From 9218b03f3471da5b14496889ef7f4b2436d36de0 Mon Sep 17 00:00:00 2001 From: Kees van Kempen Date: Fri, 18 Feb 2022 10:07:05 +0100 Subject: [PATCH] ass1: Draft slab exercise --- slab.pdf | Bin 0 -> 5544 bytes slab.svg | 184 +++++++++++++++++++++ superconductivity_assignment1_kvkempen.tex | 12 ++ 3 files changed, 196 insertions(+) create mode 100644 slab.pdf create mode 100644 slab.svg diff --git a/slab.pdf b/slab.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c6291ada8daf31d0e39384de57cbc3f54e312de4 GIT binary patch literal 5544 zcmbtY2{@GN+pnYIXi=C5<+X)`d1o_&I5PHq>`Q5e!7yeRGnPU{Id-RHD-=TZYmu|y}TGm%?OjoXJ#BjP=| z{ZkWg$4uV*wrlF0b>*8s2rJ0+6yIz#%4xfSJUhtSGHE#zCpqF|L+g4eb=^44nfO-NxtPH-~v(pklOLgqtm-SGCa)H?(- z5WZI%|MtDx(9N>>-!!FB#odo5;%2~7zkm=O86!96Dz50o4{x${ICZ)vMdOr%u+Sq7k}sR4k1q7$BVX9b;Av2j<_ zrc&rXw04n)%0mIvX40@4v3}nsgMFV2P_zi}A_9u0cvm7I1%T_5o8oCi)>zJQknASi%DBNQ-7a1;gsAfc?BML?C5K;XoBUrp93Se<xs}7CI@cLn8 z8#At>n_Dwyt%HWA_;|5rb_&>p^#D4JLEN-7S*@@{Uy>6Mr*oVQe%m;X=tE`DoQOUE z+ljaz_Nm0O+0Omp6rsN_>wh{$Y&UNlHxNL;QP6)Jt10Us|0}%->WizxDx%ZZQflET z+b;k5co!ZJyKv#cIWZZhEz99JU>~eHZ)?~k9Er=Ou}e4701>`pyEeA|sN+*>MkIej z%iU^mg44k8>r^>|%VH?Xo>d`9e&@5@vvo-gk`R-c5EN5hk&j|O^aJp4;)E+Hh7 zG#$!wOeo-Z7McK5@xv@5G6;-|wv)O`3B|bUvF)0JExLi55X;pW*L(s`a(M1xv)G z37Y?Pw_}DmT72gY-lCsTRB-D~ezSXI9G`s8_3d&O5_5L<9CnK@Y`85Y9Q3;U?O7wC_=LUF>NHgQ|ZFZqh{z+c8h5JALQgK-MK}z$hE`&>EkKr)! zxosw#4k;Wan(v#iYO9P1mig0O;+cyc%*48x4)LSSuO@)-8Lwe1u#Z7(HDARDwU~(d z&FcZs>Vis>7oyPH!|u#c^&Gx_atG!)+&^EV->`?gf|q~B;m%yZkC)LTYNu5Boh{%*~SE{z9Z{o9J+xh&-$wKboM^DD`dRpx&b1~)F(|7@O5jVf0wr5>2 zX z?%g5aJf5QM(q;N(Z%{ZWnKyK@I7#@eURYcp`CMYbJE2f>?qe78Lc3{Yw6eLtfUjFa zug<$D zIjp@1qN?&^K#!*JsxzTylvbE6mpB4jpH@}%_CC-He)mei4t22g@v;Vq$&mQy~4kYazTxfh8ew&WM9=hX|KsFuh!eu2N9icwTF}UEr#YXA_^32@vm^ZUG?^^CqS=K_B>QnCI zwJ#a%gbkW>^kKKmG&t!!#q*!7##n|h=4mw2rRpiq0(u66ASYnr*F@H z_A5IPW@Mn(zW+_DA>W4-&8aIN#)8Xg3M%bA?+nykd#p+1nbWuJ{QBmryIjiCmrf;}!(Z7^`HY zE$;pVS=L@&SpKs3NpcoiUizWX_^~kcvH6wS$(_sB6%32K(>E2KF zn^nG_oN%fjSMmOarqazDK)v{a6isY?ZGO$rH zYcFwkl@q>d+qLSY;+6H}9cQjAx);5;*B&gh*Y)&-CF5zL8Pc=jPkYrqk#hZCO4BBH z_YrLkJn7tP=XTV#Sj~#uk21O0ca7^ttX;xX%&!LxF61c%QBNe^E1MM-T1$|N$bj%n?C*v9A7p?+Ot_QXDI9u# zs@15mvXQ^k9?WYf@F(^;w+rLb>)=c|`O}>Mq>>a6{87G|pzU;%ioiCdqwRNmL-nO4{ zT%z`Z`x1EM-LgfyL=PauHytr@c_|Fl%be&rP@U7&Hr}Y@Qv%tUFME9~ueC5Qb>%q0 zGCe;#FTKLU=s|kBB=gXU$(A~~=6M-429qzsgLmyPxHV&^E%84;}z(!CN>bPsR}H8W$xAyd}D|BF%nj{S`{U!o^a* zIQz-nr{aWb61rrZ6aRP@RAy(JX!wKvU7Ud>|KMj(sI z3D3+5Nz9`5ZCDR^yU>-CE$N9it39TrcFepCo9qS$hO}Ke0vp9?BIJJ@Oy|n773&qL z*BAI|#+-pD%v3gV3*49Jlq_`+@1L`A%JMhNEZz5VkCQDU-)4V(h2)_GoAE{oJ)6wY zYrH%yrRZ2KZ$x9MY350$FfY&Y3?pK>m>aC)c8pJc9?l8bcPUwJUt+QZXiw;q>1mqj zmF&?UQuMx#y`?RXfp(|28X5?|qd-mO$@1BIkXy!D5V)45qv7JIfj9i15h4G4iLPN) z3%|MKN6@;jN0hRmXqiLMldRO#@P+by~D5p1E=Fy){Ve`balVy-l)typ% z_<7*i(nctU*2ORx+KrC-j$dj7-81WB#hM<8itJs+?`rdjda(6P)g=`ffHvKDW6O>m zyFloHtsESZG|A7>4@;PzYF_V@P>DSXIc_DmD)PvJ%SGRR^wF)~s>QpcK8JPci1q4- z8_8y8OIS8YToQk6#W#do6_DFo%$*#gyXT?oYh8W5JrR;f71`Zk7bp!1c=K*DuNBWx zyqDCQ@ohJcdy82nA}?BPaS4&MQQ27%c=hd?JpX48mA|sHUruigB&~M-OsCi%^xx9p>xau=a{^jeTdqU9jrN%lAD?*Tl@OZ{#N66hHC(39AwmX{j zRLKSnResHIv2$llz4g39hvOF{M!+qvsAf)oQbLBG6K|P36l&mUd(Vp~ocJv(!&?zn z`{clRftmZyEh2>$T)g!YuUgt*4sC%LVQo_Own1&01tsgh9_$0G3Z+?_H4=34n4s>g0MXG=^S z-ONAsXVu*eV!Eth z)**8`(bEb*Z}evyx|;@jhb+cOgaK?)`6J0>Q|zC;u`wKjKwqcV7AzXe_S8Ch9PdM1 zC+q*4XGk<3x~3bRw&?&v{5Knf{q2#z-3_b<1h+o67KNn-ktnW!qBV)4LGdAN0_(Nb zBxkyt&o>s&J`Mj(L7~|@|L+PC!9J(|S3$Dky;+bLcIF{rh>ei5Gy|$7g~XP>0QN9H z2Ic1zWh)#TnP)(9X8V9Gg5bWZ77VuF@q=^#{-}|d(x}c1Czj+UCCJf9R0@_Y7X}4clGVR31cnuqe_{wEob@jLCk90$f0`GL#;}gi zKik1E>@fcmL%ZiU)DD + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + z + x + sc + + B + + diff --git a/superconductivity_assignment1_kvkempen.tex b/superconductivity_assignment1_kvkempen.tex index 1dab960..c6b62d3 100755 --- a/superconductivity_assignment1_kvkempen.tex +++ b/superconductivity_assignment1_kvkempen.tex @@ -169,6 +169,18 @@ This way we find our result: %If we now substitute in the second London equation, assuming that $\Lambda$ is constant over the material, \end{em} +\item Assume we have the situation as sketched in figure \ref{fig:slab}. A superconducting slab is placed at $x = 0$ extending to infinity in both $x$ and $z$ directions. (Note that the $y$ dimensions do not matter.) A uniform external magnetic field $\vec{B} = B \hat{x}$ is applied. Use the just derived screening equation to calculate the field $\vec{B}$ inside the superconductor. + +\begin{figure}[H] + \label{fig:slab} + \centering + \includegraphics[width=.4\textwidth]{slab.pdf} +\end{figure} + +\begin{em} + +\end{em} + \end{enumerate} \section{Difference between type-I and type-II superconductors}