\documentclass[a4paper, 11pt]{article} \usepackage[utf8]{inputenc} \usepackage[ a4paper, headheight = 20pt, margin = 1in, tmargin = \dimexpr 1in - 10pt \relax ]{geometry} \usepackage{fancyhdr} % for headers and footers \usepackage{graphicx} % for including figures \usepackage{booktabs} % for professional tables \setlength{\headheight}{14pt} \fancypagestyle{plain}{ \fancyhf{} \fancyhead[L]{\sffamily Radboud University Nijmegen} \fancyhead[R]{\sffamily Superconductivity (NWI-NM117), Q3+Q4} \fancyfoot[R]{\sffamily\bfseries\thepage} \renewcommand{\headrulewidth}{0.5pt} \renewcommand{\footrulewidth}{0.5pt} } \pagestyle{fancy} \usepackage{siunitx} \usepackage{hyperref} \usepackage{float} \usepackage{mathtools} \newcommand{\pfrac}[2]{\frac{\partial #1}{\partial #2}} \title{Superconductivity - Assignment 2} \author{ Kees van Kempen (s4853628)\\ \texttt{k.vankempen@student.science.ru.nl} } \AtBeginDocument{\maketitle} % Start from 4 \setcounter{section}{3} \begin{document} \section{Temperature dependence in Landau model} In the Landau model, free energy is given as function of order parameter $\psi$ and temperature $T$ as \[ \mathcal{F} = a(T - T_c) \psi^2 + \frac{\beta}{2}\psi^4. \] The equilibrium state as function of temperature $T$ is the state of minimal free energy with respect to the order parameter $\psi(T)$. This point we call $F_0(T)$ with order parameter $\psi_0(T)$. For this, we will take the derivative of $F$ with respect to $\psi$ and equate it to zero. \[ 0 = \pfrac{\mathcal{F}}{\psi} = \pfrac{}{\psi} \left[ a(T-T_c)\psi^2 \right] = 2a(T-T_c)\psi + 2\beta\psi^3 \] Extreme points are found at $\psi = 0$ and $\psi = \pm\sqrt{\frac{-a}{\beta}(T-T_c)}$. For $T \geq T_c$, $\psi_0(T \geq T_c) = 0$ gives the minimum, i.e. $\mathcal{F}_0(T \geq T_c) = 0$. For $T \leq T_c$, $\psi_0(T \leq T_c) = \sqrt{\frac{-a}{\beta}(T-T_c)}$ is the minimum, giving free energy \[ \mathcal{F}_0(T \leq T_c) = \frac{-a^2}{\beta}(T-T_c)^2 + \frac{a^2}{2\beta}(T-T_c)^2 = \frac{-a^2}{2\beta}(T-T_c)^2 \leq \mathcal{F}_0(T \geq T_c) \] where we chose the positive of the $\pm$ as the order parameter is understood to increase from finite at the phase transition. For the specific heat, we find \[ C(T) = -T\pfrac{^2\mathcal{F}}{T^2} = \begin{cases} 0 & T > T_c \\ \frac{a^2}{\beta}T & T < T_c \end{cases}. \] There is thus a discontinuity in $C(T)$ at $T = T_c$ with size $\Delta C(T) = \frac{a^2}{\beta}T_c$. \section{Type-I superconducting foil} \section{Type II superconductors and the vortex lattice} \section{Currents inside type-II superconducting cylinder} \bibliographystyle{vancouver} \bibliography{references.bib} %\appendix \end{document}