From 3399f227b7905001e333b37559d56022ff58815e Mon Sep 17 00:00:00 2001 From: Kees van Kempen Date: Tue, 22 Feb 2022 21:55:48 +0100 Subject: [PATCH] ass2: Do assignment 4 as far as possible --- superconductivity_assignment2_kvkempen.tex | 85 ++++++++++++++++++++++ 1 file changed, 85 insertions(+) diff --git a/superconductivity_assignment2_kvkempen.tex b/superconductivity_assignment2_kvkempen.tex index 44be8aa..45d9286 100755 --- a/superconductivity_assignment2_kvkempen.tex +++ b/superconductivity_assignment2_kvkempen.tex @@ -77,7 +77,92 @@ For the specific heat, we find \end{cases}. \] There is thus a discontinuity in $C(T)$ at $T = T_c$ with size $\Delta C(T) = \frac{a^2}{\beta}T_c$. + \section{Type-I superconducting foil} +\begin{enumerate} +\item +The screening equation is given as +\[ + \nabla^2\vec{B} = \frac{\vec{B}}{\lambda}. +\] +For easy of calculation, we will use cartesian coordinates, +and put the external magnetic field $B_E$ along the $x$ axis: +$\vec{B_E} = B_E \hat{x}$. +A foil with thickness $a$ we put parallel to the $xy$ plane with the middle of the thickness at $z = 0$ such that the foil fills $-\frac{a}{2} < z < \frac{a}{2}$. +Due to symmetry in the $xy$ plane of the system, the field inside the foil can only depend on $z$ coordinates. +So we define the magnitude of the field $|\vec{B}| = B(z)$. + +Using the screening equation, we look for a solution. +\[ + \nabla^2\vec{B} = \nabla(\nabla\cdot\vec{B}) - \nabla\times(\nabla\times\vec{B}) +\] +$\vec{B}$ is divergenceless, so we are left with the latter term. +Next, we take the curls writing $B_i$ for the $i$th component of $\vec{B}$, +and realize that we only have $z$ dependence, and $B_y = 0 = B_z$. +\[ + -\nabla\times(\nabla\times\vec{B}) = -\nabla\times(\pfrac{B_x}{z} \hat{y}) = -(-\pfrac{^2B_x}{z^2} \hat{x}) +\] +Rewriting yields +\[ + \vec{B} = \lambda \pfrac{^2B_x}{z^2}\hat{x}. +\] +For this we know the general solution: +\[ + \vec{B} = B_0 \left[ C \cdot e^{z/\lambda} + D \cdot e^{-z/\lambda} \right], +\] +with constants $B_0$, $C$, and $D$. + +Now we can apply two boundary conditions to find the solution inside the material. + +First, due to mirror symmetry in $z$, we require $B(z) = B(-z)$, giving that $C = D$, +thus we contract the constants as $B'_0 = CB_0 = DB_0$. +This allows us to write the exponents into $cosh$ form. +\[ + B(z) = B'_0 \left[ e^{z/\lambda} + e^{-z/\lambda} \right] = B'_0 \cosh{\frac{z}{\lambda}} +\] + +Second, just outside the foil, at $z = \pm \frac{a}{2}$, the field must be $B_E$, and the field should be continuous across the boundary: +\[ + B_E = B(\frac{a}{2}) = B'_0 \cosh{\frac{a}{2\lambda}} \iff B'_0 = \frac{B_E}{\cosh{\frac{a}{2\lambda}}} +\] + +This gives us our final expression for $B(z)$: +\[ + B(z) = + \begin{cases} + B_E\frac{1}{\cosh{\frac{a}{2\lambda}}}\cosh{\frac{z}{\lambda}} & |z| \leq \frac{a}{2} \\ + B_E & |z| \geq \frac{a}{2} + \end{cases}. +\] + +The supercurrent follows from the Maxwell-Amp\`ere law considering that there are no other currents, and we look at a current steady over time ($\pfrac{\vec{E}}{t} = 0$): +\[ + \nabla\times\vec{B}(z) = \mu_0\vec{J_s} +\] +Reordering and calculating the curl gives: +\[ + \vec{J_s} = \frac{1}{\mu_0} \nabla \times (\pfrac{B(z)}{z}\hat{x}) = \frac{B_E}{\mu_0 \lambda \cosh{\frac{a}{2\lambda}}} \sinh{\frac{z}{\lambda}} \hat{y} +\] + +\item +From the derivation of the Ginzburg-Landau theory, we get the following expression for the supercurrent $\vec{J_s}$: +\[ + \vec{J_s} = -\frac{2e\bar{h}n_s}{m}(\nabla\theta + \frac{2e\vec{A}}{\bar{h}}) +\] +Using the rigid gauge, we set $\theta = 0$. +Next, we can equate the previously found supercurrent for our foil to the Ginzburg-Landau found one and reorder to find $\vec{A}$: +\[ + \vec{A} = \frac{-B_E m \sinh{\frac{z}{\lambda}}}{4\lambda\mu_0 e^2 n_s \cosh{\frac{a}{2\lambda}}} \hat{y} +\] + +\item +\[ + \nabla \cdot \vec{A} = \pfrac{A_x}{x} + \pfrac{A_y}{y} + \pfrac{A_z}{z} = \pfrac{0}{x} + \pfrac{A_y}{y} + \pfrac{0}{z} = 0, +\] +as $A_y \perp \hat{y}$, giving zero partial derivative. + +In our case, indeed the rigid gauge choice gives the criterium for the London gauge ($\nabla \cdot \vec{A} = 0$). +\end{enumerate} \section{Type II superconductors and the vortex lattice}