09: Move stand-alone functionality to function main
This commit is contained in:
@ -48,38 +48,42 @@ def batch_estimate(data,observable,k):
|
||||
values = np.apply_along_axis(observable, 1, batches)
|
||||
return np.mean(values), np.std(values)/np.sqrt(k-1)
|
||||
|
||||
lamb = 1.5
|
||||
kappas = np.linspace(0.08,0.18,11)
|
||||
width = 3
|
||||
num_sites = width**4
|
||||
delta = 1.5 # chosen to have ~ 50% acceptance
|
||||
equil_sweeps = 10
|
||||
measure_sweeps = 2
|
||||
measurements = 20
|
||||
def main():
|
||||
lamb = 1.5
|
||||
kappas = np.linspace(0.08,0.18,11)
|
||||
width = 3
|
||||
num_sites = width**4
|
||||
delta = 1.5 # chosen to have ~ 50% acceptance
|
||||
equil_sweeps = 10
|
||||
measure_sweeps = 2
|
||||
measurements = 20
|
||||
|
||||
mean_magn = []
|
||||
for kappa in kappas:
|
||||
phi_state = np.zeros((width,width,width,width))
|
||||
run_scalar_MH(phi_state,lamb,kappa,delta,equil_sweeps * num_sites)
|
||||
magnetizations = np.empty(measurements)
|
||||
for i in range(measurements):
|
||||
run_scalar_MH(phi_state,lamb,kappa,delta,measure_sweeps * num_sites)
|
||||
magnetizations[i] = np.mean(phi_state)
|
||||
mean, err = batch_estimate(np.abs(magnetizations),lambda x:np.mean(x),10)
|
||||
mean_magn.append([mean,err])
|
||||
|
||||
output_filename = 'preliminary_simulation.h5'
|
||||
with h5py.File(output_filename,'a') as f:
|
||||
if not "mean-magn" in f:
|
||||
dataset = f.create_dataset("mean-magn", chunks=True, data=mean_magn)
|
||||
# store some information as metadata for the data set
|
||||
dataset.attrs["lamb"] = lamb
|
||||
dataset.attrs["kappas"] = kappas
|
||||
dataset.attrs["width"] = width
|
||||
dataset.attrs["num_sites"] = num_sites
|
||||
dataset.attrs["delta"] = delta
|
||||
dataset.attrs["equil_sweeps"] = equil_sweeps
|
||||
dataset.attrs["measure_sweeps"] = measure_sweeps
|
||||
dataset.attrs["measurements"] = measurements
|
||||
dataset.attrs["start time"] = starttime
|
||||
dataset.attrs["stop time"] = time.asctime()
|
||||
|
||||
mean_magn = []
|
||||
for kappa in kappas:
|
||||
phi_state = np.zeros((width,width,width,width))
|
||||
run_scalar_MH(phi_state,lamb,kappa,delta,equil_sweeps * num_sites)
|
||||
magnetizations = np.empty(measurements)
|
||||
for i in range(measurements):
|
||||
run_scalar_MH(phi_state,lamb,kappa,delta,measure_sweeps * num_sites)
|
||||
magnetizations[i] = np.mean(phi_state)
|
||||
mean, err = batch_estimate(np.abs(magnetizations),lambda x:np.mean(x),10)
|
||||
mean_magn.append([mean,err])
|
||||
|
||||
output_filename = 'preliminary_simulation.h5'
|
||||
with h5py.File(output_filename,'a') as f:
|
||||
if not "mean-magn" in f:
|
||||
dataset = f.create_dataset("mean-magn", chunks=True, data=mean_magn)
|
||||
# store some information as metadata for the data set
|
||||
dataset.attrs["lamb"] = lamb
|
||||
dataset.attrs["kappas"] = kappas
|
||||
dataset.attrs["width"] = width
|
||||
dataset.attrs["num_sites"] = num_sites
|
||||
dataset.attrs["delta"] = delta
|
||||
dataset.attrs["equil_sweeps"] = equil_sweeps
|
||||
dataset.attrs["measure_sweeps"] = measure_sweeps
|
||||
dataset.attrs["measurements"] = measurements
|
||||
dataset.attrs["start time"] = starttime
|
||||
dataset.attrs["stop time"] = time.asctime()
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user