ass2: Add comma, answer the gauge equality criteria
This commit is contained in:
@ -28,6 +28,7 @@
|
||||
\usepackage{hyperref}
|
||||
\usepackage{float}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}}
|
||||
|
||||
@ -135,7 +136,7 @@ This gives us our final expression for $B(z)$:
|
||||
\end{cases}.
|
||||
\]
|
||||
|
||||
The supercurrent follows from the Maxwell-Amp\`ere law considering that there are no other currents, and we look at a current steady over time ($\pfrac{\vec{E}}{t} = 0$):
|
||||
The supercurrent follows from the Maxwell-Amp\`ere law, considering that there are no other currents, and we look at a current steady over time ($\pfrac{\vec{E}}{t} = 0$):
|
||||
\[
|
||||
\nabla\times\vec{B}(z) = \mu_0\vec{J_s}
|
||||
\]
|
||||
@ -164,6 +165,26 @@ as $A_y \perp \hat{y}$, giving zero partial derivative.
|
||||
In our case, indeed the rigid gauge choice gives the criterium for the London gauge ($\nabla \cdot \vec{A} = 0$).
|
||||
\end{enumerate}
|
||||
|
||||
In the rigid gauge, the order parameter $\psi$ is constant in space and time.
|
||||
To then also have that $\nabla \cdot \vec{A} = 0$, follows from the expression for the supercurrent as we saw earlier.
|
||||
|
||||
Reversely, assume that $\nabla \cdot \vec{A} = 0$, and look at what conditions need to be met in order to imply rigid gauge.
|
||||
Again, we look at the expression for the supercurrent as function of $\theta$ and $\vec{A}$,
|
||||
\begin{align*}
|
||||
\vec{J_s} &= -\frac{2e\hbar n_s}{m}(\nabla\theta + \frac{2e\vec{A}}{\hbar}) \\
|
||||
\iff \frac{2e}{\hbar}\vec{A} &= -\frac{m}{2e\hbar n_s} \vec{J_s} - \nabla\theta,
|
||||
\end{align*}
|
||||
and take the divergence,
|
||||
\[
|
||||
\frac{2e}{\hbar}\nabla \cdot \vec{A} = -\frac{m}{2e\hbar n_s} \nabla \cdot \vec{J_s} - \Delta\theta = 0
|
||||
\implies \Delta\theta = -\frac{m}{2e\hbar n_s} \nabla \cdot \vec{J_s}.
|
||||
\]
|
||||
This is what only the London gauge implies.
|
||||
But when is then the rigid gauge applied by this?
|
||||
This is the case for $\nabla \cdot \vec{J_s}$, or, in words, when there is no conservation of supercurrent.
|
||||
If this is not the case (if the divergence is non-zero), there is conversion between normal current and supercurrent.
|
||||
This result seems to Waldram's conclusion in \cite[p. 24--26]{waldram}.
|
||||
|
||||
\section{Type II superconductors and the vortex lattice}
|
||||
|
||||
\section{Currents inside type-II superconducting cylinder}
|
||||
|
||||
Reference in New Issue
Block a user