#!/bin/env python3 import pandas as pd import re df = pd.DataFrame( [ ['Nb', 9.25, 152., '[webb]', 'at 273 K [crc]'], ['Tc', 8.2, 200., '[webb]', '[rhowiki]'], ['Pb', 7.2, 213., '[webb]', '[crc]'], ['La', 6, 615., '[webb]', '[crc]'], ['V', 5.4, 202., '[webb]', '[crc]'], ['Ta', 4.4, 135., '[webb]', '[crc]'], ['Hg', 4.15, 961., '[webb]', 'at 298 K [crc]'], ['Sn', 3.7, 115., '[webb]', 'at 273 K [crc]'], ['In', 3.4, 80., '[webb]', 'at 273 K [crc]'], ['Tl', 2.4, 150., '[webb]', 'at 273 K [crc]'], ['Re', 1.7, 172., '[webb]', 'at 273 K [crc]'], ['Th', 1.4, 147., '[webb]', 'at 273 K [crc]'], ['Pa', 1.4, 108.0, '[webb]', '[crc]' ], ['U', 1.3, 280., '[webb]', 'at 273 K [crc]'], ['Al', 1.18, 27.33, '[webb]', '[crc]'], ['Ga', 1.08, 136., '[webb]', 'at 273 K [crc]'], ['Am', 1, 689., '[webb]', '[rhowiki]'], ['Mo', .92, 55.2, '[webb]', '[crc]'], ['Zn', .85, 60.6, '[webb]', '[crc]'], ['Os', .7, 81., '[webb]', 'at 273 K [crc]'], ['Zr', .6, 433., '[webb]', '[crc]'], ['Cd', .52, 68., '[webb]', 'at 273 K [crc]'], ['Ru', .5, 71., '[webb]', 'at 273 K [crc]'], ['Ti', .5, 390., '[webb]', 'at 273 K [crc]'], ['Hf', .38, 340., '[webb]', '[crc]'], ['Ir', .1, 47., '[webb]', 'at 273 K [crc]'], ['Lu', .1, 582., '[webb]', '[crc]'], #['Be', 1440, 37.6, '[webb]', '[crc]'], ['Be', .026, 37.6, '[schmidt] (but [webb] reports 1440 K)', '[crc]'], ['W', .01, 54.4, '[webb]', '[crc]'], ['Li', .0004, 95.5, '[webb]', '[crc]'], ['Rh', .0003, 43., '[webb]', 'at 273 K [crc]'], ], columns = ['element', 'T_c', 'rho_300', 'T_c source', 'rho_300 source'] ) table = df.to_latex(index = False, header = ['Element', 'tctex', 'rhotex', 'Tcsource', 'rhosource']) table = table.replace('tctex', '$T_c (\\si{\\kelvin})$') table = table.replace('rhotex', '$\\rho_{300 K} (\\si{\\nano\\ohm\\meter})$') table = table.replace('Tcsource', 'Source $T_c$') table = table.replace('rhosource', 'Source $\\rho_{300 K}$') table = re.sub(r'\[(\w+)\]', r'\\cite{\1}', table) with open('sc_elements.tex', 'w') as table_file: table_file.write(table) from matplotlib import pyplot as plt fig, ax = plt.subplots(figsize=(15, 9)) df.plot('rho_300', 'T_c', kind='scatter', ax=ax) for k, v in df.iterrows(): ax.annotate(v['element'], (v['rho_300'], v['T_c'])) #fig.show() fig.savefig('/home/kvkempen/Documents/20212022Q3/Superconductivity/assignments/sc_elements.pdf') plt.close(fig)