diff --git a/superconductivity_assignment2_kvkempen.tex b/superconductivity_assignment2_kvkempen.tex index 45d9286..a5c22ff 100755 --- a/superconductivity_assignment2_kvkempen.tex +++ b/superconductivity_assignment2_kvkempen.tex @@ -147,7 +147,7 @@ Reordering and calculating the curl gives: \item From the derivation of the Ginzburg-Landau theory, we get the following expression for the supercurrent $\vec{J_s}$: \[ - \vec{J_s} = -\frac{2e\bar{h}n_s}{m}(\nabla\theta + \frac{2e\vec{A}}{\bar{h}}) + \vec{J_s} = -\frac{2e\hbar n_s}{m}(\nabla\theta + \frac{2e\vec{A}}{\hbar}) \] Using the rigid gauge, we set $\theta = 0$. Next, we can equate the previously found supercurrent for our foil to the Ginzburg-Landau found one and reorder to find $\vec{A}$: