Files
cds-numerical-methods/Week 2/6 Composite Numerical Integration: Trapezoid and Simpson Rules.ipynb

481 lines
15 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"nbgrader": {
"cell_type": "markdown",
"checksum": "4ec40081b048ce2f34f3f4fedbb0be10",
"grade": false,
"grade_id": "cell-98f724ece1aacb67",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"# CDS: Numerical Methods Assignments\n",
"\n",
"- See lecture notes and documentation on Brightspace for Python and Jupyter basics. If you are stuck, try to google or get in touch via Discord.\n",
"\n",
"- Solutions must be submitted via the Jupyter Hub.\n",
"\n",
"- Make sure you fill in any place that says `YOUR CODE HERE` or \"YOUR ANSWER HERE\".\n",
"\n",
"## Submission\n",
"\n",
"1. Name all team members in the the cell below\n",
"2. make sure everything runs as expected\n",
"3. **restart the kernel** (in the menubar, select Kernel$\\rightarrow$Restart)\n",
"4. **run all cells** (in the menubar, select Cell$\\rightarrow$Run All)\n",
"5. Check all outputs (Out[\\*]) for errors and **resolve them if necessary**\n",
"6. submit your solutions **in time (before the deadline)**"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"team_members = \"Koen Vendrig, Kees van Kempen\""
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"nbgrader": {
"cell_type": "markdown",
"checksum": "177d489a4104e3c95a4de1a4c7768c01",
"grade": false,
"grade_id": "cell-1e89a94d71771bb6",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"## Composite Numerical Integration: Trapezoid and Simpson Rules\n",
"\n",
"In the following we will implement the composite trapezoid and Simpson rules to calculate definite integrals. These rules are defined by\n",
"\n",
"\\begin{align}\n",
"\t\\int_a^b \\, f(x)\\, dx &\\approx \\frac{h}{2} \\left[ f(a) + 2 \\sum_{j=1}^{n-1} f(x_j) + f(b) \\right] \n",
" &\\text{trapezoid} \\\\\n",
" &\\approx \\frac{h}{3} \\left[ f(a) + 2 \\sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \\sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \\right]\t \n",
" &\\text{Simpson}\n",
"\\end{align}\n",
" \n",
"with $a = x_0 < x_1 < \\dots < x_{n-1} < x_n = b$ and $x_k = a + kh$. Here $k = 0, \\dots, n$ and $h = (b-a) / n$ is the step size."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"deletable": false,
"nbgrader": {
"cell_type": "code",
"checksum": "a60a63e0450a3157dd421b394288f18a",
"grade": true,
"grade_id": "cell-44d29c12deac7ed7",
"locked": false,
"points": 0,
"schema_version": 3,
"solution": true,
"task": false
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import scipy.integrate\n",
"\n",
"# And for printing the lambdas:\n",
"import inspect"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"nbgrader": {
"cell_type": "markdown",
"checksum": "e11bb7c15d840e7a9397f209769ebb66",
"grade": false,
"grade_id": "cell-ce9a56067e726f36",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"### Task 1\n",
"\n",
"Implement both integration schemes as Python functions $\\text{trapz(yk, dx)}$ and $\\text{simps(yk, dx)}$. The argument $\\text{yk}$ is an array of length $n+1$ representing $y_k = f(x_k)$ and $\\text{dx}$ is the step size $h$. Compare your results with Scipy's functions $\\text{scipy.integrate.trapz(yk, xk)}$ and $\\text{scipy.integrate.simps(yk, xk)}$ for a $f(x_k)$ of your choice.\n",
"\n",
"Try both even and odd $n$. What do you see? Why?\n",
"\n",
"Hint: go to the Scipy documentation. How are even and odd $n$ handled there?"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"deletable": false,
"nbgrader": {
"cell_type": "code",
"checksum": "2bc6bd3985c2b7ab4ab051ebe94496f9",
"grade": true,
"grade_id": "cell-59f0de06f77dce3e",
"locked": false,
"points": 6,
"schema_version": 3,
"solution": true,
"task": false
}
},
"outputs": [],
"source": [
"def trapz(yk, dx):\n",
" a, b = yk[0], yk[-1]\n",
" h = dx\n",
" integral = h/2*(a + 2*np.sum(yk[1:-1]) + b)\n",
" return integral\n",
" \n",
"def simps(yk, dx):\n",
" a, b = yk[0], yk[-1]\n",
" h = dx\n",
" # Instead of summing over something with n/2, we use step size 2,\n",
" # thus avoiding any issues with 2 ∤ n.\n",
" integral = h/3*(a + 2*np.sum(yk[2:-1:2]) + 4*np.sum(yk[1:-1:2]) + b)\n",
" return integral"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def compare_integration(f, a, b, n):\n",
" # Let's check whether f is callable.\n",
" # TODO: Improve checks on f, or not.\n",
" assert callable(f)\n",
" \n",
" h = (b - a)/n\n",
" xk = np.linspace(a, b, n + 1)\n",
" yk = f(xk)\n",
" \n",
" print(\"For function\", inspect.getsource(f))\n",
" print(\"for boundaries a =\", a, \", b =\", b, \"and steps n =\", n, \"the algorithms say:\")\n",
" print(\"trapezoid:\\t\\t\", trapz(yk, h))\n",
" print(\"Simpson:\\t\\t\", simps(yk, h))\n",
" print(\"scipy.integrate.trapz:\\t\", scipy.integrate.trapz(yk, xk))\n",
" print(\"scipy.integrate.simps:\\t\", scipy.integrate.simps(yk, xk))\n",
" print()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"deletable": false,
"nbgrader": {
"cell_type": "code",
"checksum": "9599217f233689affb19148157e62b41",
"grade": true,
"grade_id": "cell-ff04b1d785ea895f",
"locked": false,
"points": 1,
"schema_version": 3,
"solution": true,
"task": false
}
},
"outputs": [],
"source": [
"# We need a function to integrate, so here we go.\n",
"f = lambda x: x**2\n",
"\n",
"n = 100001\n",
"a, b = 0, 1"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"For function f = lambda x: x**2\n",
"\n",
"for boundaries a = 0 , b = 1 and steps n = 100001 the algorithms say:\n",
"trapezoid:\t\t 0.33333333334999976\n",
"Simpson:\t\t 0.3333300000666658\n",
"scipy.integrate.trapz:\t 0.33333333334999965\n",
"scipy.integrate.simps:\t 0.3333333333333335\n",
"\n",
"For function f = lambda x: x**2\n",
"\n",
"for boundaries a = 0 , b = 1 and steps n = 100002 the algorithms say:\n",
"trapezoid:\t\t 0.3333333333499994\n",
"Simpson:\t\t 0.33333333333333337\n",
"scipy.integrate.trapz:\t 0.3333333333499993\n",
"scipy.integrate.simps:\t 0.3333333333333333\n",
"\n"
]
}
],
"source": [
"compare_integration(f, a, b, n)\n",
"compare_integration(f, a, b, n + 1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"nbgrader": {
"cell_type": "markdown",
"checksum": "f3a2f1f2b9ba3ffeb8646c346797d95a",
"grade": false,
"grade_id": "cell-1a7e33464e3be83b",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"### Task 2\n",
"\n",
"Implement at least one test function for each of your integration functions."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"deletable": false,
"nbgrader": {
"cell_type": "code",
"checksum": "c3b7ee0d3ced97054590e89bba97e031",
"grade": true,
"grade_id": "cell-d8f2e0aa55860e08",
"locked": false,
"points": 6,
"schema_version": 3,
"solution": true,
"task": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"For function f(x) = x^3 + 6x\n",
"for boundaries a = 2 , b = 16 and steps n = 82198 the algorithms say:\n",
"trapezoid:\t\t 1362.6666667343538\n",
"scipy.integrate.trapz:\t 1362.6666667343543\n",
"with difference trapz(yk, h) - scipy.integrate.trapz(yk, xk) = -4.547473508864641e-13\n",
"\n",
"For function f(x) = -x^3 + 6x\n",
"for boundaries a = 2 , b = 17 and steps n = 82228 the algorithms say:\n",
"Simpson:\t\t 1635.0\n",
"scipy.integrate.simps:\t 1635.0000000000002\n",
"with difference simps(yk, h) - scipy.integrate.simps(yk, xk) = -2.2737367544323206e-13\n",
"\n"
]
}
],
"source": [
"# In the comparison of n even and n odd, and the testing of the integrations,\n",
"# we have already tested the functions, but as it is asked, here we go again.\n",
"\n",
"def test_trapz():\n",
" fun = lambda x: x**3 + 6*x\n",
" a, b = 2, 16\n",
" n = 82198\n",
" \n",
" h = (b - a)/n\n",
" xk = np.linspace(a, b, n + 1)\n",
" yk = f(xk)\n",
"\n",
" trapz_our = trapz(yk, h)\n",
" trapz_scipy = scipy.integrate.trapz(yk, xk)\n",
" \n",
" print(\"For function f(x) = x^3 + 6x\")\n",
" print(\"for boundaries a =\", a, \", b =\", b, \"and steps n =\", n, \"the algorithms say:\")\n",
" print(\"trapezoid:\\t\\t\", trapz_our)\n",
" print(\"scipy.integrate.trapz:\\t\", trapz_scipy)\n",
" print(\"with difference trapz(yk, h) - scipy.integrate.trapz(yk, xk) =\", trapz_our - trapz_scipy)\n",
" print()\n",
" \n",
"def test_simps():\n",
" fun = lambda x: -x**3 + 6*x\n",
" a, b = 2, 17\n",
" n = 82228\n",
" \n",
" h = (b - a)/n\n",
" xk = np.linspace(a, b, n + 1)\n",
" yk = f(xk)\n",
"\n",
" simps_our = simps(yk, h)\n",
" simps_scipy = scipy.integrate.simps(yk, xk)\n",
" \n",
" print(\"For function f(x) = -x^3 + 6x\")\n",
" print(\"for boundaries a =\", a, \", b =\", b, \"and steps n =\", n, \"the algorithms say:\")\n",
" print(\"Simpson:\\t\\t\", simps_our)\n",
" print(\"scipy.integrate.simps:\\t\", simps_scipy)\n",
" print(\"with difference simps(yk, h) - scipy.integrate.simps(yk, xk) =\", simps_our - simps_scipy)\n",
" print()\n",
" \n",
"test_trapz()\n",
"test_simps()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"nbgrader": {
"cell_type": "markdown",
"checksum": "ead1d68798b82e5c9c5dba354a255abb",
"grade": false,
"grade_id": "cell-71d20f6b94c6ed05",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"### Task 3\n",
"\n",
"Study the accuracy of these integration routines by calculating the following integrals for a variety of step sizes $h$:\n",
"\n",
"- $\\int_0^1 \\, x\\, dx$\n",
"- $\\int_0^1 \\, x^2\\, dx$\n",
"- $\\int_0^1 \\, x^\\frac{1}{2}\\, dx$\n",
"\n",
"The integration error is defined as the difference (not the absolute difference) between your numerical results and the exact results. Plot the integration error as a function of $h$ for both integration routines and all listed functions. Comment on the comparison between both integration routines. Does the sign of the error match your expectations? Why?"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"deletable": false,
"nbgrader": {
"cell_type": "code",
"checksum": "90eaf3d9beb2347589518aba4e8ad3c4",
"grade": true,
"grade_id": "cell-b0bb51b7eae7769b",
"locked": false,
"points": 4,
"schema_version": 3,
"solution": true,
"task": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"As we are calculus geniuses, we know that the first integral gives 1/2.\n",
"For function f1 = lambda x: x\n",
"\n",
"for boundaries a = 0 , b = 1 and steps n = 100000 the algorithms say:\n",
"trapezoid:\t\t 0.5000000000000001\n",
"Simpson:\t\t 0.5000000000000001\n",
"scipy.integrate.trapz:\t 0.5000000000000001\n",
"scipy.integrate.simps:\t 0.5\n",
"\n",
"As we are calculus geniuses, we know that the second integral gives 1/3.\n",
"For function f2 = lambda x: x**2\n",
"\n",
"for boundaries a = 0 , b = 1 and steps n = 100000 the algorithms say:\n",
"trapezoid:\t\t 0.33333333335000004\n",
"Simpson:\t\t 0.3333333333333335\n",
"scipy.integrate.trapz:\t 0.33333333335\n",
"scipy.integrate.simps:\t 0.3333333333333333\n",
"\n",
"As we are calculus geniuses, we know that the third integral gives 2/3.\n",
"For function f3 = lambda x: x**(1/2)\n",
"\n",
"for boundaries a = 0 , b = 1 and steps n = 100000 the algorithms say:\n",
"trapezoid:\t\t 0.6666666600968939\n",
"Simpson:\t\t 0.6666666640993837\n",
"scipy.integrate.trapz:\t 0.6666666600968938\n",
"scipy.integrate.simps:\t 0.6666666640993836\n",
"\n",
"For all three cases, the results are very close, and the functions work quickly.\n"
]
}
],
"source": [
"f1 = lambda x: x\n",
"f2 = lambda x: x**2\n",
"f3 = lambda x: x**(1/2)\n",
"\n",
"n = 100000\n",
"a, b = 0, 1\n",
"\n",
"print(\"As we are calculus geniuses, we know that the first integral gives 1/2.\")\n",
"compare_integration(f1, a, b, n)\n",
"\n",
"print(\"As we are calculus geniuses, we know that the second integral gives 1/3.\")\n",
"compare_integration(f2, a, b, n)\n",
"\n",
"print(\"As we are calculus geniuses, we know that the third integral gives 2/3.\")\n",
"compare_integration(f3, a, b, n)\n",
"\n",
"print(\"For all three cases, the results are very close, and the functions work quickly.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}