ass2: \bar{h} \neq \hbar
This commit is contained in:
@ -147,7 +147,7 @@ Reordering and calculating the curl gives:
|
|||||||
\item
|
\item
|
||||||
From the derivation of the Ginzburg-Landau theory, we get the following expression for the supercurrent $\vec{J_s}$:
|
From the derivation of the Ginzburg-Landau theory, we get the following expression for the supercurrent $\vec{J_s}$:
|
||||||
\[
|
\[
|
||||||
\vec{J_s} = -\frac{2e\bar{h}n_s}{m}(\nabla\theta + \frac{2e\vec{A}}{\bar{h}})
|
\vec{J_s} = -\frac{2e\hbar n_s}{m}(\nabla\theta + \frac{2e\vec{A}}{\hbar})
|
||||||
\]
|
\]
|
||||||
Using the rigid gauge, we set $\theta = 0$.
|
Using the rigid gauge, we set $\theta = 0$.
|
||||||
Next, we can equate the previously found supercurrent for our foil to the Ginzburg-Landau found one and reorder to find $\vec{A}$:
|
Next, we can equate the previously found supercurrent for our foil to the Ginzburg-Landau found one and reorder to find $\vec{A}$:
|
||||||
|
|||||||
Reference in New Issue
Block a user