Files
superconductivity/superconductivity_assignment2_kvkempen.tex

76 lines
1.8 KiB
TeX
Executable File

\documentclass[a4paper, 11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[
a4paper,
headheight = 20pt,
margin = 1in,
tmargin = \dimexpr 1in - 10pt \relax
]{geometry}
\usepackage{fancyhdr} % for headers and footers
\usepackage{graphicx} % for including figures
\usepackage{booktabs} % for professional tables
\setlength{\headheight}{14pt}
\fancypagestyle{plain}{
\fancyhf{}
\fancyhead[L]{\sffamily Radboud University Nijmegen}
\fancyhead[R]{\sffamily Superconductivity (NWI-NM117), Q3+Q4}
\fancyfoot[R]{\sffamily\bfseries\thepage}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0.5pt}
}
\pagestyle{fancy}
\usepackage{siunitx}
\usepackage{hyperref}
\usepackage{float}
\usepackage{mathtools}
\newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}}
\title{Superconductivity - Assignment 2}
\author{
Kees van Kempen (s4853628)\\
\texttt{k.vankempen@student.science.ru.nl}
}
\AtBeginDocument{\maketitle}
% Start from 4
\setcounter{section}{3}
\begin{document}
\section{Temperature dependence in Landau model}
In the Landau model, free energy is given as function of order parameter $\psi$ and temperature $T$ as
\[
\mathcal{F} = a(T - T_c) \psi^2 + \frac{\beta}{2}\psi^4.
\]
To find the equilibrium value with respect to the order parameter $\psi_0(T)$,
we need to equate the derivatives with respect to both $T$ and $\psi(T)$ to zero.
\[
0 = \frac{\delta\mathcal{F}}{\delta\psi} = \frac{\partial \mathcal{F}}{\partial \psi} - \nabla \cdot \frac{\partial \mathcal{F}}{\partial (\nabla \psi)}
\]
Now we seek the Q = TdS, C = dQ/dT = T dS/dT
For the entropy, we know
\[
S = -\pfrac{}
\]
\section{Type-I superconducting foil}
\section{Type II superconductors and the vortex lattice}
\section{Currents inside type-II superconducting cylinder}
\bibliographystyle{vancouver}
\bibliography{references.bib}
%\appendix
\end{document}