\documentclass[a4paper, 11pt]{article} \usepackage[utf8]{inputenc} \usepackage[ a4paper, headheight = 20pt, margin = 1in, tmargin = \dimexpr 1in - 10pt \relax ]{geometry} \usepackage{fancyhdr} % for headers and footers \usepackage{graphicx} % for including figures \usepackage{booktabs} % for professional tables \setlength{\headheight}{14pt} \fancypagestyle{plain}{ \fancyhf{} \fancyhead[L]{\sffamily Radboud University Nijmegen} \fancyhead[R]{\sffamily Superconductivity (NWI-NM117), Q3+Q4} \fancyfoot[R]{\sffamily\bfseries\thepage} \renewcommand{\headrulewidth}{0.5pt} \renewcommand{\footrulewidth}{0.5pt} } \pagestyle{fancy} \usepackage{siunitx} \usepackage{hyperref} \usepackage{float} \usepackage{mathtools} \newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}} \title{Superconductivity - Assignment 2} \author{ Kees van Kempen (s4853628)\\ \texttt{k.vankempen@student.science.ru.nl} } \AtBeginDocument{\maketitle} % Start from 4 \setcounter{section}{3} \begin{document} \section{Temperature dependence in Landau model} In the Landau model, free energy is given as function of order parameter $\psi$ and temperature $T$ as \[ \mathcal{F} = a(T - T_c) \psi^2 + \frac{\beta}{2}\psi^4. \] To find the equilibrium value with respect to the order parameter $\psi_0(T)$, we need to equate the derivatives with respect to both $T$ and $\psi(T)$ to zero. \[ 0 = \frac{\delta\mathcal{F}}{\delta\psi} = \frac{\partial \mathcal{F}}{\partial \psi} - \nabla \cdot \frac{\partial \mathcal{F}}{\partial (\nabla \psi)} \] Now we seek the Q = TdS, C = dQ/dT = T dS/dT For the entropy, we know \[ S = -\pfrac{} \] \section{Type-I superconducting foil} \section{Type II superconductors and the vortex lattice} \section{Currents inside type-II superconducting cylinder} \bibliographystyle{vancouver} \bibliography{references.bib} %\appendix \end{document}