ass2: Add first brainfarts on the Landau theory

This commit is contained in:
2022-02-22 20:50:52 +01:00
parent 3dd77db866
commit b3168f6cab

View File

@ -29,6 +29,8 @@
\usepackage{float}
\usepackage{mathtools}
\newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}}
\title{Superconductivity - Assignment 2}
\author{
Kees van Kempen (s4853628)\\
@ -41,8 +43,24 @@
\begin{document}
\section{Temperature dependence in Ginzburg-Landau model}
\section{Temperature dependence in Landau model}
In the Landau model, free energy is given as function of order parameter $\psi$ and temperature $T$ as
\[
\mathcal{F} = a(T - T_c) \psi^2 + \frac{\beta}{2}\psi^4.
\]
To find the equilibrium value with respect to the order parameter $\psi_0(T)$,
we need to equate the derivatives with respect to both $T$ and $\psi(T)$ to zero.
\[
0 = \frac{\delta\mathcal{F}}{\delta\psi} = \frac{\partial \mathcal{F}}{\partial \psi} - \nabla \cdot \frac{\partial \mathcal{F}}{\partial (\nabla \psi)}
\]
Now we seek the Q = TdS, C = dQ/dT = T dS/dT
For the entropy, we know
\[
S = -\pfrac{}
\]
\section{Type-I superconducting foil}
\section{Type II superconductors and the vortex lattice}