Final: WIP: Clean up task 3.1 a little
This commit is contained in:
@ -606,7 +606,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 114,
|
"execution_count": 118,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"deletable": false,
|
"deletable": false,
|
||||||
"nbgrader": {
|
"nbgrader": {
|
||||||
@ -632,22 +632,19 @@
|
|||||||
" positions = atomic_positions(n)\n",
|
" positions = atomic_positions(n)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" infty = 1e3\n",
|
" infty = 1e3\n",
|
||||||
" epsilon = 1e-5\n",
|
" epsilon = 1e-3\n",
|
||||||
" x = np.arange(-infty, infty, epsilon)\n",
|
" x = np.arange(-infty, infty, epsilon)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" # V is calculated by creating a matrix len(x) by len(positions) over which\n",
|
|
||||||
" # we sum each row to create a matching value V(x) for each element of x.\n",
|
|
||||||
" #V = lambda x: np.sum(-1/(np.abs(x - positions)) + 0.001, axis=1)\n",
|
|
||||||
" #V = lambda x: np.sum( -1/( x - np.tile(positions, (len(x), 1)).T) + 0.001 ), axis=0 )\n",
|
|
||||||
" def V(x):\n",
|
" def V(x):\n",
|
||||||
" value = np.zeros(x.shape)\n",
|
" ret = np.zeros(x.shape)\n",
|
||||||
" for x_i in positions:\n",
|
" for x_i in positions:\n",
|
||||||
" value += -1./(np.abs(x - x_i) + 0.001)\n",
|
" ret += -1./(np.abs(x - x_i) + 0.001)\n",
|
||||||
" return value\n",
|
" return ret\n",
|
||||||
" #V = lambda x: np.sum( -1/( np.abs(np.tile(x, (len(positions), 1)) - np.tile(positions, (len(x), 1)).T) + 0.001 ), axis=0 )\n",
|
" # Instead of using a loop, one could vectorize the problem by calculating all sum\n",
|
||||||
" #V = lambda x: np.sum( -1/( np.abs(x - np.tile(positions, (len(x), 1)).T) + 0.001 ), axis=0 )\n",
|
" # elements in a len(x) by len(positions) matrix and then summing along the rows.\n",
|
||||||
" # OMG IT EXISTS\n",
|
" # In testing I found that this was slower than using the loop, so I commented it out.\n",
|
||||||
" #V = lambda x: np.sum( -1/( np.abs(np.subtract.outer(x, positions)) + 0.001 ), axis=1 )\n",
|
" #V = lambda x: np.sum( -1/( np.abs(np.subtract.outer(x, positions)) + 0.001 ), axis=1 )\n",
|
||||||
|
" \n",
|
||||||
" integrand = lambda x: atomic_basis(x, positions[i], sigma)*V(x)*atomic_basis(x, positions[j], sigma)\n",
|
" integrand = lambda x: atomic_basis(x, positions[i], sigma)*V(x)*atomic_basis(x, positions[j], sigma)\n",
|
||||||
" return integrate(integrand, x)\n",
|
" return integrate(integrand, x)\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -663,7 +660,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 115,
|
"execution_count": 119,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"deletable": false,
|
"deletable": false,
|
||||||
"nbgrader": {
|
"nbgrader": {
|
||||||
@ -683,13 +680,12 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"21.9 s ± 35.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
|
"-0.13881260449985544 -0.13881260449985544\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"#print(hopping(1, 0, 10), hopping(0, 1, 10))\n",
|
"print(hopping(1, 0, 10), hopping(0, 1, 10))\n",
|
||||||
"%timeit hopping(1, 0, 10)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# YOUR CODE HERE\n",
|
"# YOUR CODE HERE\n",
|
||||||
"#raise NotImplementedError()"
|
"#raise NotImplementedError()"
|
||||||
|
|||||||
Reference in New Issue
Block a user