diff --git a/Week 2/feedback/5 Discrete and Fast Fourier Transforms.html b/Week 2/feedback/5 Discrete and Fast Fourier Transforms.html new file mode 100755 index 0000000..4f8caee --- /dev/null +++ b/Week 2/feedback/5 Discrete and Fast Fourier Transforms.html @@ -0,0 +1,13844 @@ + + +
+ + +See lecture notes and documentation on Brightspace for Python and Jupyter basics. If you are stuck, try to google or get in touch via Discord.
+Solutions must be submitted via the Jupyter Hub.
+Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE".
In the following we will implement a DFT algorithm and, based on that, a FFT algorithm. Our aim is to experience the drastic improvement of computational time in the FFT case.
+ +import numpy as np
+from matplotlib import pyplot as plt
+import timeit
+Implement a Python function $\text{DFT(yk)}$ which returns the Fourier transform defined by
+\begin{equation} +\beta_j = \sum^{N-1}_{k=0} f(x_k) e^{-ij x_k} +\end{equation}with $x_k = \frac{2\pi k}{N}$ and $j = 0, 1, ..., N-1$. The $\text{yk}$ should represent the array corresponding to $y_k = f(x_k)$. Please note that this definition is slightly different to the one we introduced in the lecture. Here we follow the notation of Numpy and Scipy.
+Hint: try to write the sum as a matrix-vector product and use $\text{numpy.dot()}$ to evaluate it.
+ +def DFT(yk):
+ """
+ Return discrete fourier transform (DFT) of yk for N discrete frequency intervals.
+ """
+
+ N = len(yk)
+ xk = 2*np.pi*np.arange(N)/N
+ beta = np.dot(yk, np.exp(np.outer(-np.arange(N), xk*1j)))
+ return beta
+Make sure your function $\text{DFT(yk)}$ and Numpy’s FFT function $\text{numpy.fft.fft(yk)}$ return +the same data by plotting $|\beta_j|$ vs. $j$ for
+\begin{equation} + y_k = f(x_k) = e^{20i x_k} + e^{40 i x_k} +\end{equation}and +\begin{equation} + y_k = f(x_k) = e^{i 5 x_k^2} +\end{equation}
+using $N = 128$ for both routines.
+ +N = 128
+
+xk = 2*np.pi*np.arange(N)/N
+yk0 = np.exp(20j*xk) + np.exp(40j*xk)
+yk1 = np.exp(5j*xk*2)
+
+fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(16,6))
+
+ax[0].set_xlabel("j")
+ax[1].set_xlabel("j")
+
+ax[0].set_title("$y_k = e^{20ix_k} + e^{40ix_k}$")
+ax[0].plot(np.abs(DFT(yk0)), label="DFT")
+ax[0].plot(np.abs(np.fft.fft(yk0)), label="numpy.fft.fft")
+ax[0].legend(loc="upper right")
+
+ax[1].set_title("$y_k = e^{i5x^2_k}$")
+ax[1].plot(np.abs(DFT(yk1)), label="DFT")
+ax[1].plot(np.abs(np.fft.fft(yk1)), label="numpy.fft.fft")
+ax[1].legend(loc="upper right")
+
+# TODO: So the graphs overlap completely. Is this good enough?
+# To make it more clear, we could mirror one of the graphs (multiply by -1),
+# like what is often done in spectroscopy, or we could add the difference.
+
+fig.show()
+Analyze the evaluation-time scaling of your $\text{DFT(yk)}$ function with the help of the timeit +module. Base your code on the following example:
+import timeit
+
+tOut = timeit.repeat(stmt=lambda: DFT(yk), number=10, repeat=5)
+tMean = np.mean(tOut)
+This example evaluates $\text{DFT(yk)}$ 5 × 10 times and stores the resulting 5 evaluation times in tOut. Afterwards we calculate the mean value of these 5 repetitions. +Use this example to calculate and plot the evaluation time of your $\text{DFT(yk)}$ function for $N = 2^2, 2^3, ..., 2^M$. Depending on your implementation you might be able to go up to $M = 10$. Be careful and increase M just step by step!
+ +for M in range(2, 10+1):
+ N = 2**M
+ xk = 2*np.pi*np.arange(N)/N
+ # Using the first equation for yk from the previous exercise.
+ yk = np.exp(20j*xk) + np.exp(40j*xk)
+ tOut = timeit.repeat(stmt=lambda: DFT(yk), number=10, repeat=5)
+ tMean = np.mean(tOut)
+ print("M =", M, "gives")
+ print("tOut =", tOut)
+ print()
+A very simple FFT algorithm can be derived by the following separation of the sum from +above:
+\begin{align} + \beta_j = \sum^{N-1}_{k=0} f(x_k) e^{-ij \frac{2\pi k}{N}} + &= \sum^{N/2 - 1}_{k=0} f(x_{2k}) e^{-ij \frac{2\pi 2k}{N}} + + \sum^{N/2 - 1}_{k=0} f(x_{2k+1}) e^{-ij \frac{2\pi (2k+1)}{N}}\\ + &= \sum^{N/2 - 1}_{k=0} f(x_{2k}) e^{-ij \frac{2\pi k}{N/2}} + + \sum^{N/2 - 1}_{k=0} f(x_{2k+1}) e^{-ij \frac{2\pi k}{N/2}} e^{-ij \frac{2\pi}{N}}\\ + &= \beta^{\text{even}}_j + \beta^{\text{odd}}_j e^{-ij \frac{2\pi}{N}} +\end{align}where $\beta^{\text{even}}_j$ is the Fourier transform based on only even $k$ (or $x_k$) and $\beta^{\text{odd}}_j$ the Fourier transform based on only odd $k$. In case $N = 2^M$ this even/odd separation can be done again and again in a recursive way.
+Use the template below to implement a $\text{FFT(yk)}$ function, making use of your $\text{DFT(yk)}$ function from above. Make sure that you get the same results as before by comparing the results from $\text{DFT(yk)}$ +and $\text{FFT(yk)}$ for both functions defined in task 2.
+def FFT(yk):
+ """Don't forget to write a docstring ...
+ """
+ N = # ... get the length of yk
+
+ assert # ... check if N is a power of 2. Hint: use the % (modulo) operator
+
+ if(N <= 2):
+ return # ... call DFT with all yk points
+
+ else:
+ betaEven = # ... call FFT but using just even yk points
+ betaOdd = # ... call FFT but using just odd yk points
+
+ expTerms = np.exp(-1j * 2.0 * np.pi * np.arange(N) / N)
+
+ # Remember : beta_j is periodic in j !
+ betaEvenFull = np.concatenate([betaEven, betaEven])
+ betaOddFull = np.concatenate([betaOdd, betaOdd])
+
+ return betaEvenFull + expTerms * betaOddFull
+def FFT(yk):
+ """
+ Return the fast fourier transform (FFT) of array yk by considering odd
+ and even points and making use of discrete fourier transforms (DFTs).
+ """
+
+ N = len(yk)
+
+ # N should be a power of two
+ assert np.log2(N).is_integer()
+
+ if(N <= 2):
+ return DFT(yk)
+
+ else:
+ betaEven = FFT(yk[::2])
+ betaOdd = FFT(yk[1::2])
+
+ expTerms = np.exp(-1j * 2.0 * np.pi * np.arange(N) / N)
+
+ # Remember : beta_j is periodic in j !
+ betaEvenFull = np.concatenate([betaEven, betaEven])
+ betaOddFull = np.concatenate([betaOdd, betaOdd])
+
+ return betaEvenFull + expTerms * betaOddFull
+# N needs to be a power of two for FFT to work.
+N = 2**7
+
+xk = 2*np.pi*np.arange(N)/N
+yk = np.exp(20j*xk) + np.exp(40j*xk)
+
+fig, ax = plt.subplots()
+
+ax.set_xlabel("j")
+
+ax.set_title("$y_k = e^{20ix_k} + e^{40ix_k}$")
+ax.plot(np.abs(FFT(yk)), label="FFT")
+ax.plot(np.abs(DFT(yk)), label="DFT")
+ax.legend(loc="upper right")
+
+fig.show()
+Analyze the evaluation-time scaling of your $\text{FFT(yk)}$ function with the help of the timeit module and compare it to the scaling of the $\text{DFT(yk)}$ function.
+ +for M in range(2, 10+1):
+ N = 2**M
+ xk = 2*np.pi*np.arange(N)/N
+ # Using the first equation for yk from the second exercise.
+ yk = np.exp(20j*xk) + np.exp(40j*xk)
+ tOutDFT = timeit.repeat(stmt=lambda: DFT(yk), number=10, repeat=5)
+ tOutFFT = timeit.repeat(stmt=lambda: FFT(yk), number=10, repeat=5)
+ tMean = np.mean(tOut)
+ print("M =", M, "gives")
+ print("tOutDFT =", tOutDFT)
+ print("tOutFFT =", tOutFFT)
+ print()
+For small $M$, DFT is faster, but as $M$ increases, FFT gets a lot more efficient.
See lecture notes and documentation on Brightspace for Python and Jupyter basics. If you are stuck, try to google or get in touch via Discord.
+Solutions must be submitted via the Jupyter Hub.
+Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE".
In the following we will implement the composite trapezoid and Simpson rules to calculate definite integrals. These rules are defined by
+\begin{align} + \int_a^b \, f(x)\, dx &\approx \frac{h}{2} \left[ f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] + &\text{trapezoid} \\ + &\approx \frac{h}{3} \left[ f(a) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] + &\text{Simpson} +\end{align}with $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$ and $x_k = a + kh$. Here $k = 0, \dots, n$ and $h = (b-a) / n$ is the step size.
+ +import numpy as np
+import scipy.integrate
+from matplotlib import pyplot as plt
+
+# And for printing the lambdas:
+import inspect
+Implement both integration schemes as Python functions $\text{trapz(yk, dx)}$ and $\text{simps(yk, dx)}$. The argument $\text{yk}$ is an array of length $n+1$ representing $y_k = f(x_k)$ and $\text{dx}$ is the step size $h$. Compare your results with Scipy's functions $\text{scipy.integrate.trapz(yk, xk)}$ and $\text{scipy.integrate.simps(yk, xk)}$ for a $f(x_k)$ of your choice.
+Try both even and odd $n$. What do you see? Why?
+Hint: go to the Scipy documentation. How are even and odd $n$ handled there?
+ +def trapz(yk, dx):
+ """
+ Return integration estimate for curve yk with steps dx
+ using the trapezoid algorithm.
+ """
+
+ a, b = yk[0], yk[-1]
+ h = dx
+ integral = h/2*(a + 2*np.sum(yk[1:-1]) + b)
+ return integral
+
+def simps(yk, dx):
+ """
+ Return integration estimate for curve yk with steps dx
+ using Simpson's algorithm.
+ """
+
+ a, b = yk[0], yk[-1]
+ h = dx
+ # Instead of summing over something with n/2, we use step size 2,
+ # thus avoiding any issues with 2 ∤ n.
+ integral = h/3*(a + 2*np.sum(yk[2:-1:2]) + 4*np.sum(yk[1:-1:2]) + b)
+ return integral
+def compare_integration(f, a, b, n):
+ """
+ Prints an analysis of integration estimates to function f(x)
+ over interval [a,b] in n steps using both the trapezoid and Simpson's
+ algorithm, self-implemented and Scipy implemented.
+ """
+
+ h = (b - a)/n
+ xk = np.linspace(a, b, n + 1)
+ yk = f(xk)
+
+ print("For function", inspect.getsource(f))
+ print("for boundaries a =", a, ", b =", b, "and steps n =", n, "the algorithms say:")
+ print("trapezoid:\t\t", trapz(yk, h))
+ print("Simpson:\t\t", simps(yk, h))
+ print("scipy.integrate.trapz:\t", scipy.integrate.trapz(yk, xk))
+ print("scipy.integrate.simps:\t", scipy.integrate.simps(yk, xk))
+ print()
+# We need a function to integrate, so here we go.
+f = lambda x: x**2
+
+n = 100001
+a, b = 0, 1
+compare_integration(f, a, b, n)
+compare_integration(f, a, b, n + 1)
+Implement at least one test function for each of your integration functions.
+ +# In the comparison of n even and n odd, and the testing of the integrations,
+# we have already tested the functions, but as it is asked, here we go again.
+
+def test_trapz():
+ fun = lambda x: x**3 + 6*x
+ a, b = 2, 16
+ n = 82198
+
+ h = (b - a)/n
+ xk = np.linspace(a, b, n + 1)
+ yk = f(xk)
+
+ trapz_our = trapz(yk, h)
+ trapz_scipy = scipy.integrate.trapz(yk, xk)
+
+ print("For function f(x) = x^3 + 6x")
+ print("for boundaries a =", a, ", b =", b, "and steps n =", n, "the algorithms say:")
+ print("trapezoid:\t\t", trapz_our)
+ print("scipy.integrate.trapz:\t", trapz_scipy)
+ print("with difference trapz(yk, h) - scipy.integrate.trapz(yk, xk) =", trapz_our - trapz_scipy)
+ print()
+
+def test_simps():
+ fun = lambda x: -x**3 + 6*x
+ a, b = 2, 17
+ n = 82228
+
+ h = (b - a)/n
+ xk = np.linspace(a, b, n + 1)
+ yk = f(xk)
+
+ simps_our = simps(yk, h)
+ simps_scipy = scipy.integrate.simps(yk, xk)
+
+ print("For function f(x) = -x^3 + 6x")
+ print("for boundaries a =", a, ", b =", b, "and steps n =", n, "the algorithms say:")
+ print("Simpson:\t\t", simps_our)
+ print("scipy.integrate.simps:\t", simps_scipy)
+ print("with difference simps(yk, h) - scipy.integrate.simps(yk, xk) =", simps_our - simps_scipy)
+ print()
+
+test_trapz()
+test_simps()
+Study the accuracy of these integration routines by calculating the following integrals for a variety of step sizes $h$:
+The integration error is defined as the difference (not the absolute difference) between your numerical results and the exact results. Plot the integration error as a function of $h$ for both integration routines and all listed functions. Comment on the comparison between both integration routines. Does the sign of the error match your expectations? Why?
+ +f1 = lambda x: x
+f2 = lambda x: x**2
+f3 = lambda x: x**(1/2)
+
+a, b = 0, 1
+h_list = np.logspace(-3, 1, 50)
+
+f1_simps = np.zeros(len(h_list))
+f1_trapz = np.zeros(len(h_list))
+f2_simps = np.zeros(len(h_list))
+f2_trapz = np.zeros(len(h_list))
+f3_simps = np.zeros(len(h_list))
+f3_trapz = np.zeros(len(h_list))
+
+for i in range(len(h_list)):
+ h = h_list[i]
+ xk = np.arange(a, b, h)
+ n = len(xk)
+
+ # The repetition could be reduced, but we deem that unnecessary.
+ f1_simps[i] = simps(f1(xk), h)
+ f1_trapz[i] = trapz(f1(xk), h)
+ f2_simps[i] = simps(f2(xk), h)
+ f2_trapz[i] = trapz(f1(xk), h)
+ f3_simps[i] = simps(f2(xk), h)
+ f3_trapz[i] = trapz(f1(xk), h)
+fig, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(16,6))
+
+fig.suptitle("Difference estimated integral minus true analytic value for three functions and two algorithms:")
+
+ax[0].set_xlabel("h")
+ax[1].set_xlabel("h")
+ax[2].set_xlabel("h")
+
+# We only need to set the scale and direction for one graph,
+# as we set sharex.
+ax[0].set_xscale("log")
+ax[0].invert_xaxis()
+
+ax[0].set_title(r"error in $\int_0^1xdx$")
+ax[0].plot(h_list, f1_trapz - 1/2, label="trapezoid")
+ax[0].plot(h_list, f1_simps - 1/2, label="Simpson")
+ax[0].legend(loc="lower right")
+
+ax[1].set_title(r"error in $\int_0^1x^2dx$")
+ax[1].plot(h_list, f2_trapz - 1/3, label="trapezoid")
+ax[1].plot(h_list, f2_simps - 1/3, label="Simpson")
+ax[1].legend(loc="lower right")
+
+ax[2].set_title(r"error in $\int_0^1x^\frac{1}{2}dx$")
+ax[2].plot(h_list, f3_trapz - 2/3, label="trapezoid")
+ax[2].plot(h_list, f3_simps - 2/3, label="Simpson")
+ax[2].legend(loc="lower right")
+
+fig.show()
+Somehow, the shape of the error functions seems to be similar, with peaks a similar pattern, for the three functions and the the algorithms. +The errors to the Simpson algorithm seems to be negative, thus the integration function gives lower estimates to the integrals. +This cannot be said about the trapezoid algorithm. +The trapezoid algorithms has the same trend, but becomes larger and positive in the latter two functions. +For Simpson's algorithm, as desired, over the range of decreasing $h$, the error decreases converging to around zero
+ +