\documentclass[a4paper, 11pt]{article} \usepackage[utf8]{inputenc} \usepackage[ a4paper, headheight = 20pt, margin = 1in, tmargin = \dimexpr 1in - 10pt \relax ]{geometry} \usepackage{fancyhdr} % for headers and footers \usepackage{graphicx} % for including figures \usepackage{booktabs} % for professional tables \setlength{\headheight}{14pt} \fancypagestyle{plain}{ \fancyhf{} \fancyhead[L]{\sffamily Radboud University Nijmegen} \fancyhead[R]{\sffamily Superconductivity (NWI-NM117), Q3+Q4} \fancyfoot[R]{\sffamily\bfseries\thepage} \renewcommand{\headrulewidth}{0.5pt} \renewcommand{\footrulewidth}{0.5pt} } \pagestyle{fancy} \usepackage{siunitx} \usepackage{hyperref} \usepackage{float} \usepackage{mathtools} \usepackage{amsmath} \usepackage{todonotes} \setuptodonotes{inline} \usepackage{mhchem} \usepackage{listings} \newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}} \title{Superconductivity - Assignment 5} \author{ Kees van Kempen (s4853628)\\ \texttt{k.vankempen@student.science.ru.nl} } \AtBeginDocument{\maketitle} % Start from 8 \setcounter{section}{16} \begin{document} \section{$T_c$ upper limit in BCS} In BCS theory, the formation of Cooper pairs is mediated by phonons. There is a phonon-electron interaction quantified by the dimensionless quantity \[ \lambda := Vg(\epsilon_F) \] with $V$ Cooper's approximate potential and $g(\epsilon_F)$ the density of states near the Fermi surface for the electrons. A thorough discussion can be found in Annett's book \cite[chapter 6]{annett} and in the slides of week 6 of this course. The binding energy of the Cooper pairs (i.e. the energy gain of forming these pairs) is \[ -E = 2\hbar\omega_De^{-1/\lambda}. \] In the weak coupling limit of the BCS theory, the case we have considered so far, it is assumed that $\lambda << 1$. It is when this assumption breaks down, BCS does not work and we find an upper limit to the critical temperature $T_c$. We will look at a way to express the critical temperature in terms we can derive, and than look at the values that maximize this critical temperature whilst still following BCS theory. \section{Energy gap $\Delta$ et al.} \bibliographystyle{vancouver} \bibliography{references.bib} \end{document}