824511",
|
|
"locked": true,
|
|
"schema_version": 3,
|
|
"solution": false,
|
|
"task": false
|
|
}
|
|
},
|
|
"source": [
|
|
"### [Optional] Task 6\n",
|
|
"\n",
|
|
"Change the potential to a staggered one of the form \n",
|
|
"\n",
|
|
"\\begin{align*}\n",
|
|
" V(x) = \\left\\{ \n",
|
|
" \\begin{array}{cc} \n",
|
|
" +15 & -4.0 < x < -3.5, \\, -2.5 < x < -2.0, \\, -1.0 < x < -0.5, \\\\ \n",
|
|
" +15 & +0.5 < x < +1.0, \\, +2.0 < x < +2.5, \\, +3.5 < x < +4.0, \\\\ \n",
|
|
" 0 & \\text{else}\n",
|
|
" \\end{array} \\right.\n",
|
|
"\\end{align*}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"deletable": false,
|
|
"nbgrader": {
|
|
"cell_type": "code",
|
|
"checksum": "63921e0b8a563b6176982116089af413",
|
|
"grade": true,
|
|
"grade_id": "cell-0dc7ed106484a47b",
|
|
"locked": false,
|
|
"points": 0,
|
|
"schema_version": 3,
|
|
"solution": true,
|
|
"task": false
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def V(x):\n",
|
|
" if -4.0 < x < -3.5 or -2.5 < x < -2.0 or -1.0 < x < -0.5:\n",
|
|
" return 15.\n",
|
|
" if 0.5 < x < 1.0 or 2.0 < x < 2.5 or 3.5 < x < 4.0:\n",
|
|
" return 15.\n",
|
|
" return 0"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|