09: Copy example code before adaption
This commit is contained in:
71
Exercise sheet 9/latticescalar.py
Normal file
71
Exercise sheet 9/latticescalar.py
Normal file
@ -0,0 +1,71 @@
|
||||
import numpy as np
|
||||
rng = np.random.default_rng()
|
||||
import matplotlib.pylab as plt
|
||||
%matplotlib inline
|
||||
|
||||
def potential_v(x,lamb):
|
||||
'''Compute the potential function V(x).'''
|
||||
return lamb*(x*x-1)*(x*x-1)+x*x
|
||||
|
||||
def neighbor_sum(phi,s):
|
||||
'''Compute the sum of the state phi on all 8 neighbors of the site s.'''
|
||||
w = len(phi)
|
||||
return (phi[(s[0]+1)%w,s[1],s[2],s[3]] + phi[(s[0]-1)%w,s[1],s[2],s[3]] +
|
||||
phi[s[0],(s[1]+1)%w,s[2],s[3]] + phi[s[0],(s[1]-1)%w,s[2],s[3]] +
|
||||
phi[s[0],s[1],(s[2]+1)%w,s[3]] + phi[s[0],s[1],(s[2]-1)%w,s[3]] +
|
||||
phi[s[0],s[1],s[2],(s[3]+1)%w] + phi[s[0],s[1],s[2],(s[3]-1)%w] )
|
||||
|
||||
def scalar_action_diff(phi,site,newphi,lamb,kappa):
|
||||
'''Compute the change in the action when phi[site] is changed to newphi.'''
|
||||
return (2 * kappa * neighbor_sum(phi,site) * (phi[site] - newphi) +
|
||||
potential_v(newphi,lamb) - potential_v(phi[site],lamb) )
|
||||
|
||||
def scalar_MH_step(phi,lamb,kappa,delta):
|
||||
'''Perform Metropolis-Hastings update on state phi with range delta.'''
|
||||
site = tuple(rng.integers(0,len(phi),4))
|
||||
newphi = phi[site] + rng.uniform(-delta,delta)
|
||||
deltaS = scalar_action_diff(phi,site,newphi,lamb,kappa)
|
||||
if deltaS < 0 or rng.uniform() < np.exp(-deltaS):
|
||||
phi[site] = newphi
|
||||
return True
|
||||
return False
|
||||
|
||||
def run_scalar_MH(phi,lamb,kappa,delta,n):
|
||||
'''Perform n Metropolis-Hastings updates on state phi and return number of accepted transtions.'''
|
||||
total_accept = 0
|
||||
for _ in range(n):
|
||||
total_accept += scalar_MH_step(phi,lamb,kappa,delta)
|
||||
return total_accept
|
||||
|
||||
def batch_estimate(data,observable,k):
|
||||
'''Devide data into k batches and apply the function observable to each.
|
||||
Returns the mean and standard error.'''
|
||||
batches = np.reshape(data,(k,-1))
|
||||
values = np.apply_along_axis(observable, 1, batches)
|
||||
return np.mean(values), np.std(values)/np.sqrt(k-1)
|
||||
|
||||
lamb = 1.5
|
||||
kappas = np.linspace(0.08,0.18,11)
|
||||
width = 3
|
||||
num_sites = width**4
|
||||
delta = 1.5 # chosen to have ~ 50% acceptance
|
||||
equil_sweeps = 1000
|
||||
measure_sweeps = 2
|
||||
measurements = 2000
|
||||
|
||||
mean_magn = []
|
||||
for kappa in kappas:
|
||||
phi_state = np.zeros((width,width,width,width))
|
||||
run_scalar_MH(phi_state,lamb,kappa,delta,equil_sweeps * num_sites)
|
||||
magnetizations = np.empty(measurements)
|
||||
for i in range(measurements):
|
||||
run_scalar_MH(phi_state,lamb,kappa,delta,measure_sweeps * num_sites)
|
||||
magnetizations[i] = np.mean(phi_state)
|
||||
mean, err = batch_estimate(np.abs(magnetizations),lambda x:np.mean(x),10)
|
||||
mean_magn.append([mean,err])
|
||||
|
||||
plt.errorbar(kappas,[m[0] for m in mean_magn],yerr=[m[1] for m in mean_magn],fmt='-o')
|
||||
plt.xlabel(r"$\kappa$")
|
||||
plt.ylabel(r"$|m|$")
|
||||
plt.title(r"Absolute field average on $3^4$ lattice, $\lambda = 1.5$")
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user