diff --git a/superconductivity_assignment2_kvkempen.tex b/superconductivity_assignment2_kvkempen.tex index e1915fb..44be8aa 100755 --- a/superconductivity_assignment2_kvkempen.tex +++ b/superconductivity_assignment2_kvkempen.tex @@ -49,18 +49,34 @@ In the Landau model, free energy is given as function of order parameter $\psi$ \mathcal{F} = a(T - T_c) \psi^2 + \frac{\beta}{2}\psi^4. \] -To find the equilibrium value with respect to the order parameter $\psi_0(T)$, -we need to equate the derivatives with respect to both $T$ and $\psi(T)$ to zero. +The equilibrium state as function of temperature $T$ is the state of minimal free energy with respect to the order parameter $\psi(T)$. +This point we call $F_0(T)$ with order parameter $\psi_0(T)$. +For this, we will take the derivative of $F$ with respect to $\psi$ and equate it to zero. \[ - 0 = \frac{\delta\mathcal{F}}{\delta\psi} = \frac{\partial \mathcal{F}}{\partial \psi} - \nabla \cdot \frac{\partial \mathcal{F}}{\partial (\nabla \psi)} + 0 = \pfrac{\mathcal{F}}{\psi} = \pfrac{}{\psi} \left[ a(T-T_c)\psi^2 \right] = 2a(T-T_c)\psi + 2\beta\psi^3 \] -Now we seek the Q = TdS, C = dQ/dT = T dS/dT -For the entropy, we know +Extreme points are found at $\psi = 0$ and $\psi = \pm\sqrt{\frac{-a}{\beta}(T-T_c)}$. + +For $T \geq T_c$, $\psi_0(T \geq T_c) = 0$ gives the minimum, i.e. $\mathcal{F}_0(T \geq T_c) = 0$. + +For $T \leq T_c$, $\psi_0(T \leq T_c) = \sqrt{\frac{-a}{\beta}(T-T_c)}$ is the minimum, +giving free energy \[ - S = -\pfrac{} + \mathcal{F}_0(T \leq T_c) = \frac{-a^2}{\beta}(T-T_c)^2 + \frac{a^2}{2\beta}(T-T_c)^2 = \frac{-a^2}{2\beta}(T-T_c)^2 \leq \mathcal{F}_0(T \geq T_c) \] +where we chose the positive of the $\pm$ as the order parameter is understood to increase from finite at the phase transition. + +For the specific heat, we find +\[ + C(T) = -T\pfrac{^2\mathcal{F}}{T^2} = + \begin{cases} + 0 & T > T_c \\ + \frac{a^2}{\beta}T & T < T_c + \end{cases}. +\] +There is thus a discontinuity in $C(T)$ at $T = T_c$ with size $\Delta C(T) = \frac{a^2}{\beta}T_c$. \section{Type-I superconducting foil} \section{Type II superconductors and the vortex lattice}