Files
superconductivity/superconductivity_assignment5_kvkempen.tex

75 lines
2.2 KiB
TeX
Executable File

\documentclass[a4paper, 11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[
a4paper,
headheight = 20pt,
margin = 1in,
tmargin = \dimexpr 1in - 10pt \relax
]{geometry}
\usepackage{fancyhdr} % for headers and footers
\usepackage{graphicx} % for including figures
\usepackage{booktabs} % for professional tables
\setlength{\headheight}{14pt}
\fancypagestyle{plain}{
\fancyhf{}
\fancyhead[L]{\sffamily Radboud University Nijmegen}
\fancyhead[R]{\sffamily Superconductivity (NWI-NM117), Q3+Q4}
\fancyfoot[R]{\sffamily\bfseries\thepage}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0.5pt}
}
\pagestyle{fancy}
\usepackage{siunitx}
\usepackage{hyperref}
\usepackage{float}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{todonotes}
\setuptodonotes{inline}
\usepackage{mhchem}
\usepackage{listings}
\newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}}
\title{Superconductivity - Assignment 5}
\author{
Kees van Kempen (s4853628)\\
\texttt{k.vankempen@student.science.ru.nl}
}
\AtBeginDocument{\maketitle}
% Start from 8
\setcounter{section}{16}
\begin{document}
\section{$T_c$ upper limit in BCS}
In BCS theory, the formation of Cooper pairs is mediated by phonons.
There is a phonon-electron interaction quantified by the dimensionless quantity
\[
\lambda := Vg(\epsilon_F)
\]
with $V$ Cooper's approximate potential and $g(\epsilon_F)$ the density of states near the Fermi surface for the electrons.
A thorough discussion can be found in Annett's book \cite[chapter 6]{annett} and in the slides of week 6 of this course.
The binding energy of the Cooper pairs (i.e. the energy gain of forming these pairs) is
\[
-E = 2\hbar\omega_De^{-1/\lambda}.
\]
In the weak coupling limit of the BCS theory, the case we have considered so far, it is assumed that $\lambda << 1$.
It is when this assumption breaks down, BCS does not work and we find an upper limit to the critical temperature $T_c$.
We will look at a way to express the critical temperature in terms we can derive, and than look at the values that maximize this critical temperature whilst still following BCS theory.
\section{Energy gap $\Delta$ et al.}
\bibliographystyle{vancouver}
\bibliography{references.bib}
\end{document}