diff --git a/slab.pdf b/slab.pdf new file mode 100644 index 0000000..c6291ad Binary files /dev/null and b/slab.pdf differ diff --git a/slab.svg b/slab.svg new file mode 100644 index 0000000..ddf1ca5 --- /dev/null +++ b/slab.svg @@ -0,0 +1,184 @@ + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + z + x + sc + + B + + diff --git a/superconductivity_assignment1_kvkempen.tex b/superconductivity_assignment1_kvkempen.tex index 1dab960..c6b62d3 100755 --- a/superconductivity_assignment1_kvkempen.tex +++ b/superconductivity_assignment1_kvkempen.tex @@ -169,6 +169,18 @@ This way we find our result: %If we now substitute in the second London equation, assuming that $\Lambda$ is constant over the material, \end{em} +\item Assume we have the situation as sketched in figure \ref{fig:slab}. A superconducting slab is placed at $x = 0$ extending to infinity in both $x$ and $z$ directions. (Note that the $y$ dimensions do not matter.) A uniform external magnetic field $\vec{B} = B \hat{x}$ is applied. Use the just derived screening equation to calculate the field $\vec{B}$ inside the superconductor. + +\begin{figure}[H] + \label{fig:slab} + \centering + \includegraphics[width=.4\textwidth]{slab.pdf} +\end{figure} + +\begin{em} + +\end{em} + \end{enumerate} \section{Difference between type-I and type-II superconductors}