From 74594c54f1b49d71efc7adb210b871caecf8c27a Mon Sep 17 00:00:00 2001 From: Kees van Kempen Date: Tue, 15 Feb 2022 17:00:21 +0100 Subject: [PATCH] Week 2 be done with beautiful docstrings --- ...Discrete and Fast Fourier Transforms.ipynb | 65 ++++++++++--------- ...gration: Trapezoid and Simpson Rules.ipynb | 22 +++++-- 2 files changed, 53 insertions(+), 34 deletions(-) diff --git a/Week 2/5 Discrete and Fast Fourier Transforms.ipynb b/Week 2/5 Discrete and Fast Fourier Transforms.ipynb index 24de6c1..d205af6 100644 --- a/Week 2/5 Discrete and Fast Fourier Transforms.ipynb +++ b/Week 2/5 Discrete and Fast Fourier Transforms.ipynb @@ -137,8 +137,11 @@ }, "outputs": [], "source": [ - "# TODO: Write docstrings, ugh.\n", "def DFT(yk):\n", + " \"\"\"\n", + " Return discrete fourier transform (DFT) of yk for N discrete frequency intervals.\n", + " \"\"\"\n", + " \n", " N = len(yk)\n", " xk = 2*np.pi*np.arange(N)/N\n", " beta = np.dot(yk, np.exp(np.outer(-np.arange(N), xk*1j)))\n", @@ -293,31 +296,31 @@ "output_type": "stream", "text": [ "M = 2 gives\n", - "tOut = [0.0003551868721842766, 0.00026587769389152527, 0.0002683410421013832, 0.0002652248367667198, 0.00029958970844745636]\n", + "tOut = [0.00035531632602214813, 0.00026446394622325897, 0.0002669980749487877, 0.000263310968875885, 0.0002625705674290657]\n", "\n", "M = 3 gives\n", - "tOut = [0.00037261005491018295, 0.0003149900585412979, 0.0002723895013332367, 0.00024654995650053024, 0.000258052721619606]\n", + "tOut = [0.0002719983458518982, 0.0002478230744600296, 0.0002496456727385521, 0.00025005731731653214, 0.0008301911875605583]\n", "\n", "M = 4 gives\n", - "tOut = [0.00034819450229406357, 0.00033616088330745697, 0.0003195982426404953, 0.00034148991107940674, 0.00035313330590724945]\n", + "tOut = [0.000346149317920208, 0.0003256509080529213, 0.00032440759241580963, 0.00031386781483888626, 0.0003223838284611702]\n", "\n", "M = 5 gives\n", - "tOut = [0.0007255515083670616, 0.0005129771307110786, 0.0004988498985767365, 0.0004972768947482109, 0.0005336767062544823]\n", + "tOut = [0.0007905261591076851, 0.0005042999982833862, 0.0004924368113279343, 0.0004901541396975517, 0.0005300091579556465]\n", "\n", "M = 6 gives\n", - "tOut = [0.0025200899690389633, 0.0023925071582198143, 0.0023851143196225166, 0.0023938296362757683, 0.0023842724040150642]\n", + "tOut = [0.002741251140832901, 0.002402886748313904, 0.0024533523246645927, 0.0024026362225413322, 0.002384801395237446]\n", "\n", "M = 7 gives\n", - "tOut = [0.008896775543689728, 0.00880778580904007, 0.008781216107308865, 0.008825629949569702, 0.008792318403720856]\n", + "tOut = [0.009145548567175865, 0.008851788938045502, 0.00881863571703434, 0.008819866925477982, 0.008821901865303516]\n", "\n", "M = 8 gives\n", - "tOut = [0.03435589000582695, 0.033995422534644604, 0.034102585166692734, 0.03416615817695856, 0.03535666409879923]\n", + "tOut = [0.03434724546968937, 0.03383493982255459, 0.03385954722762108, 0.03491049725562334, 0.03388229105621576]\n", "\n", "M = 9 gives\n", - "tOut = [0.1477726474404335, 0.14786271005868912, 0.14967191498726606, 0.1493966607376933, 0.14906080160290003]\n", + "tOut = [0.14674979075789452, 0.14636401552706957, 0.1461899448186159, 0.14625835418701172, 0.14628244005143642]\n", "\n", "M = 10 gives\n", - "tOut = [0.5873688040301204, 0.5887598115950823, 0.5843716822564602, 0.5818474553525448, 0.5803691502660513]\n", + "tOut = [0.5750202471390367, 0.5727888783439994, 0.5727971633896232, 0.5725235631689429, 0.5941787445917726]\n", "\n" ] } @@ -416,9 +419,11 @@ "outputs": [], "source": [ "def FFT(yk):\n", - " # TODO: Write a docstring.\n", - " \"\"\"Don't forget to write a docstring ...\n", " \"\"\"\n", + " Return the fast fourier transform (FFT) of array yk by considering odd\n", + " and even points and making use of discrete fourier transforms (DFTs).\n", + " \"\"\"\n", + " \n", " N = len(yk)\n", "\n", " # N should be a power of two\n", @@ -535,40 +540,40 @@ "output_type": "stream", "text": [ "M = 2 gives\n", - "tOutDFT = [0.00026126671582460403, 0.00021027959883213043, 0.0001835385337471962, 0.00023766234517097473, 0.00022200308740139008]\n", - "tOutFFT = [0.0006446670740842819, 0.0007413318380713463, 0.0006805472075939178, 0.0006410712376236916, 0.0006419029086828232]\n", + "tOutDFT = [0.00021187309175729752, 0.00018186774104833603, 0.0001812456175684929, 0.00018110498785972595, 0.00018095411360263824]\n", + "tOutFFT = [0.0005802353844046593, 0.0005557788535952568, 0.0006145015358924866, 0.0005566608160734177, 0.0005704071372747421]\n", "\n", "M = 3 gives\n", - "tOutDFT = [0.00022369623184204102, 0.00022925715893507004, 0.0002404283732175827, 0.00021736416965723038, 0.0002731001004576683]\n", - "tOutFFT = [0.0013865511864423752, 0.0013830652460455894, 0.0013337815180420876, 0.0012838244438171387, 0.0012847669422626495]\n", + "tOutDFT = [0.00022258423268795013, 0.00020575150847434998, 0.0002390751615166664, 0.00020509026944637299, 0.00020475033670663834]\n", + "tOutFFT = [0.001284896396100521, 0.0013337591663002968, 0.0012675542384386063, 0.0013139024376869202, 0.0012842761352658272]\n", "\n", "M = 4 gives\n", - "tOutDFT = [0.0003327140584588051, 0.0003035273402929306, 0.0003030272200703621, 0.00030216481536626816, 0.00030276738107204437]\n", - "tOutFFT = [0.002759365364909172, 0.002286495640873909, 0.0020805923268198967, 0.0020598340779542923, 0.0020735692232847214]\n", + "tOutDFT = [0.0003250986337661743, 0.00035554729402065277, 0.0003026863560080528, 0.00030192453414201736, 0.0003027757629752159]\n", + "tOutFFT = [0.00277732964605093, 0.002760577015578747, 0.0021515777334570885, 0.002049895003437996, 0.0028353100642561913]\n", "\n", "M = 5 gives\n", - "tOutDFT = [0.0008888524025678635, 0.000489652156829834, 0.00048649683594703674, 0.00048589520156383514, 0.0004848325625061989]\n", - "tOutFFT = [0.004292245022952557, 0.00426078587770462, 0.004242740571498871, 0.005865932442247868, 0.006726261228322983]\n", + "tOutDFT = [0.0008856169879436493, 0.0004905443638563156, 0.0004913564771413803, 0.0005037290975451469, 0.0004903236404061317]\n", + "tOutFFT = [0.004227722063660622, 0.004218194633722305, 0.004212621599435806, 0.006331468001008034, 0.006671415641903877]\n", "\n", "M = 6 gives\n", - "tOutDFT = [0.0036992961540818214, 0.002382858656346798, 0.002396935597062111, 0.002390684559941292, 0.002375013194978237]\n", - "tOutFFT = [0.011373533867299557, 0.011346021667122841, 0.01132622268050909, 0.011333126574754715, 0.011340481229126453]\n", + "tOutDFT = [0.0037633972242474556, 0.002388077788054943, 0.0024485038593411446, 0.0023846719413995743, 0.0024057207629084587]\n", + "tOutFFT = [0.01122717373073101, 0.011149754747748375, 0.011180805042386055, 0.01120598241686821, 0.011219387874007225]\n", "\n", "M = 7 gives\n", - "tOutDFT = [0.009215572848916054, 0.008818225935101509, 0.008802506141364574, 0.008820069953799248, 0.00881765503436327]\n", - "tOutFFT = [0.022970101796090603, 0.023467930033802986, 0.02285583410412073, 0.02295252773910761, 0.022949432022869587]\n", + "tOutDFT = [0.00920125376433134, 0.00882750190794468, 0.008815147913992405, 0.00881881546229124, 0.008816582150757313]\n", + "tOutFFT = [0.022676337510347366, 0.023197690956294537, 0.02264594007283449, 0.022664004936814308, 0.022718658670783043]\n", "\n", "M = 8 gives\n", - "tOutDFT = [0.03451558295637369, 0.033903918229043484, 0.03388609457761049, 0.033958752639591694, 0.033889370039105415]\n", - "tOutFFT = [0.047724733129143715, 0.04677246883511543, 0.04511415120214224, 0.035544090904295444, 0.03561900556087494]\n", + "tOutDFT = [0.034523812122642994, 0.033904923126101494, 0.033997087739408016, 0.03390498273074627, 0.03390084486454725]\n", + "tOutFFT = [0.046751600690186024, 0.04573535453528166, 0.04478597640991211, 0.03446220513433218, 0.034463477320969105]\n", "\n", "M = 9 gives\n", - "tOutDFT = [0.12958059646189213, 0.13343970850110054, 0.13339493237435818, 0.1336062252521515, 0.13355298340320587]\n", - "tOutFFT = [0.09326057601720095, 0.08018506038933992, 0.07027726992964745, 0.07104555331170559, 0.0710984542965889]\n", + "tOutDFT = [0.12952119670808315, 0.1336375381797552, 0.13360701967030764, 0.1335998559370637, 0.13358618132770061]\n", + "tOutFFT = [0.09165043104439974, 0.07926731836050749, 0.06876837275922298, 0.06870093382894993, 0.06888525560498238]\n", "\n", "M = 10 gives\n", - "tOutDFT = [0.5566168483346701, 0.5795272067189217, 0.5755985928699374, 0.5750947641208768, 0.5745749343186617]\n", - "tOutFFT = [0.1753099588677287, 0.14073420222848654, 0.14395484700798988, 0.14109977800399065, 0.14102207031100988]\n", + "tOutDFT = [0.5503582386299968, 0.5721757095307112, 0.572254091501236, 0.572665935382247, 0.5729674575850368]\n", + "tOutFFT = [0.17185171879827976, 0.1377342501655221, 0.13842287193983793, 0.1409124033525586, 0.13889379799365997]\n", "\n" ] } diff --git a/Week 2/6 Composite Numerical Integration: Trapezoid and Simpson Rules.ipynb b/Week 2/6 Composite Numerical Integration: Trapezoid and Simpson Rules.ipynb index b3a4034..ffe1c4d 100644 --- a/Week 2/6 Composite Numerical Integration: Trapezoid and Simpson Rules.ipynb +++ b/Week 2/6 Composite Numerical Integration: Trapezoid and Simpson Rules.ipynb @@ -146,12 +146,22 @@ "outputs": [], "source": [ "def trapz(yk, dx):\n", + " \"\"\"\n", + " Return integration estimate for curve yk with steps dx\n", + " using the trapezoid algorithm.\n", + " \"\"\"\n", + " \n", " a, b = yk[0], yk[-1]\n", " h = dx\n", " integral = h/2*(a + 2*np.sum(yk[1:-1]) + b)\n", " return integral\n", " \n", "def simps(yk, dx):\n", + " \"\"\"\n", + " Return integration estimate for curve yk with steps dx\n", + " using Simpson's algorithm.\n", + " \"\"\"\n", + " \n", " a, b = yk[0], yk[-1]\n", " h = dx\n", " # Instead of summing over something with n/2, we use step size 2,\n", @@ -167,9 +177,11 @@ "outputs": [], "source": [ "def compare_integration(f, a, b, n):\n", - " # Let's check whether f is callable.\n", - " # TODO: Improve checks on f, or not.\n", - " assert callable(f)\n", + " \"\"\"\n", + " Prints an analysis of integration estimates to function f(x)\n", + " over interval [a,b] in n steps using both the trapezoid and Simpson's\n", + " algorithm, self-implemented and Scipy implemented.\n", + " \"\"\"\n", " \n", " h = (b - a)/n\n", " xk = np.linspace(a, b, n + 1)\n", @@ -430,7 +442,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAGUCAYAAAA8k9/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTzklEQVR4nOzdd5yc51nv/889fXvX7kpaVUuymi3bcolbHMcJSZzihHQS0iBwIMABAphfGoHDOaHlkBwgkEAKEEhIL3aIS2zHsWNbcpNs9a6Vdler7bvTn7l/f9wzW2e2r7Z936/XvmZ35pmZZ0V4PN+9rvu6jbUWERERERERkYXCN98nICIiIiIiIjKcgqqIiIiIiIgsKAqqIiIiIiIisqAoqIqIiIiIiMiCoqAqIiIiIiIiC4qCqoiIiIiIiCwoCqoiIiIiIiKyoCioioiIiIiIyIKioCpLnjGmwhjzlDGm3xizY77PR0Rktuj6JiLLga51y5OCqiwHUeBO4JvzfSIiIrNM1zcRWQ50rVuGFFRlybPWpqy17fN9HiIis03XNxFZDnStW54UVEVERERERGRBUVCVJcMYs9sYc8gYc8oYc818n4+IyGzR9U1EloPZvNZlX+u7xphds3R6cokpqMpS8nfAi8ADwP+Z53MREZlNs3Z9M8ZcZ4z5uTHmp8aY/zTGBGflDEVEZm7WrnXW2r3Ad2fhnGSeBOb7BERm0S7gS7iF9uXDHzDG3Jt9fIsx5p+stV++1CcnIjIDu5i969tZ4HZrbcwY83+AN6ABJSKyMOxCn+UkS0FV5p0x5kXgN621D8/gNYqAMNBjre0AOoY/bq19zYxO0r3Hx4AGa+1vzvS1RGR5WIjXN2tty7Afk0BmgvfXtU9ExrUQr3XGmMuAVwLbjTEnrLW94xyr69wCpKAq885au30WXqY0e9s/C69VyHbgoTl8fRFZYhby9c0Ysxb3Ie5/TXCorn0iMq6FeK2z1h4D3jnJw3WdW4C0RlUmxRgz5o8a+e6b6mvMorLs7VwH1X1z+PoiMg+W4/XNGFMO/BvwXmttaoLDde0TWQKW27XOGGPzfRU4XNe5BUhBdZkzxqw0xnzLGNNujDlpjPntYY+dMsb8kTFmHzBgjAkUuG+rMeZhY0y3MeZFY8zrx3uNPOdwyhhzx7DvP2yM2WeM6THGfN0YE5nErzLlv8IZY/7SGPPdYT//lTHmQWNMyBjjM8b8sTHmgjHmvDHm7cBlwAsTPXey7y8ic0vXt4LXtwDwNeCT1trDo55X8Nqn657IwqRrXf7rkrXW5PvSZ7xFxFqrr2X6hftDxdPAx4EQsAE4AfxC9vFTwHNAE1CU7z4gCBwD/r/sa9wO9AFbCr1GnvM4Bdwx7PungJVANXAQ+PVJ/C43Ajb3vpP8/WuAHuAq4NeB/UBF9rE/AR4DGoCK7PcnJvNcfelLX/P/pevbuNe3d+PWfj2c/XrbsOcVvPbpuqcvfS28L13rxr3WvRL4I+CfgOCw5xS8zk30mvq6tF9ao7q8XQvUWWv/NPvzCWPMF4C3Az/O3vdZa+3ZUc8bvM8YcwvuL2CfstZmgJ8YY34IvAN3ISj0GuP5rLX2fPb1f4Cb8DaRKf8VzlrbYYz5v8BXcBeqm621PcaYOuDDwJXW2tbsedwDXD/Rcyf73iIy53R9K3CNstb+G67td4SJrn267oksSLrWFb7W3QfcZ4z5NC6Ap/QZb3FRUF3e1gIrjTHdw+7zA48O+znfRWn4fSuBs9kLW85pYNUErzGe1mHfR7PvMZHprmt4FvgE8EvDLsAvBw5aa48PO66esWsX8j1XRBYGXd+mfo2azLVP1z2RhUXXunGuS8aYXwfus9YOZO/SZ7xFRGtUl7ezwElrbeWwrzI7cvx3vkXnw+87DzQZY4b/b2kNcG6C15ht01nXsBP4HO4vZu8f9lAtcGHYcUHgLoZdxMZ5rogsDLq+Tf0aNe61T9c9kQVJ17oC16VsSL0DuNwYU5W9W5/xFhEF1eXtKaAvu0C+yBjjN8bsMMZcO4XXeBL3l7I/NMYEjTG3Aa/DDeq4lEqBmLXWm8zBxphVwA9waw9+A9iZPXeAw8DNxpjNxpgK3MVqDW6NwkTPFZGFQde3qV+jCl77dN0TWbB0rStwXbLW/qO19s3W2r+11nZl79ZnvEVEQXUZy14IXotbN3ASuAj8M64ff7KvkcRdzF6dff4/AL9srT002+c7gVIm+Rc447ZluBf4tLX2+9baKPBXwJ8DWGvvx12c9wJ7gHYgDhyd6LkisjDo+jb1a9Q4176W6b6miMwtXeumdl3SZ7zFxVh7KSr5InMj26ZigE8Cb7fWXjbq8b/ATZE7BbzfTrxfoIjIgqDrm4gsB7rWSSGqqMpidxp4L26E+MHhDxhjrgRWWWtvAQ4Bb77kZyciMn26vonIcqBrneSloCqL3Z8Dn8eNZ/+TUY/dCNyX/f6/gZsu3WmJiMyYrm8ishzoWid5KajKomat/Ufchs1rrLVPj3q4CujNft+D23RaRGRR0PVNRJYDXeukEO2jKouetba9wEPdQHn2+wqg85KckIjILNH1TUSWA13rJB9VVGUpexy3fxbALwCPzeO5iIjMJl3fRGQ50LVuGVNQlSXLWvsc0GaMeRTYDnxrfs9IRGR26PomIsuBrnXLm7anERERERERkQVFFVURERERERFZUGYlqBpjXmWMOWyMOWaMuTvP479njDlgjNlnjHnQGLN2Nt5XRERERERElp4Zt/4aY/zAEeAVQDOwB3iHtfbAsGNeBjxprY0aY/4HcJu19m3jvW5tba1dt27djM5NRJaep59++qK1tm6+z2M26XonIqPpWiciy8F417rZ2J7mOuCYtfYEgDHma8AbgMGgaq19aNjxTwDvmuhF161bx969e2fh9ERkKTHGnJ7vc5htut6JyGi61onIcjDetW42Wn9XAWeH/dycva+QDwA/moX3FRERERERkSXokg5TMsa8C9gN/FWBxz9ojNlrjNnb3l5o318RkcVP1zsRWQ50rROR6ZqNoHoOaBr28+rsfSMYY+4APgK83lqbyPdC1trPW2t3W2t319UtqWUZIiIj6HonIsuBrnUiMl2zEVT3AJuMMeuNMSHg7cD3hx9gjLkK+CdcSL0wC+8pIiIiIiIiS9SMg6q1Ng18CPgxcBD4L2vti8aYPzXGvD572F8BpcA3jDHPGWO+X+DlREREREREZJmbjam/WGvvBe4ddd/Hh31/x2y8j4iIiIiIiCx9l3SYkoiIiIiIiMhEFFRFRERERERkQVFQFRERERERkQVFQVVEREREREQWFAVVERERERERWVBmZeqviIiIyEJjrQXAGDNn75FMZ/AylnQmQyYDnrVkrCXgMwT8PgI+g99nCPjMnJ6HiMhSo6AqIiIiC9757hhPn+7imTNdPHO6i2MX+jFmKAT6fQZjIOVZUukMCS9DyssQ9PmoKwuP+AoHfMRTHrGkRyzlEUtliCbS9CfS9MXd7UAiTdDvoyQcoDTspyQcoDjkJ5by3DFxd2zSy0zq/CNBH4f+7NVz/K8kIrJ0KKiKiIgsIz851Mbf/eQYH37lFm68rHa+TweAkxcHePjwBR450s6TJzpJZzKE/D5CAfflZSwX+5OAC3xXrq7kLbub8PsMaS9DOmPxMq6SGQr4COae6/eRTGdo70/Q3pfgbGeUp093kUpnKAr53VfQTzjopzTsp6a0mNJwkNKwn+JwgLSXoT/hMZANrtGkx4qyIBtqA5RFApRFgpSE/IOVU5/P4Dfg8xnSns1WWi1eJqNqqojIFCmoioiILAMXeuN88gcHuGd/CwB3f3s/9/3urUSC/km/Rk8sxVMnO1ldVcT62pIpPRcg7WVo7opx8uIAJy4OcOxCP48fv8jpjigA62tLePM1qymNBEimMyTTripqLWxtLOOatdVc3lhG0K8RGyIiS52CqoiILGnWWs73xFlVWTTfpzKGl7E8c6aLa9dVz9l7ZDKWrz51hr/80SESXoYPv3Iz21dW8L4v7+HzPz3Bb79806Repzua5O2ff4JDrX0A+Aw0VRezaUUpm+vL2Lmqgh2rKlhdVTRYPRxIpHnqZCc/O3aRx493cOxCHynPDr5meSTAteuq+cDN63np5jrW1pTM/j+AiIgsSgqqIiKypD15spN3fOEJfvL7t7G+dmEFoe88e44Pf+N5fvQ7t7C1sXxWXtNaS0tPnGfPdPPsmS5+duwih1r7uHFjDX/+xp2D/wav2dnA3z90jDdetYqm6uJxX7M/kea9X9rDifYB/vZtu/D5DMcu9HP8Qj9HL/Tx8OF20hkXQKuKg+xYVUE85fHsmW7SGdeOe+26Kn7llg1sqC1hQ10J62tLqSoOqiVWRETyUlAVEZElrbUnjrVwumNgwQXVJ090ALD/XM+sBNXPPXycLz9+krbeBADhgI8dqyr4m7dcyZuuXjUiFH70zm08dKid/3XPAf7p3bsLvmY85fHBf93L/nM9fO6XruaV2xvyHnOotY/953rY39zN/nO9hPyGX711AzdtrGX3uqoptwmLiMjypqAqIiJL2kAyDTA4jGch2XOqE4CDLb3jHnfsQh8nL0Z5xbb6gsf0xlP8zX2HuWJ1Bb9x22VctaaSyxvKCQXyr+dcWVnEh26/jL/68WEeOdLOSzfXjTkm5WX40H88w89PdPDpt16ZN6QCRIJ+djVVsqupElg77u8iIiIyGZpGICIiS1os6QFwsT8xz2cy0oW+OKeyQ4QmCqqfvv8Iv/HVp+mJpQoek2u//cidW3nPjeu4YnVlwZCa8yu3rGd9bQl/8v0XSaS9EY8l0xl+/7+e54GDF/izN+zgjVetnuRvJiIiMnMKqiIisqRFc0G1b2EF1adPdQFweUMZB1v6sNYWPPb5sz2kPMv9B9oKHvPAgTZqS0Psaqqa9DmEA34+8bptnLw4wD8/epLuaJLvPnuO3/yPZ7j6z+7n+8+f549edTnvukFVUhERubTU+isiIktadIFWVPec6iIS9PGW3U382Q8P0NITZ2WeycQd/QnOdccAuHd/C2++ZmxlM+VleOjwBV69owG/b2rDiW7bsoJXbqvnbx84wqfvP4KXsdSWhnndlY28ekcjt+ZpCRYREZlrCqoiIrKkRbNrVDsGFtYa1b2nO9nVVMmVqysAOHC+N29Q3XeuB4Cdqyp49Gg7vfEU5ZHgiGOeOtlJXzzNHVsLr2Edzydev53EtzNsX1nOK7bVc+XqSnxTDLwiIiKzSa2/IiKypOUqqu1z2Prb2hOnN154/ehoA4k0L57v5dp11VyenfZbaJ3qvrM9GAN/+KotpDzLA3naf+8/0EY44OOWTdOrfq6qLOIr77+OP3zV5Vy1pkohVURE5p0qqiIisqQNDVOam4pqTyzFKz79CKlMhlfvaOQtu1dzw/qaccPes2e68TKW3euqKQ0HWFNdzMHW/EF1/7luNtSWcPNltaysiHDv/hbedPVQ+6+1bu3qLZtqKQppCxgREVkaVFEVEZElLbc9TedAAi9TeGDRdP3XnrP0JdL8wvYGHjjYxju/8CQv/euH+OyDRwdD8mh7TnXiM3D1mkoAtja6gUqjWWt5vrmHK1dXYozhVTsa+emRiyOqt4da+zjXHZt226+IiMhCpKAqIiJLWq71N2OhKzq7VVUvY/nKz09x3bpqPvP2q9jzkTv4zNt3saa6mE/ff4RP33847/P2nu7k8oZyyrJrTbc2lnOqY2BwPW1Oa2+c9r4EV2TXsd55RQNJL8ODB4fafx840IYx8HIFVRERWUIUVEVEZEkbXtWc7cm/Dxxso7krxntvWgdAJOjnDbtW8dVfuYHXX7mS/3zq7Ji1qykvw7NnurluffXgfVsby7HWVUeH29ecHaS0uhKAq5qqaCiPcO/+1sFj7j/Yxq6mSurKwrP6u4mIiMwnBVUREVnSosk0taUuxF3sm92K6pcfO8WqyiJeuW1sNfODt26gP5Hma0+dGXH/gfO9RJMeu9cN7Xe6rcBApX3N3QR8hu0r3eM+n+HVOxt45Eg7ffEUrT1x9jX3qO1XRESWHAVVERFZ0qJJjzXVbtuX2ayoHmzp5ecnOnj3S9YS8I/9z+mOVRXcuLGGL/7sFMl0ZvD+Pac6Adi9dqiiurqqiLJwIE9Q7WFzfRmR4NCQpDt3NpJMZ/jJoQs8eMi1AOcLyiIiIouZgqqIiCxpLqgWA7MbVL/82CkiQR9vv7ap4DG/eusGWnvj/HDf+cH79p7qoqm6iIaKyOB9xhguHzVQyVrLvuYermyqGPGaV6+por48zD37Wrj/QBtra4q5bEXprP1eIiIiC4GCqoiILGmxpEd9RYSQ3zdrW9R0DiT57nPneONVq6ksDhU87rbNdWyuL+XzPz2BtRZrLXtPd3LtsGpqztbGcg619JLJTiY+0xmlJ5Zi56rKEcf5fIZX72jk4SPtPH6sgzu21mOM9j0VEZGlRUFVRESWrJSXIellKAkFqCkNzVpF9T+fOkMineG9N64b9zhjDL96ywYOtfbx6NGLnOqIcrE/ybXr8wfVgaTH2a4oAM9nBynlJv4O95ps+2/Sy/AKtf2KiMgSpKAqIiJLVm5rmuKQn9rS8KwE1ZSX4d+fOM1Nl9WwpaFswuNfv2slK8rCfOHRE+w56danXjtskFLO1lEDlfY3dxMK+PK+x+61VawoC1NRFGT32rGvJSIistgF5vsERERE5kpsMKgGqC0N0T4LQfXHL7bS0hPnT9+wY1LHhwN+3nvTOv7yvw/TG09TVRxkY93YNaVb6svwGTjQ0serdjTyfHMP2xrLCeYZ1OTzGT7xuu0k0l7eQU4iIiKLnf7rJiIiS1Y0mQaGVVRnYXuarz5xhjXVxdx++YpJP+eXrltLccjP82e7uWZtdd41pUUhP+tqSzjY0ouXsbxwrocr87T95tx5RSNvunr1tH4HERGRhU5BVURElqxc629RyE9NaZiOgQTW2mm/XiZjee5sN7dfvgK/b/IDjCqKg7z92jVA/rbfnK2N5Rxs6eVEez/RpMcVqyunfa4iIiKLmYKqiIgsWbmgWpJt/U15lp5Yatqvd7YrSizlcfkk1qaO9qu3ruf69dW8akdDwWO2NZbT3BXjZ8cuAvkHKYmIiCwHWqMqIiJLVq71tyjkp64sDLi9VMfbUmY8h1vdPqebpxFUGyuK+PqvvWTcY7ZlByr9195mSkJ+NuRZyyoiIrIcqKIqIiJLVmzU1F9gRnupDgbV+qkH1ckYPvl3x6qKKbUXi4iILCWqqIqIyJI1MKz115cdYDSTLWoOtfXRVF1EaXhu/vNZXx6mqjhIVzTFlU2Vc/IeIiIii4EqqiIismTFhrX+1pa6dt+LfdMPqkda+9gyR9VUAGPMYFV15yqtTxURkeVLQVVERJas6LDW36riEH6fmXbrbyLtceLiAFumsT51KnJB9UpN/BURkWVMrb8iIrJk5Vp/i4J+fD5DdUlo2q2/J9oH8DKWLQ3ls3mKY7zjujVUFQdpqi6a0/cRERFZyBRURURkyYol04MhFaBmBkE1N0hpLlt/AS5bUcqHbt80p+8hIiKy0Kn1V0RElqxo0qM45B/8ua4sTPs0W38PtfYR9BvW15bM1umJiIhIAQqqIiKyZMWSHkXDgmptaXjaw5SOtPWxobaUUED/6RQREZlr+q+tiIgsWQPJNCWhoVUutaWu9ddaO+XXOtzaN+eDlERERMRRUBURkSUrmqeimkhnBocsTVZfPMW57piCqoiIyCWioCoiIktWbNQa1drSMDD1vVSPtF2aQUoiIiLiKKiKiMiSNTA6qJZlg+oUJ/8eyk38VUVVRETkklBQFRGRJSuWTFM8ao0qTD2oHmntoyTkZ3WV9jYVERG5FBRURURkyRq9PU2u9XeqW9Qcau1jc0MZxphZPT8RERHJT0FVRESWrNHb01SXZCuqU1ijaq3lSFsfl6vtV0RE5JJRUBURkSXJWstAMj2iohr0+6gqDk6p9be9L0FXNMVmDVISERG5ZBRURURkUfjW080cON876eMT6QwZy4g1quDaf6cSVA+3aZCSiIjIpaagKiIii8KffP9FvvjYyUkfH8vulTq8ogouqHZMYY3q4VZtTSMiInKpKaiKiMiiEEt5tPTEJn38QDIN5AmqZVOrqB5q7aO2NExNdhCTiIiIzD0FVRERWfDSXoZ0xnK+Oz7p5wxVVEe3/oa4OIWKqgYpiYiIXHoKqiIisuDF0xkAznfHsNZO6jnRcVp/+xNp4ilvwtfwMm7ir9anioiIXFoKqiIisuDlqqOJdIbOgclVQ3NBtWhMUHVb1LRPYouas51R4qmM1qeKiIhcYgqqIiKy4A2vfk62/Tc6uEZ17NRfYFLrVA+1auKviIjIfFBQFRGRBS+RHgqq57onN1ApV1EtydP6C0xqnerh1j6MgU31pZM9VREREZkFCqoiIrLgxVOZwe8nO/k3Vqj1t2zyFdUjF/poqioeU5UVERGRuaWgKiIiC15sROvv5ILqQIHW35oSt0b14iTWqJ7rirG2pniypykiIiKzREFVREQWvBFrVHsmu0Y1/9TfSNBPWSRAxySGMrX2xGkoj0zhTEVERGQ2KKiKiMiCl2v9LY8EJl1RjSU9fAbCgbH/qasrDdM+Qetv2stwoS9OY4WCqoiIyKWmoCoiIgtervV3Q13ppINqNOlRHApgjBnzWG1peMLW3/b+BBkLDRVFUz9hERERmZFZCarGmFcZYw4bY44ZY+7O83jYGPP17ONPGmPWzcb7iojI8hAfDKolXOhLkPIyEzzDbU8zepBSTk1paMJhSi3ZFmNVVEVERC69GQdVY4wf+Hvg1cA24B3GmG2jDvsA0GWtvQz4v8BfzPR9RURk+Uhkg+rGulKsdWtHJxJNemO2psmpLQ1PuD1N7j0aFFRFREQuudmoqF4HHLPWnrDWJoGvAW8YdcwbgK9kv/8m8HKTrxdLREQkj9wa1Q21JcDkJv9Gkx5FBbaVqS0N0xNLkUwXrsyqoioiIjJ/ZmNjuFXA2WE/NwPXFzrGWps2xvQANcDFWXh/kWUvHhvg1L7H6D7yM0zXSTA+8AWw2S8A46UwXgKTSeHzkiSDZQxUbMKrvZxAwzaqalbgM4ZEIoHtOQ995/D1nSedjBFPZUik0iRSHsl0hoDfRyToI+z3EQr6CPvAJvog3guJXvzJPvzpKMamMTaDsR6GDGBImTBJXxEpf4SUL0KmtIFX/Mqfz+8/oCx4w9eowlCIHP856TETf3MaKtxeqm29cZqq828/09oTIxL0UVEUnM4py1xIJ6F1PzQ/Be2HwRjwBcEXAJ/f/eylwEtCOuG+DxVD3eWwYivUbYXSOvdaXhr6W6HnHPSeg1QMsGCtu83HZiDRD4k+SPS6a16yDzKe+7LZW4BgUfar2H2FS+H2j16KfyURkSVhQe1gboz5IPBBgDVr1szz2chy09Hdw7H//ge23/kblJZVzPfpDLpw7iSnn/w+9swTAFh/COsPgS+I8RJUdu1nfeoYlxv34aiTcgACePithx8PAyQJkDJB0gRImyAVtoeSjjiccO/TaqswWOrowWcKfEibQMYaBogwYEpI+Irw8JMxfqzxkcGHwVJuE4RtgrCNE7YJuvpXAMsvqOp6NzXxlEfAZ2iqdoONzk2iojqQ8CiL5P/PXC6cnumMFgyqLdmtaZZcA1AmA09/Cba9AUpq5/tshvS3w/GfwOnHIJMGf8h9BUIu/J1/1n2ls3+kKKp2f5TLpLNBMeVCZu45uefHuyHeM/Q+xbUQCENfiwue0xUqg3CZC6C+IPh8YPwuMAP0tUIqmv2KuXNdhkFV1zoRma7ZCKrngKZhP6/O3pfvmGZjTACoADpGv5C19vPA5wF27949vU/KIlNkreWbTzfT+cM/4df4Jvf39vCKD35qfs4lk6Gj9Swtx56j/+B91Lf9jA2ZU6wAuignSZAgKYI2RYg0Hj5OhTbx9Mp3EFn/EtZceRs19avzvnZ4zJtZ0p2n6W9+gfi5F7Dth8jg51zZSjLlqzAVq/BXrKaopJTicJCw32CMz1UsstJehmgqQzyVIVJWSWlpBWV+P2VT+J1LpvqPtEToejc18VSGSNBPcShAZXGQlp6Jg2os6VFfPuZ/+QA0VblwerYzWvD5bb3xpbk+de+/wL0fhgsH4c6/np9zsBb6L8DFw3Dyp3D0fmh5zj1WVAWh0mxFNOGqqFho2Am7PwBN18Lq66Bi1eTfq68V2g/ChUNw4YALthWroHwVVKyG8pXuPSF7jTMjrnVDDIRKXED15a/Wy0i61onIdM1GUN0DbDLGrMcF0rcD7xx1zPeB9wA/B94M/MRaq4uVzLsT7f38f9/ZT9vJF7kv/F0yGLad+wYHmv+IbaurJvUamYzl//vOfn64r4W1NcVctqKUTStKuWxFKVsayllbXYzPN/YDT9rLsO9UGwOPf4HiC89SET1NY/octSZOLZCyfo6Et/PE6t+m/prXsm7rtRjf2GXloyeXTZoxBGrWUVmzDq587bReIgCUZ79E5lIs5REJumCwsqKI892TGKaUSlNcYI1qY0UEv89wtqtwUG3piXPtuurpnfBC1dsCD/6pq+499x+uwldUOffvm07CM1+BM09AxzHoOO5aZsGdy+rr3Llcdgc0XOmqk7PFGChvdF8bb5+91xURkTk146CaXXP6IeDHgB/4orX2RWPMnwJ7rbXfB/4F+DdjzDGgExdmZZ4dfuYREvf9GZf/7g8JhRdW1eC+F1v5i/8+xD2/fcvgh9PZkkh7vHi+lwcPtvGFn54kHDTct/IbBPqLid/6UVbd/4d89Zv/wtbf+f0JW/6stXz0ey/wtT1nuXNnI/2JNHtPdfG9584PHlMWDrBjVQU7V1ewY1UFHf0JHjvaTtHJ+/kD+yWu9rVz3tTTHl7D/uqroeYySlZuYf2u29hePrmwLLLUJVIekaALLysri2geJ2DmRBOe256m4zh859fhnV+HYhc8A34fqyqLONOZvzKbydilWVH977tdpfLNX4RvvBee/Xe48UNz+57HHoAf3Q0dR6FyDdRsgqbroeYyqNkAq65xVVQREZFhZmWNqrX2XuDeUfd9fNj3ceAts/FeMnu6Dj7CDfE9nD17lKbLds736Yxw7/4WjrcPcKi1j11NlTN+vadPd3LPvlaeOdPFgfO9JLN7ML72ikb+fPNRKn74BLz6ryja/X4GHv00N3Z8m+88+3bedHX+NlpwIfX//OgQX3vyFJ/bdpBXl9wDtVWwqZpEqIqWZBHHYqU81V3Ek20pvvzYKZJehnWmhU8Vf5UbzDP0lV9G72s+z8qtt7Nyxr+lyNIVTw+rqFZGeOrkmNUjYwxuT3P+WTd8p3U/bHjp4ONN1UUFW387BpKkPLu0Jv4e+TEc+K6rXG5/Izz5eXjqn+CG/zG5NtaMB8991b1OpNKF/uIa91VaD1VrXRANunXEdJ6AH38EDt8L1Rvhnd+Aza+cy99QRESWkAU1TEkurUzSVRL6O87DAguqe051AXCwpXfcoBpPeViLq5oU0BtP8Y4vPInPwBWrKnnfzeu4qqmKq9ZUUh9Kwt+9AxqugGs/AD4/RTd+kJt/8qe8+Z4HeMW2X6Iskn/i59/95BjPP3oPj1V9jcYTR6GkDpJRSA0QBtZlv+4ACJaQWbmGaKSekvOPY/xhuON/U3bdB8GviaIiE3FrVIcqqr3xNP2JNKXh/P8Zy2QssVR2e5pEr7uzv23EMU1VxTxwsC3Ps4ftoVq+RIJqcgDu+TDUboEbf8fdd8Ovw3/9Mhz+EWydoP3/xCMudLbtd2E048HARbeGdLTSBqhsgpbn3TCjOz7pwnAg/3phERGRfBRUlzGbcpWEWFfLPJ/JSOe7Y4MTPQ+29I577B9+cx/NXVG+/Rs3FTzmkcPtJNMZvvnrL2H36PVm//1J9+H17V8drCj4rnkPmUf+gtcnf8jfPnAdH3vt2FWg33jgZ2x45JP8VvgpbHA13PlF2P4mtxYqFYNoJ0QvugEeXaeg6xS+rlOUdp2GnW+Bl38cyhqm9g8jsozFkh5F2YpqrsrZ0h1jU33+0V3xtJuCXRzyu61EwE15HaapupiL/UkGEmlKRgXe3LCmxoqiWfsd5tXD/wd6zsD7fuQm4gJsuRMqmuDJfywcVDuOw30fg8P3QMUaeMuXYdtd7lpnrZtoG+1wa1+7T0PXaXfN6z4NV7wNXvYRtzZURERkihRUl7OUqxikei/M84mMtPe0q6ZWFAXHDarWWh4/3sHF/gQnLw6wvjb//NgHDrZRUxLiqjWj1kC17HMf0K55L6zePXR/SS2+Hb/I2/Z/h+seP8BbdzexpaGMvniKR4600/34l3lLy6cxAR/erX+M/6bfdvv05QSL3DTJilXQeOV0/xlEZJh42husnq6qHNqiplBQHUgMC6qxXFAdVVHNbkvT3BVjS8PI12ntzVZUl0Lrb8s++Pk/wNW/DGtvHLrfH4BrfwUe+AS0vgANO0Y+75l/gx/+rquEvvwTcMNvQHDYv4fJTsANlbgq65rRW6iLiIhM3yyO1ZPFxqRdxSDTt7CC6p6TnZSE/LxmZyOHWvooNCC6pSfOxX7Xdnbv/vxV4ZSX4aFDF7j98hX4h0/e7ToNP/gdtw/fHZ8Y+8TrfpVwJsY7wo/xu19/jnf/y5Nc/Wf38+jXP827Wv+C5rIrsR/ag/9ld48MqSIyJ+KpDOFAbo2qC6rjTf6NJXNBNTBUUe1vHXFMU5V7nXzrVFt64gT9hpqS0IzPfd5kPLfty7c/6IYV3fHJscdc/csQKIInPzfy/if/Cb7/IVh/C/zWM3DL740MqSIiInNMQXUZM9lN033R9nk+k5H2nOrk6rVV7FhVTl8iTXNX/qmc+5rdBu4VRcGCQXXPyU5642nu2FbvNrk/9gD8x9vhM1e6Pfte85f5p02uuhpW7eY3in/CwZZuznXH+Oym5/mL4BewG+9g4+/cQ7hm7Wz9yiIygUTKG1yLvqIsjM8w7l6q0VQaGN36O7KiuiZbUT2TJ6i29sRZURbJu7XUgtd7Hh75S3ed++qb3TKEu/5hcOLxCMXVcOXbYd833JpTgJ/9X/jRH8Llr4V3fA3K6i/t+YuIiKDW32XN77kPeaH4xXk+kyE9sRSH2/p49Y5Gtja63TkPtPQOtugNt6+5m4DP8MFbN/BXPz7M6Y4B1taMbP+9/2Ab4YCP2xIPwd/9FXQed0OPbvl92P0+t9F7Idd9kPLvfJDn3xWiPH4Cfvgp2PRKzFv/TZUFkUsslvKIBNzfVgN+Hw3lkcG17PnkWn+LQv6hYUqj1qhWl4QoDvnz7qXa0hNbnBN/7/sY/PzvwXqw4WXwyv8FW14ztC41n+t/HZ7+kvtKJ+Gnfwk73gxv/EcNexMRkXmjoLqM+bPTGouSnXPy+rGkx/u/vIeVlUW8dfdqrltfPeG+pM+c6cJauHZ9FZc3lGGMG6j0C9vHDh7a19zDloYy7rpqFX/148Pcs7+F37jtssHHrbXcf6CNX1gfJPyD34AV2+FN/wzbXj+56ZPb74L7PkL5/R92Q0g2/QK87d80uVJkHsRT3og9lVdWFnF+nKCaa/0tGdH6O7KiaoyhqaqYs3n2Um3tibNjVcUsnPklFO10IXXzq+AX/hdUb5jc81Zc7kLtw38BmRRc9W543Wcmt2WNiIjIHFHr7zIWyFZUS9NzE1S/8+w5fn6ig3v3t/C2zz/By/76Yf7+oWOD2z7ks/dUJwGfYVdTJcWhAOtqSvIOVLLWsq+5mytWV7CqsohdTZVj2n8Pt/XR3BXj7dVHwWbcB68r3jL5oBkIu0FLPWdg86sVUkXm0fDtaQAaK4toGedaEk3maf1N9kOif8RxTdXFNI+qqFprae2Nz7yieuEQeKmZvcZUHL3PVVJv+f3Jh9ScGz/kQup1vwav+6xCqoiIzDsF1WUskHEV1apM96y/trWWLz9+km2N5Tz9sTv4m7dcSX15hP/48c8wn97C/qceyvu8PSe72L6qwg1AAbY2lnGwpW/Mcac7ovTG01yxuhKAO3c28sK5Xs50DH3gfOCAq55cndwDxbWw8qqp/yI3/U+463Pw1n9VSBWZJ9Zm90QdUVGN0NIdJ5PJP2wtlhre+tsHZLs5Ru+lWl3Emc7oiKFtPbEU8VSGhplsTdN1Cj73Etj7xem/xnDxXjcEbjyHfghljdO71l12B/zeIXj1X4BPHw1ERGT+6b9Gy1jQuqBaYuLEBsaGwZl4/HgHR9r6ed9N6ygOBfjFa1bz9V97Cd9/ZR/1pptDP/vOmOck0h7PNXdz7dqh4UZbG8o50xmlLz6yKvF8czcAt8Qfgic/z6t3utbge4ZVVe8/0MbVq8uInHoINr1ieh++wqWw653jr+8SkTmVSGcACA8Lqqsqi0h6GToGknmfM2J7mkSf2y8U3N7GwzRVFRNNenQOe51cpXZGFdWDP3CdHKd+Nv5xvefh3j+A5Nh1siPc+wfwT7dCciD/46k4HPsJbHn19INmeaPbckZERGQBUFBdxkLZoArQdeHcrL72lx47SU1JiNdduXLE/TVtjwNQ3vUiL5zrGfHYC+d6SKYz7F5XDWefgq+/m20r3AfFw60jg/T+5h4iAVi151Nw30dZHUly5bD237beOM839/DO1Rch1umCqogsSomUC6rD16g2VuS2qMm/TnWo9Te7RrU2u3591ECl3OTfs8Omi+eWJ8xoD9WDP3C3zXugwBZbADz/NXjq80PH55OKucfj3fDid/Mfc/IRSA3Aljune8YiIiILioLqMha2CTpNJQB9Hedn7XVPdwzw4KELvPP6NSM+WOKl4OSjAFzhO8k/P3pixPP2nOoC4Np1VfD8f8LB77Mr9QzAmHWq+5p7eH1dG6bvPHgJePHbvGZHA/vP9XCmI8qDB93esC/zPQvGDxtvn7XfT0QurXg628Y7qvUXCgfVwX1Ug8atTa3Z5B4Y0/o7douaGVdU+1rdH9sqmlww7jlb+NgzP3e3+79R+Jij97kQGiyGp7+c/5hD90CozO17KiIisgQoqC5TKS9DmCTdoUYAYl2tEzxj8r7y+Gn8xvCuG0btM9q8F5J9sPo6Gk0Hj+87NGJ7iT0nO9lQV0JNadhVIYDqUz+koijIgWHrVL2M5YXzPbwu9IwLoVXr4bn/4DU73e9y7wst3H+glTXVxVSffxiars+/V6qILAq50Dl8mNLKXEW1wEClgaRH0G8IprMBtLIJ/OExrb+rq9zrnB0WVFt7YvgM1JVOc136oXsAC7d/1P189qn8x2U8OPME+IJw/CdD+5iO9uJ33Dr7l/4RND8FbS+Oep0MHP4RbLpDa+lFRGTJUFBdpqJJjyKSxIpXAZDsmZ2g2p9I8429Z7nzikbqy0dVI048BMYHN/0OADvMSb70s5MAZDKWvae7uHZttZvK2fYi+AKYQz/iiobwiIrq8fZ+osk0u/p/6qoH134AmvfQ5DVzxeoKvvPMOR473sFdG32Y1n1q+xVZ5HIV1eEdGpXFQYqC/nEqqumhtl+AcDmU1Y+pqJaEA9SWhkZM/m3pibOiLELAP83/RB76IdRc5vYiDRYP/uFtjLYX3B6vN/6Wm9b74ti1+yQH4MiPYdsb3LYx/hA8/ZWRx5zbCwMX1PYrIiJLioLqMhVNpCgySTIVqwHw+tomeMbkfHPvWfoSad5747qxDx5/yE2jXH8rAL/Y2M5/PnWGnliKY+399MRS7F5XBeefdUNIrv1VSPbx2qIXOdzah5ed7vn82W42mXOUDZyGra+DnW91ldXnXVX1cFsfyXSGN5Rkqw6bf2FWfjcRmR/xwTWqQ//JMsa4yb89hdaoeiO3pgmXQWnDmDWqAKurike0/rb2xqmfbttvrAtO/hQufy34A7Dyajj7ZP5jT7s1+1z7AbfP8/5vjj3myI8hFYXtb4SSGtj6etj3tZHDlw7dA76A/ignIiJLioLqMhWLuQ85/uIqeinGN9A+49fMZCxf+flpdjVVctWaUa228R4497TbVD5SDjWXcUtJMwNJj689dYY9p9xerteuqx6qPtzye1BUzUvijxBLeZzucNMu9zX38PrQXizGfRgsq3cf0J7/Gq/ZtgKAiqIg67seg/JVsGLbjH83EZk/Q62/I/f2XFlZxLnu/K2/0ZQ3bGsahiqqef4o11RdzNnOocDb0hOncXRHyGQduQ8yaRcoAZqug9b9biDSaKcfg8q1ULEadr4Zzj4xdguaF78DpfWw9kb38zXvcdfTA98bOubwvbD2JiiqnN45i4iILEAKqstUIupCny9URI+pJBgvsDZqCh450s7JiwO876Z1Yx88+ahrbdv4Mvdz4y7Ku17kxo01fOmxUzx+vIO6sjBra7JtcjWXQekK2PYGVl94hCLig/up7jvXw2uDT2OaroMyty0Nu34J+lpY0/Mkt26u481XrsB38mHY9EpttyCyyOVr/QW3TrXg1N9EOltRzS4byFVU+8cuc1hT7V4n7bnKbWtPfPyJv60vQOfJ/I8d/D6UrRzay7TpOhdczz878jhrXUV17U3u5x2/6G5fGFZVTfS7QUrb3gC+7O++7hao3jA0VOniMbh4BC5X26+IiCwtCqrLVDzmgqo/XEJfoJpIsnPGr3n8vs/x0tKzg0ONRjjxEARLYPV17ueVV0HvOX7z2nJae+Pcu7+Fa9dVYcAF1dxxO96ELx3jjsBzHGzpJZnO0Hf+GOvTx13bb87mV0FRNTz7Vf71/dfxsSt63KTPTa+c8e8lIvMrkcoG1cDYimp7X4JENsgO51p/AyNbf8saXDVyVHWzqaqYdMbS0hOnL56iP5Eef+Lvtz4AX3o19I/qRElG4diDsPW1Q3uZrr7W3Y5u/714BKIdQ5XSqrXQdMPI9t8j/w3puGv7zTEGrnmvq75eOASH73H3b3lN4fMVERFZhBRUl6lEvB+AQLiYeLia0vTMgmoy5fGujv/H3/r/H0GbHnvA8Ydg3U0QCLmfV+4C4Mbis2ypL8Na2L22GrpOwUA7rN7tjlt7E5TW89bIHg609HKkrY+Xkf3Ad/lrh14/EIKdb3FrtWJdrgrhDw2uhxWRxSu3RrUoNDKoNma3qGnrSYx5Tiw1eo1q6VAHxqjJv02De6lGaeudYA9Va911qq8Fvv0rbnJvzvEHIR0beW0qqYXqjXB21ECl04+521xQBdf+e+HA0FTfF78DZY0uwA535TvdpOBnvgKH7oWGK9xUYxERkSVEQXWZSsXdGtVgpIRUpJaKTPeMXu/kufNETIqqRDPs+cLIB7vPQOdxtz41p+EKAEzL8/z6bRsAuPGyGreFDbh2OXDtbtvewPXe05w+38bzzd28yr+HZO0OqF4/8n12vdPtqfrCt11QXXez+3AqIotaLDV2exqAVZVua5lzedp/Cw5TgjGTf9dkg2pzZ2zYHqpF+U9m4KKrcq6+Fk48DI/85dBjB3/gtsLKtfPmNF3nKqrWDt13+nF3PtUbhu7b/kY3GG7/NyDeC0fvh213DVVnc0rrXNX22X93r6u2XxERWYIUVJepVNy1/obCxWRKVlDBAMlE/qEkk9F89hQAmWAJPPIXEB1WoT3+kLvdOCyoRsqhZhOcf443XrWax+6+ncsbyl3bb7AE6rYOHbv9TYRskh39j/HcgUNc4ztKcMfrx55E45VucuZjf+va6tT2K7IkxMdp/QXyTv51a1SHtf6GytwwJRhTUW2siOD3Gc50RocF1QIV1Z4z7vbm33WVzUf+wrX7ppOuVXfLa9y03+FWXwvRi9CVXdc6uD71xpFr6EtqYePtsP9brjvES4xs+x3umvdm199atf2KiMiSpKC6TKVzQbWoFF+pm5Tb1X5u2q934bybVGlf/nE3AOThTw09ePwnrn2t7vKRT1q5a3DASK4yQvNTsOrqkR/0mq4nUVTPa/1PEDn+3/iwmG15gqoxrqranf0gqaAqsiQMbU8zqvW3IoLPwOmO6JjnRAdbf3vdXqb+gLsOwZiKasDvo7EiwtmuKK3ZoLqiPJz/ZLrPutuKJrjzb2DFVvj2r8K+r7v1r8PXzuc0Xe9uc+2/3Weg99zItt+cnW9xYfih/+2mlufWuI627laoWg8Va6BhZ/5jREREFjEF1WUqnXAf7CLFxYQqXJWh9+L5ab9ebzbk+je+zP2lf88/Q/sRt37r5COu7Xf09N3GXdB3fmi7iFTMbeMw+oOZz4e37S5e6nueN/l+SmdkzdjQm3NFdk/V6o1Qs3Hav4+ILBy51t9wYOR/siJBP2uqizl6oW/Mc6LJYdvThMvcnUXVbr/RPHuprqku5my2olpbGiI8qno7qKfZ3VY2QagY3vqvkE7AD37bdYMMX+KQs2Krq+jmBirl9k/NF1Qvfw0EilxY3f7GsW2/OT4fvO3f4W3/qsnmIiKyJCmoLlNe0rXKhSKlFFe7dVvRzrEf3iYr0Z19bukKuO2PIVQC938MWp53w4025vnwltu+oeU5d3v+ObeNQ2596jDFV72VkPG4yneM7nWvKvzBrHQF3P5RuO3uaf8uIrKwJFIe4YAPn2/s/99vqi/jSFv/iPvSXoZkOkNxMDAyqPp8bk/SfHupVhVztitGa0+M+vH2UO05C6FSiFS6n2s3wes/Czbj9nMO5nmuz+86RZqfcj+ffsw9f/gSh5xwGWx5tfu+UNtvTsOOoeuoiIjIEhOY+BBZimxyaB/V0upVACR6xu4vOBl98RSh+EW8YBB/pNKFyFt+Hx74BHhJd9CG28Y+sfEKwLiAuvkX3PpUgFW7xx676hra/fXUeW1UXP2m8U/olt+b1u8hIgtTPOWNafvN2VJfxk8OXSCR9garoNFsBbYkPKqiCi6o5tlLtanabXVz8uIAl60YZwhb91nX9jv8j2U7fhGMb3BIXF5N18Ojf+2WRuTWpxaqlr70D91e0quuKfx6IiIiS5wqqstUJrePYLCYqhUrAfB6x1YZJuNIWz91potkUd3Qh7frfx0q17j1qfU7XKVztHCZ+zCWq6g274GqdW6i5WjGcGrDOzga2ELNphvGPi4iS1Y8laGoQFDdVF+Kl7GcvDgweF8s6YLqmNZfcOtU81VUs5N/T3VEC29NA66imm8rmO1vHH+5QdN1rup6+EduCnq+tt+cFVvh9o+opVdERJY1BdXlKtv6SyBCcWkFURvGDLSP/5wCDrf2UUcPvtweheDa317xp+77fNXUnJVXuYFK1rqgunps22/Otb/0STZ99Cl9eBNZZmIpb8zWNDmb610IHd7+G80G1cHtacLlQ08oq8+7RjUXVGGcrWnABdWK1VM5fSe3N/Rjn3G34wVVERERUVBdttJDFVWALl8lgdjFab3U4dZe6n09hCobRj6w7S547d/CS36z8JNX7nIfGs8/424LTbgUkWVrvNbfDXUl+H2Go21DA5UGEmkAikavUQW3d2ms020nM0xT1VBQbSi0RjXR79bcV+SpqE6kqApqt0Dbfjd0qeHKqb+GiIjIMqKgukyZdAwPH/iDAPT5q4kkO6b1Wofb+mjw9WBK60e9iYHd74PylYWf3LjL3T71BXfbpKAqIiPF0xnCBYJqOOBnbU0xR4YF1diINaq9o1p/s9epUVvU1JaGBtuLC++hmpv4u2YavwVD17c114/da1VERERGUFBdpkw6QdKEB9toY6FqSlJdU34day3HW7qosD1uSMlU5QYqvfAttyVD/Y6pv4aILGnxpEdRgdZfgM0ryjiar/U36INk/9g1qjAmqBpjaKp2Lb8F16j25PZQnUbrLwwtbVDbr4iIyIQUVJcpfzpGygxtaJ8sqqUiM/Wg2t6fwBfLVmLLphFUw2Vuewcv6darZiu8IiI58XTh1l+AzQ1lnOoYIJ6tpEazrb/FvrTb8mr01F+AvjyTf7PtvwWDavcZdzud1l+Ay+6Amk1w+eum93wREZFlREF1mfJn4qR8Q0HVFtVSaftIp5LjPGusw6191Jlu98N0Kqow1P67Os+2NCKy7MVTHpHAOEG1vpSMhePtrqqaq6iWmuxa/BEV1exa+jwDlbavLGd1VRHFoQJtuT3N4AsMvcZUVayC39oLKy6f3vNFRESWEQXVZcrvJfD8Q1UDU7YCn7F0d0xtL1UXVHvcD9MNqit3uVsNUhKRPOKpTMGpvzA0+TfX/pvbR7XYRt0Bw6f+ltS5PU/7x25R86HbN3HPb91S+ER6zro1977CoVlERERmh4LqMhXMxPGGVVSD5S5k9rSfn9LrHG7tY0MkuzYs316pk7H19W4PwvG2sRGRZSuW8tyeqAWsqykh4DODA5ViyezU30wuqA6rqPr8Lqzmaf0NBXxUFI+z/KD7LFRMc5CSiIiITImC6jJkrSVoE3iBob0CI1VuwEi0c4pBta2Py0uzHwanW1GtbIK3fBki5RMeKiLLTzzlER6n9TcU8LG+tmRwL9WBhKuohr0Bd8DwoAqudTdPRXVCPc3ueiUiIiJzTkF1GUqkM0RIYoe1/pbVuKAa7558628mYznS1sfacD9EKiEQnvA5IiJTlUhl3DClz78MHvtM3mM215dx9EK2opryiAR9+FPZbo/RQbW0Ie8a1XF5Keg7P/2JvyIiIjIlCqrLUDTpuaAaHKqoVtS5D19e3+SrDGc6o8RTGRr9vdOvpoqIjMPLWJJehqKAD1r3wenH8x63ub6MM51RYkmPaDLtBiIlsnurjqmo1sMUrnUA9J4Hm5n+xF8RERGZEgXVJeBcd4xkOjPp46PJNBGSEBhWUS2vImGD0N8+6dc5nF0PVpXpnP76VBGRceS2nCn1J91WMx3H8x63ub4Ua+HYhX6iCY+ioH9YUB21rKC0AQbawUtP/kR6mt2tWn9FREQuCQXVRS6ZzvDKTz/Cfzx5etLPiSU9IiYJweLB+4zPR5epxB+7OOnXOdzahzFQnOyY/nYNIiLjyAXVcrLrTbtO5g2Ym7KTf4+09RFNepSE/ZDodQ+GSkceXNYAWBdWJ6vnrLtVRVVEROSSUFBd5KLJNANJj6MX+if9nIGkRxEJfKGRm9r3BqoIJzom/TqHW/tYU1WEb+CCWn9FZE7Es90ipbmgmklDz5kxx62rKSbk93HkQh/RlEdRrvXXFxy7fn6cvVQL6s4FVa1RFRERuRQUVBe5WLbacL47NunnuNbfFL5QycjXClZRkuqc9Oscbutj54oApKJq/RWRORFLZlt/7cDQnR0nxhwX8PvYUFfC0bZ+Ysk0xbnW33AZGDPy4NJsUJ3K5N+es25bm2Fr+0VERGTuKKgucvGUqza09MQn/ZxYIk2xSeALjfzAlQjXUO51Teo1EmmPkxcHuLoq+76qqIrIHMi1/hYPD6qd+depbqov40hbHwMJj+LQsKA6Wln2epVnL9WCes6qmioiInIJKagucrkPceemUFGNx92xgXDxiPu94jqqbA8Zz5vwNY5fGMDLWLaUZt9XQVVE5kAinQ2q3rDlDYUGKq0opbkrRsdAguJwtvV39CAlGLpeTaWi2n1W61NFREQuIQXVRS7X+tsXT9MXT03qOcmY+8A3Oqia0hUETIaezgsTvsbhNjekZEMkW+VQUBWROZDrGinKZINq+SroOJb32M0Nrnra1psY2fo7mj8IxbWTX6NqrZv6W7lmyucvIiIi06OgusjlKqow+fbfZNyFy2Bk5CTMQIULmz0Xz034Goda+wj5fazw9bg7FFRFZA7k1qhG0tmtZlZeVbD1d3P9UCgtCmWn/uYLquAGKk12L9VoB6Rjav0VERG5hBRUF7lEamj/1Mm2/6biUQCCkZEV1UilGzDS33F+wtc40trHhroS/ANtbqpmUdVkT1lEZNLi2dbfULoPAkWwYit0n4F0csyxa6qLCQfcf9bc9jQFKqrg/rjWP8k1qt3ZKcNq/RUREblkFFQXuREV1e7JVVTTiVxFdWRQLate6V6zZ+Iqw+mOKBvrSqH/gpv469P/lERk9uVaf0OpPohUQPVGsBnoHrt3tN9n3HUJKM5tTzMbFdWeZndbqaAqIiJyqShdLHKxYUF1slvUpBOuomqCI4NqRd0q9/gEQdVaS0tPnMaKiBtGoq1pRGSO5K5xgVSvC6o1l7kHCq1TrXdBtSjoh0T/+EG1vw0yEw+Poye3h6qCqoiIyKWioLrI5aoNQb+ZdFDNJLPHjdoPsLyqjpT1Y/vHH6bUG0sTS3k0DAZVrU8VkbmRyAXVZC8UVULNRvdAgcm/m7LrVEsCGbeuNN/UX3BDmawHvRMvdaD7LARLtMRBRETkElJQXeRyrb9ra0o43zPFoBoYGVR9fj/dphx/tH3c57f0uuc3VhS51jkFVRGZI7lrnC+ZragWV0OksuBApS3ZoFruT7g7ClVUV2x1txcOTnwSPWdd268xUzl1ERERmQEF1UUu1xa3sa6E85Nco2pTrvWXYGTMY73+KsKJjnGfn5su3FAWhOhFBVURmTPxVAa/z2DiPS6ogquqFqio7l5XxXXrq9lZk/3P24RB9cDEJ9FzVhN/RURELjEF1UUukfIwBtbVltDaEyeTsRM+x6byt/4CDASrKU51jvv81mxQXRUacENNtEZVROZILOURCfhGBtXqjdB5Iu/xlcUh/uvXXsLq4rS7o1BQLaqCspWTC6rdZ7U+VURE5BJTUF3k4ukM4YCPVZVFJL0MFwcSEz8plb/1FyARrqEs3TXu01t64vgM1NDt7lBFVUTmSDwbVBlRUb3MVTlT4yx3SGT3XS0UVAHqt00cVJMDEOvUxF8REZFLLDDfJyAzE095RIJ+Vla40Hm+O86KsrEtvcP50tkW4TwV1XRxPdXdXWQ8D5/fn/f5rT0x6srCBKPZoUtlDdP/BURExhFPZagKpiDhjWz9Beg86cJmPoNBtcAwJXDtvycfBS8N/gL/OcxtTaOKqoiIXGK98RRH2/qw1m3BFvD58PsMPh+k0pak55FMW1JeBp8x1JWFqSsLU1kUxOcbO1chk7FEUx4DiTR98TT9iTT98TR+n6E0HKAk7Kc0HKA4HCCR8ujPHtcbTzGQ8Eh7GTxr8TLuK2Mh4DPZczME/D4CPsNNl9USCsy8HqqgusjFkh5FQT+NlS6ctnTH2NVUOe5zTLpw66+vag2hFo+2llPUr96Y9/ktPXEayiPQf8rdodZfEZkj8ZRHTSAGCYa1/m5wt53Hxwmqve52vIrqim3gJVwbcd3m/Md0a2saEZHFqieWoiwcyBva5lMynWH/uW5iyQyhgI9QwEfQ787xxfO9PHumi6dPd3H0Qj924lV9YwT9htrSMEVBP/GURyz7ldstZK49/4lXKqiKa/2NBP2sqnSh89wktqjxe3Ey+PD5Q2MeK1qxAQ5AR/PRgkG1rTfO+toStzUNQImCqojMjXjKo8afva6NrqgWGKgETK71d0U25F44UDio5vZQVeuviMiiEU95/P1Dx/jHR47zyy9Zx8deW+CPmpfQue4YDx++wCOH23ns2EUGkoX38S6PBLh6bRWvvWIlO1dVEPAb0hmL51nSGUvGWkJ+H8FswA0HfKQ9y8X+JBf64rT3JWjvSxBLuYJWUchPUdBPOOinNOynJBygNBygLBKgJBTAy1j6E2kGkmn6Ex7RRJpwwEdZJEhZJEBpJEBZOEjA76qnfp/Bbww+Y7IV1gwpz1VZ0xlLaXh2IqaC6iIXT3mEAz4qioIUBf2DE3nH4/fipANhQnm2WqhadRkAA63HCj6/pSfOjRtrof+Ca6sLFU//FxARGUc87dEwOqhGKqC4tuAWNcDkgmrdFjA+F1S335X/mJ6zYPxQqiUOIiKLwePHLvKR777AyYsDrKsp5kuPneTN16xma+M4S0FGOdrWx1d+for6sgib6ku5bEUpa2tKCPonrhJ2DiQ52NLLiYsDnGwf4MTFfo6393O20/23bFVlEW+4ahW3bqqjuiREMp0ZbOH1MpYtDaVsqC1dcFXg+aCgusjFUx5FIT/GGFZWRjg/QUU1k7EEMgnS/ghj66mwomkTGWtId5zK+/xcr3pDRQTaWjVISUTmVDyVoco3KqiCG6g0YUXVQKik8DHBItdGPN5Ape6zUL6q8BpWEZEFIpOxfH3vWd509SrCgfxzRuZLNJnm//3kGL9x20bKIsE5eY+O/gR/fu9Bvv3MOdbWFPPvH7ieHavKuf1vHuHj33uB//q1l2AmsR/2yYsDvOMLT9IbS5H0hlplAz7DhroSdqyqYOeqCq5YXcG2xgoslidPdvL4sYv87FgHB1t6B59TFPSzvraEK1ZX8p6XrOO2LXVsrCud1HmIguqi5yZiuovRysqiCYNqLOVRZJJ4vnDex8ORYtpMNYHeM3kfz21N01gRgeMXFFRFZE7Fkh6Vgezez5HKoQdqNsKxBws/MdHnqqkTfRhYsRUuHCz8+PlnYcXlkz5fEZH5su9cD3/87f1UFYd41Y6F1QXywMELfO7h42ypL+Ouq1bN+PUyGcuJiwM8e6aLZ89288zpLo609eEzht982UZ+6/ZNRILu8/Ef/sIW7v72fr773DneeNX4e2Kf647xrn9+koy13Ps7N9NYUcTx9n6OXXBfh1r7ePToRb79zDkAfMYNOUp5rhX3mrVV/MEvbOGqpko21JVSXx5WKJ0BBdVFLp7KUFvq/s+4sqKIQ6194x4fTXpESJLJszVNTkewkZLoubyP5YKqG6bUBo1XTvPMRUQmFk97lA8G1WEV1eoN0P9VSPRDuHTsE3NBdSIrtsGhe9xWN6MHzPU0Q8dR2P2+6f8CIiKXSH/c7R/d3jfxMrBLbc/JTgAOtvTOSlD9o2/t4xtPu6nsZZEAu5oqeeX2Bl53RSOb6kde+9+6u4n/3HOW/33vIe7YWl+wotvel+Dd/+wqqf/5wRu4bIV7nStWV3LF6soRx7b1xtnX3MP+cz2kvAw3bqxh99pqikILq5K92CmoLnK57WnAVVTb+xIk0l7Blo9Y0iNCgoy/8BY2A8WrWdvzVN7HWnpcxbaxositUVVFVUTmUCKVoSwy4H4YvtXM4BY1J6DxijxP7J18ULUZaD8MK3eNfOzEw+52w21TPGsRkUsvmnRB9WJ/cp7PZKw9p1xQPTCsLTafnx/v4L/2nuWv33Il/gJrNPsTab733Hnu3NnI775i04TrOX0+w5++fjt3/cNj/O0DR/MOVuqJpvjlLz5FS0+cf/vAdexYVZHnlYbUl0d4xbYIr9imz8FzaeZzg2Ve5aZ5AazMblHTOs5ApYFkmghJbJ6taXLSFWuotV0k4tExj+Vee0UkDck+KNP/g4rI3ImlPMoYgGAxBIatrK/OBdUC61SnUlGF/OtUTzwMJXVDx4iILGCxlJsie7E/Mc9nMlJPLMXhtj6MgYMt43f+feuZZr7z7DmePt1V8JhHj7ST9DK8+yVruWxF2aSGDl3ZVMnbr23iy4+f4vCw7sNMxvLMmS7e++WnOH6hn8//8jXsXlc9+V9O5tSMgqoxptoYc78x5mj2tirPMbuMMT83xrxojNlnjHnbTN5TRoqnMoSHVVQBzncXDqrRpFujSqBwRTVQvQ6fsVw4e3TMYy29cWpKQkQSF90dqqiKyByKpzxK7MDItl8Y2ku1o8CE8skG1eoN4A+PDarWuqC64baJ17mKiCwA0eTCDKrPnOnCWnj55Su42O+2TSlkX3M3APfubyl4zP0H2qgoCrJ77ZjYMa4/+IXLKYsE+Pj3XuCBA2380Tf3cd3/fpA3/cPjvHi+l8++4ypu2VQ3pdeUuTXTiurdwIPW2k3Ag9mfR4sCv2yt3Q68CvhbY0zlDN9XshIpj0jQ/Z9xKKgWHqgUy65RNeNsKVPa6Lao6WoeG1Rbe+Ju4m//hezB2kNVROaGtdYF1UyeoBouhbJG6DiR/8mTDar+gNtDdfRApQsHYKBdbb8ismgMJBZm6+/eU50EfIZ3XLcGYMRU3OEGEmmOXegH4EcvtJDJ2DHHpL0MPzl8gdsvX0FgElvFDFddEuLDr9zCkyc7+ZV/3cu9+1u4YUM1n3n7Lvb8f3csuAFUMvM1qm8Abst+/xXgYeCPhh9grT0y7PvzxpgLQB3QPcP3FtygkVzrb2OFq5Lm1pHmM5BM00gSM07rb81qt/F9rH3sB8CWnjgrKyLQf97doYqqiMyRlGfJWCjK9ENJnvVC1Rtn3voLrrX35KMj78utT13/0kmfr4jIfIot0IrqnpNdbF9VwdVrXAX0YEsvt24eW7l88XwvGQtv2LWS7z13nqfPdHHtqDbcp0930R1NTXttaC4sr6sp4br11YQCWgW5kM30/zr11tpcbb4VGPd/NcaY64AQMM7mdzJZaS9DyrODw5QiQT81JSHOjdP6G0t6REwSf6hwUK1tWEPCBrGdp8Y81toTcxXVvjZ3R6n++iQicyO33iri9Y2tqALUbCi8l2qyf+TwpfGs2AZ95yE2bE3UiYfdXq2VTVM7aRGReRLNrVEdp7V2ph46dIEfPH+eePa9JpJIezzX3M21a6uoKgnRUB4pWFHNtf3+zzs2Ewr48rb/3n+gjZDflzfoTobfZ3jXDWu5eVOtQuoiMGFF1RjzAJAvjXxk+A/WWmuMGVujH3qdRuDfgPdYazMFjvkg8EGANWvWTHRqy1487f4Zc62/MPFeqrntaXzhkoLH+Px+LvjqCPWdHfl+KY+uaMpVbvvbwPihWAvORaZD17uJJQaDan/+oFq9EaIXIdYNRZVD92cyU6+ogmv/XXsjpJNw6jHY9Y4Znb+I6Fp3KeUqqgNJj1jSm/WtUroGkvyPrz5NPJWhPBLgrqtW8dbdTWxfWV5wr9AXzvWQTGcGBxRtbSwrOFBpX3MPjRUR1teW8NLNdfxofysfu3Pb4LAkay33H2zjJRtrKA1r45LlYMI/JVhr77DW7sjz9T2gLRtAc0H0Qr7XMMaUA/cAH7HWPjHOe33eWrvbWru7rk6LmSeS+2tWrqIKrv13vNbfaDJNEUkC41RUAbrCqyiPj9xLta03u4dqRZELqiV14NN+USLToevdxOIp98e4UKpQRdWtpx/T/psaAOwUgupWd5sbqHRur3sNrU8VmTFd6y6d3BpVmJv236/tOUs8leFTb9rJ7Zev4Ot7zvLa//czXv2ZR3nubHfe5+w55TpVdq9zbb/bVpZzvL2fRHpsRXZfczdXrHbX+jt3NtLaG+fZs0OdLscu9HO6I8od2hJm2Zhpzfv7wHuy378H+N7oA4wxIeA7wL9aa785w/eTYXJ/ORseVF1FdZypvwm3PU0gUriiChArWUWd1zrivpbs1jSNuWFK2ppGROaQa/21BNOFgmp2i5rRA5US2b/WTzaoVqx2bcK5gUonHgbjg3W3TOe0RUTmRXRYO+5sB9W0l+Hffn6Kl2yo4e3XreFv334VT33kDv7XXTvoHEjyie+9gLVjGyv3nupkQ10JtaVhALY2lpPOWI629Y84riea4lRHlCtWVwJw+9YVhPw+7tk39Fn0/oNu2dkdWzXIc7mYaVD9FPAKY8xR4I7szxhjdhtj/jl7zFuBW4H3GmOey37tmuH7Cgz+NWp4UF1VWUR/Ik1vPJX/OYkYPmPHXaMKYCvXUsEAPV0XB+/L7aHaUBGBnmatTxWRORVPeRSTwGe9Aq2/G8AfgpbnRt4/1aBqjKuqtmUrqicehpVXj2wnFhFZ4GJJD3+2TXa2J//ed6CN8z1x3nfTusH7KoqCvOuGtfzWyzfxfHPPYPU0J5Ox7DnVxbVrh5aJbW10swNGr1Pdf64HYLCiWh4Jcuvm2hHTfx840MbOVRU0Voz/GVaWjhkFVWtth7X25dbaTdkW4c7s/Xuttb+S/f7frbVBa+2uYV/PzcK5L3u5trjIsMXgjZVu8m+hdarp+ID7Jlh4exqAUJ3bo7D9zOHB+3IV1YZwCtoPwspd0zpvEZHJiKc8ysles/IF1UAYVl8Lp0ZN7B0MqpMcpgRuneqFAxDvhea9avsVkUVnIJFmZfZz4GxXVL/02Emaqot4+dax3XRvvno11SUhPv/Tkd0tx9r76YmlBtt+wU3bjQR9Y9apPp8dpHTFqsrB+16zs5GWnjjPnu2mvS/Bs2e7uSPP+8vSpXFXi1hujerwxfIT7aWaSkTdN4HIuK9dnt1Lta/12OB9rT0xyiMBStqfA5uBpuume+oiIhOKpzOUm+w1K19QBVh/K7TsGzmxN5H9S/1kK6rggmq8G/Z/A6ynoCoii04s5dFU5QoRszn594Vzrlr6npesG6zYDlcU8vPuG9bywME2jrcPtfTuOdUJMGKLGb/PsKWhfExFdV9zN+tqiqkoDg7ed8e2ekJ+Hz/a38JPDrVhLdPelkYWJwXVRSyWZ5jSqsGgmn+daiaRDbATVFTrmrYAEG8/OXhfS0/ctVucfRIwrpIhIjJHYskJKqqQXUdq3ZTenKm2/sLQQKUn/xECRfpDnIgsOtGkR2VxkPJIYFYrql967BTFIT9v2V14u653v2Qt4YCPf350qKq691QXtaVh1taM/My5rbGMg629I9a07m/uGVyfmlMeCXLLplp+9EIr9x9oY1VlEVsbp3Bdl0VPQXURG2r9HQqqtaVhAj5TsKLqJXOtv+NXVCuq6+ilBF/36cH7Wnvj1FdEXFCt3174g6OIyCxIpL2JK6qrd7tgObz9d1pBNbtFzcUjbouaQHjqJywiMo9iSY+iYIDasvCsrVFt70vwg+fP84tXr6aiKFjwuNrSML94zWq+9cw52rPV3D2nOrlufdWYrWu2NpbTHU3Rmt1Nor0vwfme+OD61OFes7ORc90xHjx0gTu2rii4DY4sTQqqi9jQ9jRD/2f0+wwNFZGCQTWTnFxFFeCCv4FI/9Beqi09cVaWBeHsHmi6fgZnLiIyMbdGNRdUK/MfFAjDmuvh5AyDakkNlGZbytT2KyKL0EAyTUnYT21JmPZZqqj+51NnSHoZ3jtsiFIhH7h5PansdOCWnhjNXTF2DxuklJMbqHTgvGv/3Zdbnzqqogqu/TfoN9m2Xw3xXG4UVBexfK2/ACsrijjfk7/116Ymt0YVoDeykspkCwDJdIaL/Qm2B89Bsk9BVUTmXDyVodxM0PoLrv33woswkJ1SnguqoSm2iOWqqgqqIrIIRZMeRSE/tWWhWWn9TaYz/NsTp3np5jo21pVOePzGulLu2FrPvz5xmkePuOvx8PWpOZc3uGtzbp3qvuYefAa2rxw7AK+iKMitm+ooiwS4bv3Y15KlTUF1EUsUCqqVhSuqNjX5imqydDUNXhsZz+NCXxxrYWsqu33DGgVVEZlbseEV1fEm+K5/qbvNtf8met01zh+Y2huuu8lteVO/Y+onKyIyj7yMJZnOUBwMUFsanpVhSvfub6G9LzGpamrOr926ge5oir/88SGKQ/68a0rLIkGaqosGJ//ua+7mshWllITzX7P//I07+c9fvYFQQLFludH/xRexwTWqwZH/Z1xZWURbbxwvM3bjZd9gUJ24omqq1xM2KTrazg7uodrUv9/tn1q5doZnLyIyvnjKrVG1wWIIhAofuHIXhErh5E/dz4k+9/NU3fJh+M2nwKf/NIrI4hJNpgEoDvmpLQ3TG0+TTGdm9JrffvYca2uKeemmukk/55q1VVy1ppKL/UmuXlNFwJ//ero1O/nXWsu+PIOUhmuoiLBjleaiLEf6r/EiFi9QUW2sLCLl2fxtH162JTg48WbJkRVuL9WOs0cGF7xXdT7rqqlazC4icyyeylDli2ImGtzmD8KalwytU030TW19ao4x7rVERBaZaNJ9JiwOu6AK0DEws6rqgfO9XLuuGl+eLWkKMcbwwVvc58fh+6eOtrWxnJMdAxxv76djIMmVeQYpiSioLmKxlEfAZwiO+mvVquxmz+fytP/60tmgGpg4qFau3AS4vVRbe+KsoItQ31mtTxWRSyKe8qj0RSc3YXz9rdBxFHpbph9URUQWqcGgGvJTW+o6UC72TX/yb0d/gov9icH1pFPxyu0NfPTOrbzz+jUFj9naWI618I2nmwHYOU5FVZYvBdVFLJ7KjKmmgmv9BWjuGhlU016GYCb717VJVFTr17igmu44RUtPnJtCR90DTTfM4KxFRCYnnvKoMJMNqre421OPKqiKyLKTa/3NbU8DzGig0uE2t350c/3Ur6V+n+FXbtnAirLCy8y2ZSf/fuvpZoJ+o/1RJS8F1UUsnvbGrE8FWFdTgs/AsQv9I+6PpjwiTD6oRopKuEA1gd4ztPbEuSl83FViG6+YlfMXERlPbo3qpIJqwxXuuJM/zQbVcYYviYgsMbFsRbUk7Kcu2/o7ky1qDre6oDqdiupkrK4qojQc4GJ/kssbygkHxhZeRBRUF7F40nMV1UP3Dm3LgFuzuramhKPZv4blRBMeEZPEYsA/zmCSYTqCDZREm2npiXEVh2HV1VrDJSKXRDyVcVN/JxNUfX5Ye3M2qPaqoioiy8rAsNbfmlzr7wyC6pG2PqqKg9Rlq7OzzeczgyH4Cq1PlQIUVBexeNqjMpCCr70TnvjciMc2rSjlyOigmkxTRBLPH5n0MKT+4tVUJ1vo6u5hXeq41qeKyCUTS3mU2gGIVE7uCetvge7T0HteQVVElpXYsNbf4lCA4pB/RmtUD7X2sbm+DDOHwzO3Ztt/FVSlEAXVRSyeylAdiAEWLhwY8djm+jJOdURJpL3B+6JJjwhJMv6Jt6bJSZevYYXtoGlgH348WKP1qSJyacSTaUps/+QqquAGKgFk0gqqIrKsDB+mBLi9VKdZUbXWcqS1b87afnN2ZgPqVWsKTweW5W2Ku6HLQhJPedT6shehthdHPLa5oQwvYznRPjD4F6tYKhtUJzHxN8dfvQ7fWctrzePujtXXzsq5i4hMKB3FT2byQbVuKxTXQLRDQVVElpWBYdvTANSWhqa9PU1zV4yBpMfmOQ6qb7xqFWuri6c1sEmWB1VUF7FYyqPKn91upvs0JIaGJ22ud5vdD2//HUikKTJJCE6+olracBkAr/Y/RX/5RiiunoUzFxGZWCDR676ZbFD1+WDdze57BVURWUZyrb/FIVeDqi0NT7v1d64HKeUE/T6u31Azp+8hi5uC6iIWT2Uo98WH7mg/NPjt+toS/D7D0bah8BpLeoRJQrB40u9RvdptUVNmYiQbVU0VkUsnlO5x30w2qMJQ+6+m/orIMpJr/S3KbltYWzb91t+ZbE0jMpsUVBexRMqj3AzbK3XYOtVwwM+6muIRFdVo0qOIxJQqqnWN60had9ELrb9x5ictIjJJoVT2+jWVoLrplVBSBysun5uTEhFZgGJJj3DAh9/nhh/VlobpjCZJe5kpv9bh1j5WVRZRFtEuDzK/FFQXsVjKo9wMq6heODji8c31ZRwdtpdqNJkmYlL4plBR9QcCXPCtAKDksptmdsIiIlMQTmevX1MJqpVr4A+OQeOVc3NSIiIL0EAyTUl4aPRMXWkIa6EzOvX23yNtfWyZ47ZfkclQUF3E4imP0lxFtWrdmIFKm+rLON0xQDzl2kFyFVVfaPJBFaAzvJJuyjE1G2fjtEVEJiXsTaOiKiKyDEWT3mDbL7iKKjDldaopL8Px9n4FVVkQNPV3EYunMpQQdT80XQ/HHxrx+Ob6UjIWjrf3s31lxeD2NP7w1IJq5JUf52zvRSrncC8tEZHhMhlLcWYA/Ex+H1URkWUqlvQGt6YBqMkF1SmuUz3RPkDKs2zR+lRZAFRRXaSstcTTHiU2CoGIa3MbuAADFwePyV1kcutUYymPIpPEBCe/PQ3A5qtvY+dtb569kxcRmUAinaGcAfdDRIORRETGE016FA9r/a0tDQFTD6q5QUqqqMpCoKC6SCXSGayFIhtz2zCs2OoeGDZQaV1tCUG/4Uh28q/bniYFUwyqIiKXmluDHyXlLwK/BnqIiIwnmkxTPLz1t2x6FdXDrb34fYYNdSWzen4i06GgukglUm6KW8RGIVQKK7a7B9qGgmrQ72N9bQlHcxXVpEeEhKvAiogsYPGURzlRUkH9VV9EZCLRUa2/ZeEAoYCPjv6prVE93NrPhtoSwgH/xAeLzDEF1UUqnnYDkiLegKuolq6AouoRFVVwA5VyFdVoIj3lfVRFROZDPOVRbgZIB9X2KyIykVjSo2hYUDXGUFcapn3Krb+9avuVBUNBdZHKTfINZ6JuY3tjYMW2MUF184oyznZFiSU9kskYPuyU9lEVEZkP8VSGcqJ4IQVVEZGJDCTTlIRGzkitLQ1xcQoV1f5EmrOdMQ1SkgVDQXWRimWDaiidragC1G9ze6laO3jc5vpSrIVjF/rxEtkJwaqoisgCF8tWVDNhBVURWV7+970H+ZefnZzSc6KjKqrgtqi52Df5iupRDVKSBUZBdZGKZ9eohtL9Q0F1xVZI9kPP2cHjNmcvNofb+sgks0FVa1RFZIFLZNeoZsLaQ1VElpcHDrTx4xdap/Sc0dvTQDaoTqH193CrC6qXN+gPhLIwKKguUrnW38DwimqegUprq4sJ+X0cbesjk4q7OzX1V0QWuHjaTf0loqAqIstLPOVxrjs26eOT6QzpjKUkPLL1t6Y0RMdAkkzGFnjmSIfb+igO+Vldpc+JsjAoqC5SudZff2p4RfVydztsnWrA72NDXQlH2vqwyeyehAqqIrLAxRIe5QzgK6qc71MREbmkYimP1t443iQDZjSZBqAoOLai6mUs3bHUpF7ncGsfm+rL8PnM1E5YZI4oqC5SiZRHiBS+THIoqEYqoKJp7ECl3OTfXEU1oKAqIgtbOt6H31h8RaqoisjyEk9l8DKW9kmuL40mXfFiTOvvFPdSPdzax5b60imcqcjcUlBdpOKpDKVk20KGDxtZsdUNVBpmc30p57pjZFLZ41VRFZEFLhPrBsBfXDmv5yEicilZawe3IJxs+28uqI4dphQCmNRApYv9CToGkmzR+lRZQBRUF6l4yqPU5ILqsOlsK7ZC+2Hwhto8NmXHjEfIXqgUVEVkgbPxHgD8xVXzfCYiIpdOIp0Z3Lzh/CSDaiwbVEdvT1NXmq2oDky8Rc3QICVN/JWFQ0F1kYqlPMrIF1S3QyYFHccH79o8GFSz4VVBVUQWupgLqsGSyvk9DxGRSyiR3dUBoKVnckF1ILtGNd/UX5hcRTUXVDdrD1VZQBRUF6mRrb+jKqoAF14cvGtNdTHhgI+iXEVV29OIyAJnErmgqoqqiCwfubZfgPPd8Uk9J1ag9beiKEjAZya1RvVYez9VxUHqsutaRRYCBdVFyrX+ZvdFHR5UazeD8Y9Yp+r3GS5bUUrEZFs/gsWX8ExFRKbOlw2qRtvTiMgyktt+EKa+RnX09jQ+n6GmNDSpoNrSHWOVtqWRBUZBdZGKpzwq/dkLz/CgGoxAzcYRe6mCa+UoIjl0jIjIAuZP9rpvIpXzeh4iIpdSbFhQnWrr7+jtaQBqSsJc7J94jWpLT5yGcgVVWVgUVBepeMqjKl9QBVixbcwWNZvqS4mgiqqILA6BpFsvRUQTKEVk+Yhn16g2VkSm3Po7eo0quC1qJlNRbe2N01ihQoYsLAqqi1Q8laHCn72A5QuqXacgOTB4166mSiImgcWAP3TpTlREZBqC6V5iRMAfnO9TERG5ZHKtv+trS+gcSI5oBS5kaB/VwJjHaktDEw5TiiU9uqMpGhRUZYFRUF2k4mmPSl8cjG9shbR+G2Ch/dDgXTdurOV91zVggsVgzKU9WRGRKQql+hgwJfN9GiIil1Su9XdjXSkwuS1qYsk0xkAkOPZjfV2pa/21uT1v8mjtdYUPVVRloVFQXaRiSY9yE3PV1NHBs36Huz3/7Ii7y3wprU8VkUUh7PUT9ZXO92mIiFxSiWxQ3VDn/lA3mfbfgaRHcdCPyVOIqC0Nk/Qy9CXSBZ+fWwuriqosNGN7BGRRiKczlJo4hPOs36paB2Ur4dTP4NpfGbo/Hdf6VJFFrKu9hTP7H53v07gkqhPniAUUVEVkecmtUV1fmw2qkxioFE16FOVp+wWoLXPLvdr7EpRH8i+laO3JVVQ1TEmmIJMBLPjGro2eLQqqi1Q85VFGdOz6VHAV1vW3wPGfgLVDFddUVHuoiixi5w7v4cqf/up8n8Yl83T4ZfN9CiIil9TwNarGTL71N98gJYCV2fB5ris22E48Wks2qDaU6zPigpAccF2RZ5+Es3vgwotgcYHQF3CzG4wPvCSkE+7WS4I/DHVbYMVW91W31Q0k7GmG3nPQcw56m93rWwvY7G0+1h0X74VELyT63JeXAutBZliF3heEULErhuW+3vtDKKqc8T+FguoiFU95lORaf/NZdzPs+zq0H4YVl7v7UnEI6q9lIovV2p03c6T4e/N9GpfM5Zt2zfcpiIhcUrk1quWRILWl4UkF1WjSKxhUm6pdJ93ZrmjB57f2xKkoClJU4DUWrXQCvvs/YNc74bI75vtsnFgXnHgYjj0AJ38KqZgLmIHQ0LDTi0ddGASouQxWX+fCaSY97Csz9JzcV3LAzafZ+yVI5/vfjYHS+mHLBs3QbT6hEndsxSrXwRkuB38AjN+FZuN3z0/Fsl/R7FcMAuFZ+edSUF2k4imPEhuFcE3+A9bd4m5PPTosqEYVVEUWsbKKasquvm2+T0NEROZIrvU3EvSzsrJosNo5nvGCan15hJDfx5nOcYLqUt2a5rHPwgvfcsFv48sv/TDRaCd0noCOY3DxiFuS17wHbAYiFbD+pVBcM7IymvHg8juh6XpYfS0UV0/9fTMedJ+GC4fcZ//ylVC+CsoaXbhdRBRUF6l4KkORLdD6C26dakWT+2vNddlWwXRcrb8iIiIiC1Su9Tcc8LGyIsLhtr4JnxNNpoe2pol2jgg3fp9hVVURzZ2FK7OtPfGlN0ip4zj89K9cOGvdB2d+DmtvnPv37ToND37SVU2jHUP3Gz80XgG3fNhVd1dd46qTc8Hnh+oN7muRU1BdpOIpb/ygaoyrqh79sWsP8PncX1WKpvGXGRERERGZc/G0Rzjgw+czrKws4qHDF7DW5p3omxNNetSWhl04+7vd8L7/hjXXDz6+uqpo3Nbflp44O1blGc65WFkLP/xd1376vnvhC7fDE5+b26CajMJjn4HH/tatH93xi269aM1l7qty7aKrZi4ECqqLVCzlEfFF80/9zVl3Mzz/H9B+EOq3Z9eoLrG/mImIiIgsEfGkRyTo2nhXVhYRT2XojqaoKikccgZbf3uaXVtp+6ERQXVNdTH37G/J+9xkOsPF/gQN5Utoadi+/4KTj8Cdf+Oqile/Bx7/LHSfgco1Ez+/rxUe/DPXNhwude25xTWuUl2yAqrWuuBZtc59f+IRuO+j0HMWdrwZXvGnbl2nzJiC6iKVSqUJBccZpgRu8i/AyUddUNX2NCIiIiILVjyVIRL0AbAy2457rjs2YVAtCgXcVFZwQWuYpupiuqMp+uIpykZtUdPWm9uaZokUMqKd8OM/dus7r3m/u++6X4XH/x889QV45Z8Vfm4qBj//O3j0/0ImBVe8zU3ZjXa41714zH2mjnePfW79TnjjP8G6m+bk11quFFQXIS9jCXpRCAKhcfYZrFzj/uJz6lG44de1PY2IiIjIAhZPj6yogtuiZseqioLPGdyeJhdU+0cF1ars5N/OGNtWjgyqrdmgumTWqN7/cYj3wOs+45a9AVSshq2vg2e+Arfd7abZDmctvPhtuP8Triq69XWuKlpojWe8x61F7T4NXaeguBaueOuc7ie6XCmoLkLxlEcp2UXx41VUwa1TPfRDt05V29OIiIiILFixpEfRqKA63uRfay3RlEfJ8KDa1zbimDXDtqjZtnLkkrHcay+Jiuqpx+DZf4Ob/qfrJBzuhv8BB74Lz38Nrv3A0P3Wwn/fDU/+IzTshLs+N9SRWEikwg1Garxitn8DGcU33ycgUxdPeZSaSQbV9be4FoW2F7Q9jYiIiMgCFk9nCGeDak1JiJDfN+5eqvFUBmvJtv72ujtHV1Sr3We/s3m2qGntca+9qCuqnSfggT+Br7/LdRO+9I/GHtN0PTTugif/yYVTcNu4/OC3XUi9/n/ABx+ZOKTKJaWK6iIUT2coI3uxGW+YEgztp3rsAcAqqIqIiIgsUPGURyTg6kg+n6GxMsL5cSqq0WQawLX+DuRfo1pRFKQsHMgbVFt64pSE/GPWri546SQcvgee/rLbCsb4Ycur4bY/hlCeeSzGuKrqd34Njv/E7WH63V+H/d9wW8bc/tFLv8+qTEhBdRGaUkW1YpXrsT96v/s5oKAqIiIishAlUt6IwUkrK4rGrahGk27f1eKQHzpza1TbhrYmBIwxNFUXc7Zr7Oss2j1Uv/2rrpW3ogle9lG46pegfOX4z9n+RrjvY26w0tNfgoM/gJd/HG75/UtyyjJ1CqqLUCw5hTWq4Lapefar7ntVVEVEREQWpFjKozEwNJSnsTLCz493jHs8QPHwqb+ZNMQ6oaR28Lim6iKOtw+MeX5LT5zGikX22TDW7eav7H4/vOavJz/EKBB261Mf/j/u51f9hRs2KguW1qguQon0FCqqAOtuBesuZAqqIiIiIgvT8O1pAFZVFtHWGyftZfIeP5AY1vqbC6owdouaqmKau6LY3PrMrLbeWaioPvOv0H5kZq8xFccecGH8irdPfdLu7g/Ayqvg9f9PIXURUFBdhOKpDGVTrajmKKiKiIiILEjx1ND2NACNFUVkLLT1JfIeH8u2/hblgqo/2zY8aqDSmppi4qkM7f1Dr5P2MlzoS8xs4m/3Gfj+b8Fjn5n+awzXeQL2/Mv4xxy6B0rqYPXuqb9+aR188GG4+pendXpyaSmoLkJT2p4GoLwRai5z32uNqoiIiMiCFBsVVFdWuhBZaJ1qbo1qSW7qb27vzzwVVRg5+fdifxIvY2dWUT34Q3fb/NT4x3WehL+9AtpeHP+4hz8F9/wenH82/+PphJu7svlV2rd0GVBQXYRi2WFKmUDx5P+fNDf9VxVVERERkQUpkcqMCKqrsnupFgqqA9mpv4MV1VxhYnRQHdyiZuh1WrJb08yoonooG1QvHoFoZ+Hjjt4H3addm3AhqTgcutd9//RX8h9z6lFI9sHlr53e+cqioqC6CMVTGUqJkZlMNTVn48vcbVHV3JyUiIiIiEybl7EkvZFrVBsHg2r+LWpiw6f+JvuhdAVEKtzk32FW56motma3vWkon2YRo78dTj8Oa7NLzJr3Fj729GPu9oVvg5fOf8yxB1wIrd7oto1J9I895tC9ECyGDS+d3jnLoqKgugjFUx5lJgahKQTVra+H9/8YGnbM3YmJiIiIyLQk0i50Dq+oloYDlEcCk2z97XNLwkobxlRUI0E/K8rCnBkWVFuyQXXaFdXD9wLWbfFi/IXbf611gba0AQYuwKmf5j/uxe9AUbUbdJTshxe+NfZ1Dv8INt6uDsFlQkF1EcqtUTWRKQRVY2DNDXN3UiIiIiIybYODkYIjl3WtrCwabNMd85zs9jRFfg/ScRdUy+rHBFUgu5fqsIpqb5xwwEdlcXB6J3zwB1C1Dpqug/rtcPbJ/Md1HIOBdrj1wxAuh/3fHHtMMupC6LbXw9oboW4rPP3lkcecfxb6zsPld07vfGXRmVFQNcZUG2PuN8Yczd4W7Cs1xpQbY5qNMX83k/eUbFA1McxUWn9FREREZMGKp90WNMNbf8EF1XMFWn8HEmkCPkPIywbQcLmrXPaPDaprqotHrVF1W9MYY6Zxsj1w8hG3VtQYaLoezj0DGW/ssbm23423uw6/A9+H1Kjgfex+SA3A9je517vmvXD+GWh5fuiYw/eC8blBSrIszLSiejfwoLV2E/Bg9udC/gwoUOuXqcitUZ1SRVVEREREFqx4amzrL7jJv+O1/rpBSr3ujnAZlDVAX5trlR2mqcpVZlPZPVlbe2I0lE+z7ffo/eAlXfAEV1VN9sOFA2OPPf04lKxwE4l3vtmtQz1638hjXvyO23Jm7U3u5yveCoHIyKFKh+6FNTdCcfX0zlkWnZkG1TcAuf8FfQW4K99BxphrgHrgvnyPy9S4NapxTLh8vk9FRERERGZBrvV3bFAtoieWYiAxdghRLOkNrU+FoaDqJSDePeLY1dXFZOzQBOGWnvj461MPfB/2fjH/Ywd/AKX1sPpa93PTde42X/vv6cddO68xsP5WF1r3f2Po8eQAHPmxC73+gLuvuBq23QX7/ss93nkSLrwIl7+m8PnKkjPToFpvrW3Jft+KC6MjGGN8wN8AH57he0lWbnuaSe2hKiIiIiILXr5hSgArK9zgoHzrVKMpz038zQXVUKkLkDBmneqa6tzk3xiZjOVCb4KGinGGEj3+Wfjh7w5tGZOTirmK6uV3gi8bJSrXugB6ds/IY7vPQM/ZoUqpzw87fhGO3AexbnffkR9DKgo73jTyude811VfX/h2dnATsEVBdTmZMKgaYx4wxryQ5+sNw4+z1lrA5nmJ3wDutdY2T+K9PmiM2WuM2dve3j7pX2K5iSc9SogqqIosYrreichyoGvd5MVT2TWqgbFrVCH/FjXRRHpoD1Vwa1TLGtz3Y/ZSzQbVriid0SRJLzN+RbUn+9H9u78OXaeG7j/xsFtPOnwvU2NcVXV0RfX04+527Y1D9+18i6v45vZgffHbLlyvecnI5665AWq3wDNfcWF5xTaoXl/4fGXJmTCoWmvvsNbuyPP1PaDNGNMIkL29kOclXgJ8yBhzCvhr4JeNMZ8q8F6ft9buttburqurm/YvtdR5qSgBMgqqIouYrncishzoWjd5hdao5sJkvnWq0eSoimq4DMoa3fej9lJtKI8Q9BvOdEaH9lAtFFTTSRd0r3yH+/m/fhlS2aB88AcQroB1t4x8TtN10HXS7a+ac/oxt6/rim1D96262q1X3f8Nd95H74dtb3DV1uFyQ5Wa97jX0bTfZWemrb/fB96T/f49wPdGH2Ct/SVr7Rpr7Tpc+++/WmvHG7okEzDxYRcjEREREVn0BreaCY0MbG4yL5zLF1RTHsWhwMhhSgVaf/0+w6rKIs52RifeQ7W3GbCw7ma46x/d9N0f/zF4adeGu+VVEAiNfM7q7DrV5mHtv6cfdwOQfMMihzGuqnryp25YUjrupv3mc+XbwR9256K232VnpkH1U8ArjDFHgTuyP2OM2W2M+eeZnpzk50sNa+8QERERkUVvqPV3ZFAN+n2sririxMWBMc+JJtJjK6rhUrdWteBeqjFas+tdC1ZUc22/FU1ugNGNv+0GK93zexDrGtn2m7NyF/iCQ+2/fW1uD9Xhbb85O94MNgM/+TNXAW66Pv95FFfDFW9xFdiVV+U/RpaswEyebK3tAF6e5/69wK/kuf/LwJdn8p4C/lS/+0YVVREREZElYaj1d2wdafOKMo629Y25f2h7mj7AQKjEPVBan3cv1dVVxfz4xVZaeuIEfIbaknD+k+k+624rVrvbl3/cVUqf+QoEiuCyMR//IVgEjVcMVVTP5Nan3jT22LrN0Hilq9Ruu2tkxXW0O/+vW9M6nf1eZVGbaUVV5oGCqoiIiMjSMhhUR7X+AmyqL+PkxYHBPVBzYqlh29OEy4fCXFmjq2iOsqa6mM6BJMfb+6kvj+DzFQh/PaOCqj8Ib/6i2+t0y6uGAvFoq6+Dc8+Al3Jtv8FiF17z2flWdzt62u9ogZA+8y5TM6qoyvwIKKiKiIiILCmDQTUwNqhuri8l5VlOXRxgU/3Q579ocljr7/DPhWX1cP7ZMa/TVO0mCO891cW62gJhE1xQLW2AwLCKa/lK+I0nR9435g2ugyc/B637XVBtus6F3Hyu+yA07Bjag1VkFFVUF6GQl12joKAqIiIisiTEUxl8BoL+sVXOzdlweqStf/A+L2OJpzLZ1t/ekZ8LSxtcRdWO3DmyqcptUdMxkCy8PhVc62+umjpcSY1bA1tILnQevR/aXszf9psTCMGG2wo/LsueguoiFErngqqGKYmIiIgsBfGURyTox+RZi7mxrhRj4Miwdaq5KcEFK6qpgaEhS1lrsnupAjSWj7eH6lmobJr6L1GxGspXwVOfB2z+QUoik6SgugiFcxXV0Dh/0RIRERGRRSOW8igKjm37Bbdlzdrq4hFBNZpMA2S3pxkdVPPvpVpZHKQ07Fb+FayoZjLQc85N/J2O1ddC9CL4Q7Dqmum9hggKqouOtZZwJopnAuOvERARERGRRSOeyhApEFTBDVQaUVFNjlNRLbCXqjGG1VVunWpjRVH+Nxpod1N2pxtUc+2/q65xk4BFpklBdZFJeZYSYiT9JRrTLSIiIrJExNMe4Txb0+Rsri/lVEeURNoF1IHE8KDaP6qi2uBu+/NP/oXx9lDNTvydTusvDO2JqrZfmSEF1UUmnvYoNTFSAbX9ioiIiCwViXFaf8ENVPIylpMX3RKwWGp06++w2SW5oNrXMuZ1mrJBtXGioDrdiurKq+Cm/wlXv2d6zxfJ0vY0i0w86VFGjHRQQVVERERkqYhlhykVsmnF0OTfyxvKieZaf4MGkqNaf8PlECga0/oL8LItKzjc2seKsgJLyLpH7aE6VT4/vOKT03uuyDAKqotMPJWhlBiegqqIiIjIkuHWqBZudtxQV4LPwNHsOtVc62+JibsDhgdVY9zk3zytvzdvquXmTbWFT6TnrAu6RZVT/h1EZpNafxcZ1/obJaOJvyIiIiJLRjzlEQkUrqhGgn7W1ZQMDlTKtf6WEHMHDA+qkN1LdWxFdUI9zdNv+xWZRQqqi0ws6VFKDBsqm/hgEREREVkUYimPSMgPnScKBszN9WUcaesHGGz9LbFR9+DooFo2zaDafXb6bb8is0hBdZGJp9wwpTEXIxERERFZtBKpjKuofvP9cO+H8x6zub6U0x0DxFPe4PY0kUwuqJaPPLisIW/r74R6zkx/4q/ILNIa1UUmns5QRoxuBVURERGRJSOe8twa1b42N8U3j031ZWQsHG/vH1yjOhRUR7f+1kOiF5JRCBVP8iR6Id6j1l9ZEFRRXWQSiRgRk8KM/quZiIiIiCxa8dz2NPEe6DoFXnrMMZvrXRg92tZPNJUmHPDhT2ZDbb7WX4D+KbT/9jS7W7X+ygKgoLrIpGPuYuQvUlAVERERWQqstcRSHsV+C6kByKRdC+4o62tLCPgMR9r6iCU9ikP+oepreNSgzcG9VKcSVLNb01SumcZvITK7FFQXmUysB1BQFREREVkqUp4lY6HcFx26s+PEmONCAR/raks40tZPNOlRHAoMC6p5pv7C9IKqWn9lAVBQXWQycXcxChRpjaqIiIjIUhBPu/Wm5QwM3dlxLO+xm+tLOdLWRzSZpmh4RXX0jhCDrb9TGKjUfRZ8Qbe+VWSeKaguMrmgGiypmOczEREREZHZEM9O8C1lWEW183jeYzfXl3G2K0pHf5KSkN8NTAoWg3/UjNSiKvCHpl5RrVgFPkUEmX/6X+Fik/2rWaiocn7PQ0RERERmRTyVAaDUZiuqxgcdhYOqtfDi+d6himq+3SCMce2/UwqqzWr7lQVDQXWRMdnJbj6tURURERFZEnKtvyW2391Ru2WciqobmtSfSA+tUS20bWFZ/dSm/nafVVCVBUNBdZHxFRpBLiIiIiKLUjzlgmqRlw2qq66B7jOQTo45dm1NCUG/ARia+lvoc2FpvduXdTLSSehrgUoFVVkYFFQXGV8yewFTUBURERFZEmLZNapFmVxQvQpsxu2nOkrQ72NDrauqThhUyxomX1HtOw9YVVRlwVBQXWQCqX4yGAiWzPepiIiIiMgsiKfdGtVIug+MHxqudA8UaP/dVJ8LqrnW3wJLwsoaINYF6cTEJ9Gd25pm9ZTOXWSuKKguMoF0PzGKNI1NREREZInItf6G0v0QqYCaje6BAgOVttS7CmpRyA/J8Vp/p7CXam4P1co1kz5vkbmktLPIBNMDxHzF830aIiIiIjJLhoJqnwuqxdUQqRynouqCaclErb9V69xtgdcZoafZ3ZavmsKZi8wdBdVFJuQpqIqIiIgsJbmgGkz1uqAKUHMZdBzLe3xu8m9xcIKgumKru71wcOKT6D4DJSsgGJnSuYvMFQXVRSbsDZDwaX2qiIiIyFKR20fVnxweVDdCx4m8x6+vLeETr9vGnduqIJMuHFRLal34bDsw8Un0nNXEX1lQFFQXmUgmSsKvoCoiIiKyVOQqqv7EsKBavRF6myEVG3O8MYb33bSe+nDK3THebhD12+DCZIJqsyb+yoKioLrIFGUGSAYUVEVERESWilg2qJrEqIoqQOfJwk9M9LnbQlN/AVZsg/ZDkMkUPsbabFDVxF9ZOALzfQKz4el7/plNez4+36dxSayxUdoDV873aYiIiIjILImnMoT8Pky8e1hFdYO77TzuqqL5JHrd7XgV1RXbIBWF7lNDrznaQDuk45r4KwvKkgiqZY2bOFD3mvk+jUvDGOpufu98n4WIiIiIzJJ4yqMkmHGBMlLp7hzcoib/QCVgWEV1gqAKbqBSoaCa25pGrb+ygCyJoLr56pfC1S+d79MQEREREZmyeMqjLhCHNEMV1UgFlNQV3EsVmFxQrdvibtsOwOV35j+mOxdU1forC4fWqIqIiIiIzKN4yqM2EHc/5IIquIFKnfkn/wKTC6rhUref6ngDlXIVVU39lQVEQVVEREREZB7FUxmq/dnpvsODas3GSVZUxxmmBK79d7yg2nUaQmVDbcciC4CCqoiIiIjIPIqnvfxBtXoD9LdCoj//E3PDlEKl47/Biq1urWs6kf/xMz+HVVeBMVM7cZE5pKAqIiIiIjKPYkmPSl/U/TCionqZu+0sUFVN9IEvCIHw+G+wYhtk0vkHM/VfgLYXYMNtUz5vkbmkoCoiIiIiMo/i6QyVvgKtv1C4/TfR59anTlQJzU3+bcvT/nvyp+5WQVUWGAVVEREREZF5lEh5lDPgfhjd+gvjV1THG6SUU3MZ+AL516meeMi9Z+OuKZ2zyFxTUBURERERmUfxlEe5iYLxQ6hk6IFQCZQ1QkeByb+JvokHKQEEQlC7eWxQtRaOPwzrbwWff9rnLzIXFFRFREREROZRLOVRagegqHJsG2/1xvxrS2HyFVVwA5VGB9XOE9DbrLZfWZAUVEVERERE5lE8laHU9o9s+82p2ThO62/v1IJq95mhLW3Atf0CbHjZ1E5Y5BJQUBURERERmUfxlEdxZqBwUI12QKx77GOJ/ikE1e3u9sKhoftOPAwVa4bWwoosIAqqIiIiIiLzJJOxJNIZijMFKqrV2cm/+aqqU239haH234znJv5ueKn2T5UFSUFVRERERGSeJNIZACLeOK2/kH+g0lSCauVaCJYMBdWW5yDeo/WpsmApqIqIiIiIzJN4ygMg7PXlD6pV6wEDHUdH3u+lIB2b3NRfAJ8PVlw+FFRPPOxu1790WuctMtcUVEVERERE5kk8nQ2q6QIV1WAE6i6H5j0j788NRZpsRRWyk38Puu+PPwT1O6G0bhpnLTL3FFRFREREROZJLOkRJE3Ai+UPqgDrb4EzT0A6OXTftILqdhhoh67TcPZJtz5VZIFSUBURERERmSfxVIYyou6HSGX+g9bfCqkonHt66L7pVlQB9n4RvKS2pZEFTUFVRERERGSexNMe5WbA/VCoorr2JsDAqUeH7ptWUN3mbp/+MviCsPYlUz1dkUtGQVVEREREZJ7Ekx7lgxXVAkG1uBoadrrtZHIGg+okhykBlK6A4hqId0PT9RAqmdY5i1wKCqoiIiIiIvPEVVQnCKrg2n/PPgWpuPs50etup1JRNWaoqqptaWSBU1AVEREREZkn8VSGciZo/QVYdwt4CWh+yv08ndZfGFqnulHrU2VhC8z3CYiIiIiILFfx1CQrqmtvBON37b/rb51+UN3xixDtgMZd0zpfkUtFQVVEREREZJ7EUt7kKqqRcli5C05mByol+gAz9XWma25wXyILnFp/RURERETmSTyVodxEsb4ABIvHP3j9rXBuLyT6XVANl7l1pyJLkIKqiIiIiMg8iaeyU38jFROHznW3QCYNZ58YCqoiS5SCqoiIiIjIPImnPCrMwPhtvzlrbnD7n5581E39VVCVJUxBVURERERknsRTHlW+KGYyQTVUAqt3u4FKqqjKEqegKiIiIiIyT+KpDBUmOrmKKrh1qi3PQe85BVVZ0hRURURERETmyeD2NJMNqutuAZuBi0cUVGVJU1AVEREREZknsZRHGZNcowqw+lrwh933CqqyhM0oqBpjqo0x9xtjjmZvqwoct8YYc58x5qAx5oAxZt1M3ldEREREZCmIpzKU2ilUVIMRWHO9+z5cPncnJjLPZlpRvRt40Fq7CXgw+3M+/wr8lbV2K3AdcGGG7ysiIiIisuh5qRgREpMPqgDrbnW3qqjKEjbToPoG4CvZ778C3DX6AGPMNiBgrb0fwFrbb62NzvB9RUREREQWPZPoc99EKif/pPUKqrL0zTSo1ltrW7LftwL1eY7ZDHQbY75tjHnWGPNXxhj/DN9XRERERGTRC6R63TdTqaiuugZ2fwAue8XcnJTIAhCY6ABjzANAQ56HPjL8B2utNcbYAu9xC3AVcAb4OvBe4F/yvNcHgQ8CrFmzZqJTExFZtHS9E5HlQNe6iQVTuYrqFIKqPwCv/fTcnJDIAjFhULXW3lHoMWNMmzGm0VrbYoxpJP/a02bgOWvtiexzvgvcQJ6gaq39PPB5gN27d+cLvSILXiqVorm5mXg8Pt+nsqhFIhFWr15NMBic71OZE7reyWKna93s0LVOQtMJqnLJ6Fo3O6ZzrZswqE7g+8B7gE9lb7+X55g9QKUxps5a2w7cDuyd4fuKLFjNzc2UlZWxbt06jDHzfTqLkrWWjo4OmpubWb9+/XyfjojkoWvdzOlaJwDhtILqQqZr3cxN91o30zWqnwJeYYw5CtyR/RljzG5jzD9nT8wDPgw8aIzZDxjgCzN8X5EFKx6PU1NTo4vZDBhjqKmp0V8vRRYwXetmTtc6AYh4/dlvFFQXIl3rZm6617oZVVSttR3Ay/Pcvxf4lWE/3w9cMZP3EllMdDGbOf0biix8+v/TmdO/oRR5fe4TuYLqgqX/P5256fwbzrSiKiILTHd3N//wD/8w36cxwve//30+9alP5X2stLT0Ep+NiCwFutbJUpDyMpQygGf8ECye79ORBWq5Xu8UVEWWmEIXs3Q6PQ9n47z+9a/n7rvvnrf3F5GlR9c6WQriKY9yoiQDZaCqnRSwXK93CqoiS8zdd9/N8ePH2bVrF9deey233HILr3/969m2bRsAd911F9dccw3bt2/n85///ODzSktL+d3f/V22b9/Oy1/+ctrb2wE4fvw4r3rVq7jmmmu45ZZbOHToEAC7du0a/CoqKuKRRx6hs7OTu+66iyuuuIIbbriBffv2AfDlL3+ZD33oQwCcPHmSl7zkJezcuZOPfvSjl/KfRkSWEF3rZCmIpzKUmyipYPl8n4osYMv2emetXZBf11xzjRVZjA4cODCv73/y5Em7fft2a621Dz30kC0uLrYnTpwYfLyjo8Naa200GrXbt2+3Fy9etNZaC9h///d/t9Za+8lPftL+5m/+prXW2ttvv90eOXLEWmvtE088YV/2speNeL/vf//79uabb7bJZNJ+6EMfsn/yJ39irbX2wQcftFdeeaW11tovfelLg6/3ute9zn7lK1+x1lr7d3/3d7akpKTg75Lv3xLYaxfANWo2v3S9k8VI1zpd66b6pWvdWGc6BuxPPnqL7fj0S+b7VKSA+b7WWbt0rndTvdbNdHsaERnHJ3/wIgfO987qa25bWc4nXrd90sdfd911I0aBf/azn+U73/kOAGfPnuXo0aPU1NTg8/l429veBsC73vUu3vSmN9Hf38/jjz/OW97ylsHnJxKJwe+PHj3KH/zBH/DQQw8RDAb52c9+xre+9S0Abr/9djo6OujtHfn7P/bYY4PHvPvd7+aP/uiPpvgvICILja51utbJ9MRTHuUmiheum+9TkUlYCNc6WD7XOwVVkSWupKRk8PuHH36YBx54gJ///OcUFxdz2223FRwVbowhk8lQWVnJc889N+bx/v5+3vrWt/KFL3yBxsbGKZ2TpueJyGzTtU4Wo3gqQzlRvJAm/srkLZfrnYKqyBya6l/IZkNZWRl9fX15H+vp6aGqqori4mIOHTrEE088MfhYJpPhm9/8Jm9/+9v5j//4D26++WbKy8tZv3493/jGN3jLW96CtZZ9+/Zx5ZVX8v73v5/3ve993HLLLYOvccstt/DVr36Vj33sYzz88MPU1tZSXj5y3c1NN93E1772Nd71rnfx1a9+dW7+EUTkktK1Ttc6mZ542mOFGSAT0RrVxWA+rnWwfK93GqYkssTU1NRw0003sWPHDv7gD/5gxGOvetWrSKfTbN26lbvvvpsbbrhh8LGSkhKeeuopduzYwU9+8hM+/vGPA/DVr36Vf/mXf+HKK69k+/btfO973+P06dN885vf5Itf/OLgovu9e/fyJ3/yJzz99NNcccUV3H333XzlK18Zc36f+cxn+Pu//3t27tzJuXPn5vYfQ0SWLF3rZCnITf012kNVxrFcr3fGrWFdeHbv3m337t0736chMmUHDx5k69at830aU1ZaWkp/f/98n8YI+f4tjTFPW2t3z9MpzQld72Qx0rVu9uhat3zdv+8Mr/j2Ttp2/yH1r/3IfJ+O5LFYr3Ww8K53U73WqaIqIiIiIjIPvHgPAKZYFVWR0RRURQRgQf3FTURkruhaJwtJJtoNgL+ocl7PQ5amxX69U1AVEREREZkHNtYNQKCkan5PRGQBUlAVEREREZkP2dbfoIKqyBgKqiIiIiIi88CXcEE1VFI5vycisgApqIqIiIiIzINcUA0Uq6IqMpqCqsgS9ef/f3v3G1rVfcdx/PNNck10gRXNxrApGjEZLr2t2uiT0fVSU3Eqpo12GZvUrO3APRAKxf5hgmuhTGj3pNSms84qhW6CiFi1OJGWtVDqNCjLYi22U5rWMk3RzrBqHb89yB9imj/33Jxzz7nn935B4N5zj/d+P+ecfOTnvYnPPafGxkbdcccdmj9/vj744AM9+uij6u7ujns0AAgNXYdSVn79q/4b/D+qmICPXVcR9wAAwvf+++/rwIED6uzsVGVlpS5duqTr169r+/btcY8GAKGh61DqKq7/R9+oQpnM1LhHQYL52nW8owqk0IULF1RTU6PKykpJUk1NjWbOnKlcLqfB/2y9urpaGzduVGNjo5qbm3Xs2DHlcjnNmTNH+/fvlyTt3LlTLS0tyuVyqq+v1zPPPCNJ6uvr04oVK3TnnXfq9ttv1+7duyVJR48e1YIFC5TNZvXwww/r2rVrkqTZs2dr8+bNWrhwobLZrD788MNiHxIAKUTXodRlvvlKVzVNMot7FCSYr13HO6pACi1dulTPPvusGhoa1NzcrLa2Nt1zzz037dPX16d7771Xzz//vB544AFt2rRJR44cUXd3t9atW6dVq1ZJko4dO6auri5NmzZNixYt0ooVK3T+/HnNnDlTBw8elCRduXJFX3/9tdrb23X06FE1NDTooYceUkdHhx577DFJ/aXa2dmpl19+WS+88ELq/xUQQPTounS69MWn+njP5rjHKIrbrpxQX1m1+AlVjMfXrmOhCkTpraekL/4R7nP+ICv9dMu4u1RXV+vEiRN699139fbbb6utrU1bttz8Z6ZMmaJly5ZJkrLZrCorK5XJZJTNZnXu3Lmh/e677z7NmDFDktTa2qr33ntPy5cv1+OPP64nn3xSK1eu1N13361Tp06prq5ODQ0NkqR169Zp69atQ4XW2toqSbrrrru0d+/eMI4EgKSg6+i6EP336mX98NLhuMcomo+mL1Ft3EMgP3RdUbuOhSqQUuXl5crlcsrlcspms9q1a9dNj2cyGdnAR43KysqGPk5SVlamGzduDO1nIz6OZGZqaGhQZ2enDh06pE2bNmnJkiVqaWkZd57B5y8vL7/p+QFgMui69Lltblb63Wdxj1E0i+MeACXBx65joQpEaYJ/IYvKmTNnVFZWpvr6eknSyZMnNWvWLHV1dQV+riNHjujLL7/U1KlTtW/fPu3YsUOff/65pk+frrVr1+qWW27R9u3b9cQTT+jcuXM6e/as5s6dq9dff/1bH0sBkFJ0XdjRACQRXRd2tHGxUAVS6OrVq9qwYYMuX76siooKzZ07V9u2bdOaNWsCP9fixYu1evVq9fT0aO3atWpqatLhw4e1ceNGlZWVKZPJqKOjQ1VVVXrttdf04IMP6saNG1q0aJHWr18fQToA6EfXAfCBr11nzrmivmC+mpqa3OBvsQJKyenTpzVv3ry4xwjFzp07dfz4cb300kuxvP5ox9LMTjjnmmIZKCL0HUoRXRceug5ILrouPEG7jv+eBgAAAACQKHz0F8CY2tvb1d7eHvcYABApug6AD0qt63hHFQAAAACQKCxUgQgk9We/SwnHEEg+vk8nj2MIJB/fp5NXyDFkoQqErKqqSr29vZTaJDjn1Nvbq6qqqrhHATAGum7y6Dog+ei6ySu06/gZVSBktbW16unp0cWLF+MepaRVVVWptrY27jEAjIGuCwddByQbXReOQrqOhSoQskwmo7q6urjHAIBI0XUAfEDXxYeP/gIAAAAAEoWFKgAAAAAgUVioAgAAAAASxZL6G6zM7KKk8wH+SI2kSwO3vyvpyii3C7k/0fZ8Hw+630TyyZtPtkLyBskQdt7xMhWatxTPbSH3850ziXmH357lnPteCK+bGAH7jutj/NtjvXapdd3I50x7Xq7lb9/2veukcK6PINuCPB50v4nE2e103diS1HVBtgV5POh+Ewl6LY/ddc65VHxJOj7s9rbRbhdyf6Lt+T4edL8w8uaTrZC8QTKEnXe8TIXmLcVzW8j9Us4b1mul4YvrI3j2QvPG2XW+5eVaDve10vIVxvURZFvSr49C8080J11XvLxcy8FeL60f/X1zjNuF3J9oe76PB90viLHy5pOtkLxBMoSdd7xMheYtxXNbyP2Jtuf7eND9gsj3WkY/ro/RXysNXTfyOdOel2s5utdKg8lcH0G2BXk86H5BFPv7ga4LZ9+gz8e1PIHEfvQ3KDM77pxrinuOYiFvevmUVfIv72T5drzIm24+5fUpa1h8OmY+ZZXIm2ZhZk3TO6rb4h6gyMibXj5llfzLO1m+HS/ypptPeX3KGhafjplPWSXyplloWVPzjioAAAAAIB3S9I4qAAAAACAFWKgCAAAAABKFhSoAAAAAIFFSu1A1szlm9icz2xP3LMVgZt8xs11m9qqZ/TLueYrFw/N8/8A53m1mS+OeJ2pmNs/MXjGzPWb2m7jnSSIPvwe87DrJr3NN12Ekn65/ia7z5VzTdeMrqYWqme0ws3+bWdeI7cvM7IyZnTWzpyTJOfeJc+6ReCYNR5C8klol7XHO/VrSqqIPW4CA+UZVSuc5pLz7Bs7xekltUc47WSHlPe2cWy/pZ5J+HOW8SULXDW1PRddJfvUdXTe0na6bAF03tJ2uG6ZUzjVdN7Q9uq5zzpXMl6SfSFooqWvYtnJJH0uaI2mKpFOSfjTs8T1xz12MvJKeljR/YJ834p49gnxZSQdGfH2/lM5zyHn/IGlh3JmKkVf9f0G/JekXcWdK4rEb9njivwdCulZKrusKyFjSfUfX0XVRHLthjyf6+g/xWqHrEn6u6brou65CJcQ59zczmz1i82JJZ51zn0iSmf1FUouk7iKPF7qAeXsk1Uo6qRJ5pzxIPufc7yWtLPKIoQojr5mZpC2S3nLOdUY88qSEdX6dc/sl7Tezg5LeiHDkxKDrJKWo6yS/+o6uk0TX5YWuk0TX0XV03ZhK5sIfx62SPh12v0fSrWY2w8xekbTAzJ6OZ7RIjJpX0l5Jq82sQ9KbcQwWkrHyjSoF5zlQXkkbJDVLWmNm66McLCJBz2/OzF40sz9KOhT1cAlH16Wr6yS/+o6uo+vyRdfRdaV8rum6ELuupN5RDcI516v+z3t7wTnXJ+lXcc9RbB6e5xclvRj3HMXinHtH0jsxj5FoHn4PeNl1kl/nmq7DSD5d/xJdJ0/ONV03vjS8o/qZpNuG3a8d2JZWac+b9nwjkTfdecPk27HzIa8PGQf5lFXyL2+YfDt2PuT1IeMgn7JKEedNw0L175LqzazOzKZI+rmk/THPFKW05017vpHIm+68YfLt2PmQ14eMg3zKKvmXN0y+HTsf8vqQcZBPWaWo88b9G6QC/rapP0u6IOkb9X8G+pGB7cslfaT+3zr127jnJC/5yOtfXo4deX3P6GNWH/Ny7Mjre0Yfs8aV1wZeAAAAAACAREjDR38BAAAAACnCQhUAAAAAkCgsVAEAAAAAicJCFQAAAACQKCxUAQAAAACJwkIVAAAAAJAoLFSRWGY228y64p4DAKJG3wHwAV2HIFioAgAAAAAShYUqkq7czF41s3+a2V/NbGrcAwFAROg7AD6g65AXFqpIunpJW51zjZIuS1od7zgAEBn6DoAP6DrkhYUqku5fzrmTA7dPSJod3ygAECn6DoAP6DrkhYUqku7asNv/k1QR1yAAEDH6DoAP6DrkhYUqAAAAACBRWKgCAAAAABLFnHNxzwAAAAAAwBDeUQUAAAAAJAoLVQAAAABAorBQBQAAAAAkCgtVAAAAAECisFAFAAAAACQKC1UAAAAAQKKwUAUAAAAAJAoLVQAAAABAovwfBSStlFK/3QgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAGiCAYAAADusDtaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAClrElEQVR4nOzdd3xkV3n/8c+Zqt61Wq1WW73Va3ttr9dgYzDG9E7ovYUQQir8AkkIEAgJhIQAKSSQUEMLvdgE22AbY4O9rrv29q7dlbRadWn6zPn9ce5II2lGGmmlXZXv+/Wa10gz9965M5q5us88z3mOsdYiIiIiIiIiMl/4LvYOiIiIiIiIiORSoCoiIiIiIiLzigJVERERERERmVcUqIqIiIiIiMi8okBVRERERERE5hUFqiIiIiIiIjKvKFCVJc8Y8x/GmL/O+f33jTGdxpghY0y9MeZ6Y8wh7/eXXMRdveiMMa8zxtx2sfcjH2PMm40xvy5w3yrv7+e/0Ps1E8aY48aYm2dpW08YY26cjW0tRcaYu4wxb5/hun9pjPmv2d6nSR5vjTHGGmMCc7DtTcaYR40xg8aYP5rt7XuPMePXehYeu8kY8yvv+f3TBX7sIWPMugv5mLNlLt9zs8UY82VjzN/O0bYn/Z9ojLnRGHNqLh5bZClQoCqLmnfCH/VOPvqMMfcZY95pjBl571tr32mt/ai3fBD4FPAsa22FtbYb+Ajwr97vP7woT+QiyHcCYq39urX2WXP0eHN2kmqtPen9/dJF7Me8P/GaDmvtpdbauy7kY3qv3yUX8jEvtnwnpNbav7PWXpTAaw78OXCntbbSWvvZ892YMebDxpj/mYX9mi3vAM4BVdba98zVg+Q7znnHpqNz9ZgX02x+6TYfjf+fuBSPfSJzSYGqLAUvtNZWAquBjwPvA/67wLJNQAnwRM5tq8f9XrTFEuzI7NF7Qq/BAjWvjoNzsM3VwF5rrZ3l7coipeOYyAVgrdVFl0V7AY4DN4+7bSeQAbZ5v38Z+FtgIzAMWGAI+CVwxFs26t0WBqpxgW47cNpb1+9t683AvcA/A93efWHgH4GTQCfwH0Cpt/yNwCngPcBZb5tvydnXUuCfgBNAP/DrnHWfBNwH9AGPATdO8jqsAL4HdAHHgD8a93o8CAx4+/cp7/aTOa/FEPBk7/n9OmddC7wLOAQMAh8F1nv7NQD8LxDylq0FfurtQ6/380rvvo8BaSDmPda/erdvBm4HeoADwCtzHrse+LH3OA94j/3rAs9/jbevAe/3u7zl7/X2+zagodDz9m5/K7DP2/efA6tztv8sb//6gX8H7gbePsl7Yj3u/dWNy+J8HaiZ7H2bc9+Xvcf4mbd/9wLLgU97+7YfuDLftoAPe3+Tr3rP+wlgx7i/5yXjHutvvZ8bvL9Zn/f3uAfw5dm/X3nbGfb271WMvs/fB3QAX2Pce2n84zPJ5ybPYxbzer4X2O39jb4NlEz1vsx5r7wdCHnP+7Kc+5YBEVyQE8UdK7LvmxXe6/0/Ocs/hdHPbBvw5jzP5VXAg+Nu+1Pgx97Pzwcewb3v24APT/I+H/nb5/z9c/enqGOI99rmfj434o6DX/VetxPAB7LvB/K858dt7zlAAkh623usiM9l9rm9zXtP/KqIz2XB40eez1TS26ch4GZy3vu5x+pi3lPe/S8GHvX+Tke851zoOJf7vp/qdf017nPRizuWPzfnMd8MHPVeu2PA6wo8353Ab7y/ezvwr3jH6Zz9eSfuuN4H/BtgvPv83uOf8x7rD8h5z417nK8x9v/nnwNfAd7j3d/irfsHOZ/jnpzn+7vAYe+2HwMrJvkf9x3csaUfdwy6NN9xzPv9z73nfQb32Z7O6z/+WP5mvOMYkx/7Cv2P/zLTO56/D3feMYh7Tz+j0Guiiy6L4XLRd0AXXebyQoETftyJzu97P4/8E2PciV6+bQA/AP4TKMedqD4A/J5335uBFPCHQAAXaP6z90+2DqgEfgL8vbf8jd7yHwGCwPNwJ7613v3/hjt5a8GdIFyHO4Fv8f5RPg9XGfFM7/fGPM/VBzwEfBB3sr0Od4LxbO/+3wBv8H6uAJ40yWsx8k/Z+90CPwKqgEuBOPAL7zGqgb3Am7xl64HfAcq81+E7wA9ztnUXXnDn/V6OOxF/i/daXok7Odrq3f8tXNBVDmzz/nlPJ1A9gjvhLvV+//gkz/vFuBOmLd6+fAC4z7uvAXcy+jLvvj/GnfS+fZL3xCXe3ywMNOJOcD491fs25/16Drgal/3/Je6k9I2498jf4ko0J2wLF6jEcO8bP/D3wG/H/T0LBap/jwsWg97lBryT1zz7OH47N3qvwSe851zK1IFqwc9Nnscr5vV8ABc81uECm3dO932JO6H8RM59fwz8JOc5nhq3Xx/GCwxxwewg8Brv9asHtud5LmXechtybtsFvDrncS7Dfa4vxwXxLynwPh/52+fZn6KPIQU+n1/FffYrvcc9CLyt0Hs+z/ZG9mXcY0z1ufwq7jNfyuSfy0mPHwU+V387ye9j/r5M/p7aiQuYnum9ti3A5nyvY573/VSvaxIXwPmB38cFW8Z7vgPAJm/ZZnKCtXGPdzXuS4qA9xj7gD8Ztz8/BWqAVbig7Tnefe/EBU+t3vO+kwKBaoH34FsZ/cy81vt7fzvnvh95P9/k/b2uwn2u/wXvy4kCj/NW7zUL44K8Rwscx56DC2gvxX3W/mear//4Y/mbmfg/Md+xr9D/+C9T5PEc2IR7T6/I+Uys935+CtBX6PXRRZeFelHpryxVZ3D/ZKfFGNOE+0fzJ9baYWvtWdwJ9atzt22t/RdrbQoXFLwD+FNrbY+1dhD4u3HLJ4GPWGuT1tpbcd+qbvLG0b4V+GNr7Wlrbdpae5+1Ng68HrjVWnurtTZjrb0dlxV9Xp7dvgZ38vkRa23CurFQX8jZhyRwiTGmwVo7ZK397TRfln+w1g5Ya58AHgdus9Yetdb2474lvhLAWtttrf2etTbivQ4fA542yXZfABy31n7JWpuy1j6Cywq/wmuK9DvAB72/w+O4b+qn40vW2oPW2igu4N0+ybLvxAVJ+7y/698B240xq3Gv+RPW2u97930WdyKUa+Q9Ya2NWmsPW2tvt9bGrbVduHHRk70W4/3AWvuQtTaG++IkZq39qnVjcL+N95oX8GvvfZPGZTyuKPIxk7iT39Xee/Uea62dxj5ngA95zzk62YLGGMPUn5sRRb6en7XWnrHW9uCC3u3eutN5X34FeI23fwBvwL2GxXgtcIe19pve69dtrX00z3OJ4E6UXwNgjNmAywz+2Lv/LmvtHu9zvxv45iT7O5npHEPG8D5/rwb+wlo7aK09jqv8eEPOYmPe89PYr6k+lx/2PvNRJv9cFjx+TGNfppL3PYXL+n7Re09mvOP3/qk2VuTresJa+wXv8/sV3GeyybsvA2wzxpRaa9u9Y/IE3rHjt97rchz3xev499DHrbV91tqTuGA0+9xeifsSqM173n8/1fMa527gKd7/t6cC/wBc7933NO9+gNfhXsOHvf95fwE82RizpsBz+qL3msVxX4JcYYypzrPoK3HvsSe8z9qHs3fM4fs67//4nPuLPZ6ncYH4VmNM0Fp73Fp7xHv+v7bW1hS5PyILhgJVWapacOVE07Ua961ou9ecqQ/3T35ZzjJtOT834r61fShn+f/zbs/q9k6ysiK4zGYD7hvWIwX24xXZbXrbfQrupCXfsivGLfuXjJ7cvA2XwdhvjNlljHnBFK/BeJ05P0fz/F4BYIwpM8b8pzHmhDFmAJf1qpmkE+9q4Npx+/06XFlUI+4b7dzX+sQ09zs3mMy+5oWsBj6Tsx89uCxGCy6jMrIfXvA2vstj7n5mO4x+yxhz2nst/gf39y5WUa95AeOfd0mRY60+icte3WaMOWqMeX+xO+vp8k7EilHM52ZEka9n3r/3dN6X1tr7vXVvNMZsxmVyf1zkc2ol/2c5n2/gBaq4APeH3kk1xphrjTF3GmO6jDH9uGBtOu+drOkcQ8ZrwB0Hcz9zJ3Cfh6wx7/lpmOpzmbvdyT6Xkx0/ZkuhfZ3O3zpXMa/ryGNm3xNAhbV2GFdq+k7c/6dbvPfoBMaYjcaYnxpjOrz3/N9R5OeFccc7pnnc9QKrYVzgewMuc3vGGLOJsYHqitxtW2uHcBn/3Nci+3z8xpiPG2OOeM/nuHdXvs/F+P3P/Xmu3teF/sdnFXU8t9YeBv4EF1yf9Y55K2awPyILhgJVWXKMMdfg/vHkncpkCm248tYGa22Nd6my1l6as0xulukc7h/NpTnLV1trJwskcteN4cbt5NuPr+Vss8ZaW26t/XiBZY+NW7bSWvs8AGvtIWvta3DB9ieA7xpjysc9j9nwHty3yNdaa6tw36aDO7Ekz+O1AXeP2+8Ka+3v40rRUrgTwqxVs7Sf+Z53G668O3dfSq219+HGHK3MLuhl21aOW3/8Nv/Ou+0y77V4PaOvw8UUwQWIWSMn9V6G4T3W2nXAi4A/M8Y8YxrbHv8aDOc+ljEmN4CY7ufmfF7Pqd6X433F2/4bgO/mBN9TfV7ayP9Zzud2oNEYsx0XsH4j575v4ILjVmttNa4cu9C+jnmNGRukTecYMt45XJZodc5tq3Dl91lTvR4zPb7krjfZ53Ky40cxJnvtpjLZ33qy513M61qQtfbn1tpn4r5s2I+rnMnnc979G7z3/F9S/Oelnekdd/M937uBl+PGxZ72fn8Tbrz4o94yZ8h5Hbz/SfXkfy1eiysDvxk35GRNdrUC+597fM59LrPxvp5T1tpvWGufgttHi/ufLbJoKVCVJcMYU+VlC7+FGxu1Z7rbsNa24xp8/JO3PZ8xZr0xJm/pnbU2gztZ+GdjzDJvP1qMMc8u4rEywBeBTxljVnjfGj/ZGBPGZYxeaIx5tnd7iXHTY4wPkMCNoxo0xrzPGFPqLb/NC9gxxrzeGNPoPV6ft04GFwxmcONNZ0MlLvjoM8bUAR8ad3/nuMf6KbDRGPMGY0zQu1xjjNnilUR9H/iwlxHbijvRmQ35nvd/AH9hjLkUwBhTbYzJlhDeAlxmjHmJl5n8A6Y+qa3ElX/1G2NagP83S/t+vh4FXuu9R55DTjmgMeYFxphLvEC8H1eGlimwnfF/y3weAy41xmw3xpSQU4I3g8/N+byeU70vx/sf4KW4YPWrObd3AvUmf7khuAZPNxtjXmmMCRg3R/P2fAtaa5O4sbKfxA1RuH3c/vZYa2PGmJ24k/RCHgVe7X12duCCg9znUewxZPz+pXFluR8zxlQaV2r7Z942i9UJrDE5U4XNwGSfy4LHjyK3/SjwPGNMnfclyp9MY7/+G3iLMeYZ3v+IlpzsZsHPxvm8rsZVFbzYC+jiuM9Doc9nJW4865C3X8UG73j790fGmJXGmFpgqsqKfM/3buDduOoFcON2340blpCdQuybuNdwu/c/7++A+71y3HzPJ47LuJZ5y062/28xxmwxxpQBI3Ooz+L7ek7mxDVuLuObvNcjxmgDN5FFS4GqLAU/McYM4r7l/ivc+LW3nMf23ohrSrQX15Xvu0xeLvc+XMnkb72ypDsYOz5lMu8F9uCaqfTgvj31WWvbcN8g/yUusGrDnZxP+Ex7/3xfgCu1Oob71vi/cN88g2su8YQxZgj4DK5pS9QrK/sYcK9xpXNPKnKfC/k0rvnEOeC3uFLOXJ8BXm6M6TXGfNa68YLPwo0ZOoMrRcs24wF3YlPh3f5l4EvnuX/ASDndmOdtrf2B99jf8v6GjwPP9ZY/hxv39g+4E6WtuLF+8Uke5m9wTUL6cYHu92dj32fBHwMvxH1h8Trghzn3bcC9d4dwDbj+3Vp7Z4HtfBj4ivf6vTLfAtbag7gGI3fguouOr3CYzufmfF7PTzP5+3L8frcBD+OyGffk3L4fd3J91HveK8atdxI3/vM9uM/yo0w+PvgbuAzRd8aVDb4L+Ih3TPsg7sS6kL/GZfZ6ca/RSGZ2OseQAv4Ql3U8ivvbfQP3xVqxvuNddxtjHp7GeiOm+FxOdfyYytdwX6Ycx305+e1p7NcDuP8x/4x7T97NaJZuzHEuz+ozfV19uKDqDO799TQKB6DvxX3BMYj7Qqjo5+Yt/3Pca/MwU3/W/h74gPeZeK9329244DIbqP4aF2Bmf8daewfu/fs9XBZ0PQXGqOO+MDqBy3zuxX2O87LW/gzXR+BOvOOLd1f2eH2+7+sPM8Wx7zyEcVPsncO9n5fhxu5ijLnB+x8usqhk242LiMgs8DJEp3BTQxQK5GQBM8Z8EddU5QMXe19EZOa8DPvjQHjcF0IiMg8ooyoicp688skaryQrO95rut2TZQEwruvoy3DlnSKywBhjXmqMCXuly5/ATZejIFVkHlKgKiJy/p6M6/J5Dlc6+xI7vSk5ZAEwxnwUl335pLX22MXeHxGZkd8DzuKO2WmmN0ZXRC4glf6KiIiIiIjIvKKMqoiIiIiIiMwrClRFRERERERkXlGgKoueN7feA8aYIWPMtou9PyIis0XHNxFZCnSsW5oUqMpSEAGej5vvVERkMdHxTUSWAh3rliAFqrLoWWuT1tqui70fIiKzTcc3EVkKdKxbmhSoioiIiIiIyLyiQFUWDWPMDmPMfmPMcWPM1Rd7f0REZouObyKyFMzmsc7b1g+NMdtnaffkAlOgKovJvwJPAHcAf3+R90VEZDbN2vHNGLPTGPMbY8yvjDHfNMYEZ2UPRUTO36wd66y1DwI/nIV9koskcLF3QGQWbQe+hBtoX5V7hzHmVu/+TcaY/7TWfvlC75yIyHnYzuwd39qAm6y1UWPM3wMvRg1KRGR+2I7O5cSjQFUuOmPME8AfWGvvOo9tlAJhoN9a2w10595vrX3eee2ke4y/BpZba//gfLclIkvDfDy+WWvbc35NAJkpHl/HPhGZ1Hw81hljLgGeBVxqjDlqrR2YZFkd5+YhBapy0VlrL52FzVR410OzsK1CLgXunMPti8giM5+Pb8aY1biTuL+dYlEd+0RkUvPxWGetPQy8tsjFdZybhzRGVYpijJnwpUa+26a7jVlU6V3PdaC6ew63LyIXwVI8vhljqoCvAW+21ianWFzHPpFFYKkd64wxNt+lwOI6zs1DClSXOGPMCmPM94wxXcaYY8aYP8q577gx5n3GmN3AsDEmUOC2LcaYu4wxfcaYJ4wxL5psG3n24bgx5uacn99rjNltjOk3xnzbGFNSxFOZ9rdwxph/MMb8MOf3TxpjfmGMCRljfMaYvzDGnDXGnDHGvBq4BHh8qnWLfXwRmVs6vhU8vgWAbwF/Y609MG69gsc+HfdE5icd6/Ifl6y1Jt9F53gLiLVWlyV6wX1R8RDwQSAErAOOAs/27j8OPAq0AqX5bgOCwGHgL71t3AQMApsKbSPPfhwHbs75+QFgBVAH7APeWcRzuQ6w2cct8vnXA/3AlcA7gT1AtXffh4F7geVAtffz0WLW1UUXXS7+Rce3SY9vb8CN/brLu7wqZ72Cxz4d93TRZf5ddKyb9Fj3LOB9wH8CwZx1Ch7nptqmLhf2ojGqS9s1QKO19iPe70eNMV8AXg383Lvts9batnHrjdxmjLkB9w3Yx621GeCXxpifAq/BHQgKbWMyn7XWnvG2/xNch7epTPtbOGtttzHmn4Gv4A5UT7HW9htjGoH3AldYazu8/bgFuHaqdYt9bBGZczq+FThGWWu/hiv7HWOqY5+OeyLzko51hY91twG3GWM+hQvAkzrHW1gUqC5tq4EVxpi+nNv8wD05v+c7KOXetgJo8w5sWSeAlim2MZmOnJ8j3mNMZabjGh4BPgS8LucA/Axgn7X2SM5yTUwcu5BvXRGZH3R8m/4xqphjn457IvOLjnWTHJeMMe8EbrPWDns36RxvAdEY1aWtDThmra3JuVTase2/8w06z73tDNBqjMl9L60CTk+xjdk2k3ENlwGfw31j9tacuxqAsznLBYGXkHMQm2RdEZkfdHyb/jFq0mOfjnsi85KOdQWOS16QejOw2RhT692sc7wFRIHq0vYAMOgNkC81xviNMduMMddMYxv3474p+3NjTNAYcyPwQlyjjgupAohaa9PFLGyMaQF+ght78C7gMm/fAQ4ATzHGbDTGVOMOVqtwYxSmWldE5gcd36Z/jCp47NNxT2Te0rGuwHHJWvsf1tqXW2s/ba3t9W7WOd4CokB1CfMOBC/AjRs4BpwD/gtXj1/sNhK4g9lzvfX/HXijtXb/bO/vFCoo8hs446ZluBX4lLX2x9baCPBJ4GMA1trbcQfnB4FdQBcQAw5Nta6IzA86vk3/GDXJsa99ptsUkbmlY930jks6x1tYjLUXIpMvMje8MhUD/A3wamvtJePu/wSui9xx4K126vkCRUTmBR3fRGQp0LFOClFGVRa6E8CbcS3E9+XeYYy5Amix1t4A7AdefsH3TkRk5nR8E5GlQMc6yUuBqix0HwM+j2vP/uFx910H3Ob9/H/A9Rdut0REzpuObyKyFOhYJ3kpUJUFzVr7H7gJm1dZax8ad3ctMOD93I+bdFpEZEHQ8U1ElgId66QQzaMqC561tqvAXX1AlfdzNdBzQXZIRGSW6PgmIkuBjnWSjzKqspjdh5s/C+DZwL0XcV9ERGaTjm8ishToWLeEKVCVRcta+yjQaYy5B7gU+N7F3SMRkdmh45uILAU61i1tmp5GRERERERE5hVlVEVERERERGRemZVA1RjzHGPMAWPMYWPM+/Pc/2fGmL3GmN3GmF8YY1bPxuOKiIiIiIjI4nPepb/GGD9wEHgmcArYBbzGWrs3Z5mnA/dbayPGmN8HbrTWvmqy7TY0NNg1a9ac176JyOLz0EMPnbPWNl7s/ZhNOt6JyHg61onIUjDZsW42pqfZCRy21h4FMMZ8C3gxMBKoWmvvzFn+t8Drp9romjVrePDBB2dh90RkMTHGnLjY+zDbdLwTkfF0rBORpWCyY91slP62AG05v5/ybivkbcDPZuFxRUREREREZBG6oM2UjDGvB3YAnyxw/zuMMQ8aYx7s6io076+IyMKn452ILAU61onITM1GoHoaaM35faV32xjGmJuBvwJeZK2N59uQtfbz1tod1todjY2LaliGiMgYOt6JyFKgY52IzNRsBKq7gA3GmLXGmBDwauDHuQsYY64E/hMXpJ6dhccUERERERGRReq8A1VrbQp4N/BzYB/wv9baJ4wxHzHGvMhb7JNABfAdY8yjxpgfF9iciIiIiIiILHGz0fUXa+2twK3jbvtgzs83z8bjiIiIiIiIyOJ3QZspiYiIiIiIiExFgaqIiIiIiIjMKwpURUREREREZF5RoCoiIiIiIiLzigJVERERERERmVdmpeuviIiIyHxjrQXAGDNnj5FIZUhnLKlMhkwG0taSsZaAzxDw+wj4DH6fIeAzc7ofIiKLjQJVERERmffO9EV56EQvD5/s5eETvRw+O4Qxo0Gg32cwBpJpSzKVIZ7OkExnCPp8NFaGx1zCAR+xZJpoIk00mSaazBCJpxiKpxiMuevheIqg30d5OEBF2E95OEBZyE80mXbLxNyyiXSmqP0vCfrY/9HnzvGrJCKyeChQFRERWUJ+ub+Tf/3lYd77rE1cd0nDxd4dAI6dG+auA2e5+2AX9x/tIZXJEPL7CAXcJZ2xnBtKAC7gu2JlDa/Y0YrfZ0ilM6QylnTGZTJDAR/B7Lp+H4lUhq6hOF2Dcdp6Ijx0opdkKkNpyO8uQT/hoJ+KsJ/6ijIqwkEqwn7KwgFS6QxD8TTDXuAaSaRZVhlkXUOAypIAlSVBykP+kcypz2fwG/D5DKm09TKtlnQmo2yqiMg0KVAVERFZAs4OxPibn+zllj3tALz/+3u47U+fSknQX/Q2+qNJHjjWw8raUtY2lE9rXYBUOsOp3ijHzg1z9Nwwh88Ocd+Rc5zojgCwtqGcl1+9koqSAIlUhkTKZUWthS3NlVy9uo7NzZUE/WqxISKy2ClQFRGRRc1ay5n+GC01pRd7VyZIZywPn+zlmjV1c/YYmYzl6w+c5B9+tp94OsN7n7WRS1dU85Yv7+LzvzrKHz1jQ1Hb6YskePXnf8v+jkEAfAZa68rYsKyCjU2VXNZSzbaWalbWlo5kD4fjKR441sOvD5/jviPdHD47SDJtR7ZZVRLgmjV1vO0pa3naxkZW15fP/gsgIiILkgJVERFZ1O4/1sNrvvBbfvmeG1nbML8CoR88cpr3fucxfvbHN7CluWpWtmmtpb0/xiMn+3jkZC+/PnyO/R2DXLe+no+99LKR1+B5ly3n3+48zEuvbKG1rmzSbQ7FU7z5S7s42jXMp1+1HZ/PcPjsEEfODnHo7CB3HegilXEBaG1ZkG0t1cSSaR452Ucq48pxr1lTy9tvWMe6hnLWNZaztqGC2rKgSmJFRCQvBaoiIrKodfTHsBZOdA/Pu0D1/qPdAOw53T8rgern7jrCl+87RudAHIBwwMe2lmr+6RVX8LKrWsYEhR94/lbu3N/F396yl/98w46C24wl07zjqw+y53Q/n3vdVTzr0uV5l9nfMcie0/3sOdXHntMDhPyG333qOq5f38CONbXTLhMWEZGlTYGqiIgsasOJFMBIM575ZNfxHgD2tQ9Mutzhs4McOxfhmVubCi4zEEvyT7cd4PKV1bzrxku4clUNm5dXEQrkH8+5oqaUd990CZ/8+QHuPtjF0zY2Tlgmmc7w7m88zG+OdvOpV16RN0gFKAn62d5aw/bWGmD1pM9FRESkGOpGICIii1o0kQbg3FD8Iu/JWGcHYxz3mghNFah+6vaDvOvrD9EfTRZcJlt++1fP38KbrlvD5StrCgapWW+/YS1rG8r58I+fIJ5Kj7kvkcrwnv99jDv2neWjL97GS69cWeQzExEROX8KVEVEZFGLZAPVwfkVqD50vBeAzcsr2dc+iLW24LKPtfWTTFtu39tZcJk79nbSUBFie2tt0fsQDvj50Au3cuzcMP91zzH6Igl++Mhp/uAbD3PVR2/nx4+d4X3P2czrn6QsqYiIXFgq/RURkUUtMk8zqruO91IS9PGKHa189Kd7ae+PsSJPZ+LuoTin+6IA3LqnnZdfPTGzmUxnuPPAWZ67bTl+3/SaE924aRnP2trEp+84yKduP0g6Y2moCPPCK5p57rZmnpqnJFhERGSuKVAVEZFFLeKNUe0enl9jVB880cP21hquWFkNwN4zA3kD1d2n+wG4rKWaew51MRBLUlUSHLPMA8d6GIyluHlL4TGsk/nQiy4l/v0Ml66o4plbm7hiZQ2+aQa8IiIis0mlvyIisqhlM6pdc1j629EfYyBWePzoeMPxFE+cGeCaNXVs9rr9FhqnurutH2Pgz5+ziWTackee8t/b93YSDvi4YcPMsp8tNaV85a07+fPnbObKVbUKUkVE5KJTRlVERBa10WZKc5NR7Y8meean7iaZyfDcbc28YsdKnrS2ftJg75GTfaQzlh1r6qgIB1hVV8a+jvyB6p7TfaxrKOcplzSworqEW/e087KrRst/rXVjV2/Y0EBpSFPAiIjI4qCMqoiILGrZ6Wl6huOkM4UbFs3U/+5qYzCe4tmXLueOfZ289gv387R/vJPP/uLQSJA83q7jPfgMXLWqBoAtza6h0njWWh471c8VK2swxvCcbc386uC5Mdnb/R2DnO6LzrjsV0REZD5SoCoiIotatvQ3Y6E3MrtZ1XTG8pXfHGfnmjo+8+or2fVXN/OZV29nVV0Zn7r9IJ+6/UDe9R480cPm5VVUemNNtzRXcbx7eGQ8bVbHQIyuwTiXe+NYn3/5chLpDL/YN1r+e8feToyBZyhQFRGRRUSBqoiILGq5Wc3Z7vx7x75OTvVGefP1awAoCfp58fYWvv72J/GiK1bwzQfaJoxdTaYzPHKyj51r60Zu29JchbUuO5pr9ymvkdLKGgCubK1leVUJt+7pGFnm9n2dbG+tobEyPKvPTURE5GJSoCoiIotaJJGiocIFcecGZzej+uV7j9NSU8qztk7MZr7jqesYiqf41gMnx9y+98wAkUSaHWtG5zvdWqCh0u5TfQR8hktXuPt9PsNzL1vO3Qe7GIwl6eiPsftUv8p+RURk0VGgKiIii1okkWZVnZv2ZTYzqvvaB/jN0W7e8OTVBPwT/51ua6nmuvX1fPHXx0mkMiO37zreA8CO1aMZ1ZW1pVSGA3kC1X42NlVSEhxtkvT8y5pJpDL8cv9ZfrHflQDnC5RFREQWMgWqIiKyqLlAtQyY3UD1y/cepyTo49XXtBZc5nefuo6OgRg/3X1m5LYHj/fSWlfK8uqSkduMMWwe11DJWsvuU/1c0Vo9ZptXraqlqSrMLbvbuX1vJ6vry7hkWcWsPS8REZH5QIGqiIgsatFEmqbqEkJ+36xNUdMznOCHj57mpVeupKYsVHC5Gzc2srGpgs//6ijWWqy1PHiih2tysqlZW5qr2N8+QMbrTHyyJ0J/NMllLTVjlvP5DM/d1sxdB7u473A3N29pwhjNeyoiIouLAlUREVm0kukMiXSG8lCA+orQrGVUv/nASeKpDG++bs2kyxlj+N0b1rG/Y5B7Dp3jeHeEc0MJrlmbP1AdTqRp640A8JjXSCnb8TfX87zy30Q6wzNV9isiIouQAlUREVm0slPTlIX8NFSEZyVQTaYz/M9vT3D9JfVsWl455fIv2r6CZZVhvnDPUXYdc+NTr8lppJS1ZVxDpT2n+ggFfHkfY8fqWpZVhqkuDbJj9cRtiYiILHSBi70DIiIicyU6EqgGaKgI0TULgerPn+igvT/GR168rajlwwE/b75+Df/wfwcYiKWoLQuyvnHimNJNTZX4DOxtH+Q525p57FQ/W5urCOZp1OTzGT70wkuJp9J5GzmJiIgsdPrvJiIii1YkkQJyMqqzMD3N1397klV1Zdy0eVnR67xu52rKQn4ea+vj6tV1eceUlob8rGkoZ1/7AOmM5fHT/VyRp+w36/mXN/Oyq1bO6DmIiIjMdwpURURk0cqW/paG/NRXhOkejmOtnfH2MhnLo2193LR5GX5f8Q2MqsuCvPqaVUD+st+sLc1V7Gsf4GjXEJFEmstX1sx4X0VERBYyBaoiIrJoZQPVcq/0N5m29EeTM95eW2+EaDLN5iLGpo73u09dy7Vr63jOtuUFl9naXMWp3ii/PnwOyN9ISUREZCnQGFUREVm0sqW/pSE/jZVhwM2lOtmUMpM50OHmOd04g0C1ubqUb//ekyddZqvXUOl/HzxFecjPujxjWUVERJYCZVRFRGTRio7r+guc11yqI4Fq0/QD1WLkdv7d1lI9rfJiERGRxUQZVRERWbSGc0p/fV4Do/OZomZ/5yCtdaVUhOfm32dTVZjasiC9kSRXtNbMyWOIiIgsBMqoiojIohXNKf1tqHDlvucGZx6oHuwYZNMcZVMBjDEjWdXLWjQ+VUREli4FqiIismhFckp/a8tC+H1mxqW/8VSao+eG2TSD8anTkQ1Ur1DHXxERWcJU+isiIotWtvS3NOjH5zPUlYdmXPp7tGuYdMayaXnVbO7iBK/ZuYrasiCtdaVz+jgiIiLzmQJVERFZtKKJ1EiQClB/HoFqtpHSXJb+AlyyrIJ337RhTh9DRERkvlPpr4iILFqRRJqykH/k98bKMF0zLP3d3zFI0G9Y21A+W7snIiIiBShQFRGRRSuaSFOaE6g2VIRn3EzpYOcg6xoqCAX0r1NERGSu6b+tiIgsWsOJFOWh0VEuDRWu9NdaO+1tHegYnPNGSiIiIuIoUBURkUUrkiejGk9lRposFWswluR0X1SBqoiIyAWiQFVERBat6Lgxqg0VYWD6c6ke7LwwjZRERETEUaAqIiKL1vD4QLXSC1Sn2fl3f7bjrzKqIiIiF4QCVRERWbSiiRRl48aowvQD1YMdg5SH/Kys1dymIiIiF4ICVRERWbTGT0+TLf2d7hQ1+zsG2bi8EmPMrO6fiIiI5KdAVUREFq3x09PUlXsZ1WmMUbXWcrBzkM0q+xUREblgFKiKiMiiZK1lOJEak1EN+n3UlgWnVfrbNRinN5JkoxopiYiIXDAKVEVEZEH43kOn2HtmoOjl46kMGcuYMargyn+nE6ge6FQjJRERkQtNgaqIiCwIH/7xE3zx3mNFLx/15krNzaiCC1S7pzFG9UCHpqYRERG50BSoiojIghBNpmnvjxa9/HAiBeQJVCunl1Hd3zFIQ0WYeq8Rk4iIiMw9BaoiIjLvpdIZUhnLmb5Y0euMZlTHl/6GODeNjKoaKYmIiFx4ClRFRGTei6UyAJzpi2KtLWqdyCSlv0PxFLFkesptpDOu46/Gp4qIiFxYClRFRGTey2ZH46kMPcPFZUOzgWrphEDVTVHTVcQUNW09EWLJjManioiIXGAKVEVEZN7LzX4WW/4bGRmjOrHrL1DUONX9Her4KyIicjEoUBURkXkvnhoNVE/3FddQKZtRLc9T+gsUNU71QMcgxsCGpopid1VERERmgQJVERGZ92LJzMjPxXb+jRYq/a0sPqN68OwgrbVlE7KyIiIiMrcUqIqIyLwXHVP6W1ygOlyg9Le+3I1RPVfEGNXTvVFW15cVu5siIiIySxSoiojIvDdmjGp/sWNU83f9LQn6qSwJ0F1EU6aO/hjLq0qmsaciIiIyGxSoiojIvJct/a0qCRSdUY0m0vgMhAMT/9U1VoTpmqL0N5XOcHYwRnO1AlUREZELTYGqiIjMe9nS33WNFUUHqpFEmrJQAGPMhPsaKsJTlv52DcXJWFheXTr9HRYREZHzMiuBqjHmOcaYA8aYw8aY9+e5P2yM+bZ3//3GmDWz8bgiIrI0xEYC1XLODsZJpjNTrOGmpxnfSCmrviI0ZTOldq/EWBlVERGRC++8A1VjjB/4N+C5wFbgNcaYreMWexvQa629BPhn4BPn+7giIrJ0xL1AdX1jBda6saNTiSTSE6amyWqoCE85PU32MZYrUBUREbngZiOjuhM4bK09aq1NAN8CXjxumRcDX/F+/i7wDJOvFktERCSP7BjVdQ3lQHGdfyOJNKUFppVpqAjTH02SSBXOzCqjKiIicvHMxsRwLUBbzu+ngGsLLWOtTRlj+oF64NwsPL7IkheLDnN89730Hfw1pvcYGB/4AljvAmDSSUw6jskk8aUTJIKVDFdvIN2wmcDyrdTWL8NnDPF4HNt/BgZP4xs8QyoRJZbMEE+miCfTJFIZAn4fJUEfYb+PUNBH2Ac2PgixAYgP4E8M4k9FMDaFsRmMTWPIAIakCZPwlZL0l5D0lZCpWM4z3/6xi/sCyryXO0YVRoPIyddJTej4m7W82s2l2jkQo7Uu//QzHf1RSoI+qkuDM9llmQupBHTsgVMPQNcBMAZ8QfAFwOd3v6eTkE5AKu5+DpVB42ZYtgUat0BFo9tWOgVDHdB/GgZOQzIKWLDWXedjMxAfgvggxAfcMS8xCJm0u1jvGiBY6l3K3CVcATd94EK8SiIii8K8msHcGPMO4B0Aq1atush7I0tNd18/h//v37n0+e+iorL6Yu/OiLOnj3Hi/h9jT/4WAOsPYf0h8AUx6Tg1vXtYmzzMZuNOjnqoAiBAGr9N4yeNARIESJogKQKkTJBq2095dwyOusfpsLUYLI304zMFTtKmkLGGYUoYNuXEfaWk8ZMxfqzxkcGHwVJl44RtnLCNEbZxeoeWAUsvUNXxbnpiyTQBn6G1zjU2Ol1ERnU4nqayJP+/uWxwerInUjBQbfempll0BUCZDDz0Jdj6YihvuNh7M2qoC478Ek7cC5kU+EPuEgi54O/MI+6S8r6kKK1zX8plUl6gmHRBZnad7PqxPoj1jz5OWQMEwjDY7gLPmQpVQrjSBaC+IPh8YPwuYAYY7IBkxLtE3b4uwUBVxzoRmanZCFRPA605v6/0bsu3zCljTACoBrrHb8ha+3ng8wA7duyY2ZmyyDRZa/nuQ6fo+emH+T2+y+0D/TzzHR+/OPuSydDd0Ub74UcZ2ncbTZ2/Zl3mOMuAXqpIECRIkqBNEiJFGh/HQxt4aMVrKFn7ZFZdcSP1TSvzbjs84cEsqZ4TDJ16nNjpx7Fd+8ng53TlCjJVLZjqFvzVKyktr6AsHCTsNxjjcxkLTyqdIZLMEEtmKKmsoaKimkq/n8ppPOfy6b5Ii4SOd9MTS2YoCfopCwWoKQvS3j91oBpNpGmqmvDOB6C11gWnbT2Rgut3DsQW5/jUB/8bbn0vnN0Hz//Hi7MP1sLQWTh3AI79Cg7dDu2PuvtKayFU4WVE4y6LioXll8GOt0HrNbByJ1S3FP9Ygx3QtQ/O7oeze11gW90CVS1QvRKqVrjHBO8YZ8Yc60YZCJW7ANWXP1svY+lYJyIzNRuB6i5ggzFmLS4gfTXw2nHL/Bh4E/Ab4OXAL621OljJRXe0a4i//MEeOo89wW3hH5LBsPX0d9h76n1sXVlb1DYyGctf/mAPP93dzur6Mi5ZVsGGZRVcsqyCTcurWF1Xhs838YQnlc6w+3gnw/d9gbKzj1AdOUFz6jQNJkYDkLR+DoYv5bcr/4imq1/Ami3XYHwTh5WP71xWNGMI1K+hpn4NXPGCGW0iAFR5F5G5FE2mKQm6wGBFdSln+opoppRMUVZgjGpzdQl+n6Gtt3Cg2t4f45o1dTPb4flqoB1+8RGX3Xv0Gy7DV1oz94+bSsDDX4GTv4Xuw9B9xJXMgtuXlTvdvlxyMyy/wmUnZ4sxUNXsLutvmr3tiojInDrvQNUbc/pu4OeAH/iitfYJY8xHgAettT8G/hv4mjHmMNCDC2blIjvw8N3Eb/som//0p4TC8ytrcNsTHXzi//Zzyx/dMHJyOlviqTRPnBngF/s6+cKvjhEOGm5b8R0CQ2XEnvoBWm7/c77+3f9myx+/Z8qSP2stH/jR43xrVxvPv6yZoXiKB4/38qNHz4wsUxkOsK2lmstWVrOtpZruoTj3Huqi9Njt/D/7Ja7ydXHGNNEVXsWeuqug/hLKV2xi7fYbubSquGBZZLGLJ9OUBF3wsqKmlFOTBJhZkXjaTU/TfQR+8E547behzAWeAb+PlppSTvbkz8xmMnZxZlT/7/0uU/nyL8J33gyP/A9c9+65fczDd8DP3g/dh6BmFdRvgNZrof4SqF8HLVe7LKqIiEiOWRmjaq29Fbh13G0fzPk5BrxiNh5LZk/vvrt5UmwXbW2HaL3ksou9O2PcuqedI13D7O8YZHtrzXlv76ETPdyyu4OHT/ay98wACW8Oxhdc3szHNh6i+qe/hed+ktIdb2X4nk9xXff3+cEjr+ZlV+UvowUXpP79z/bzrfuP87mt+3hu+S3QUAsb6oiHamlPlHI4WsEDfaXc35nky/ceJ5HOsMa08/Gyr/Mk8zCDVZcw8LzPs2LLTaw472cpsnjFUjkZ1ZoSHjg2YfTIBCPT05x5xDXf6dgD6542cn9rXWnB0t/u4QTJtF1cHX8P/hz2/tBlLi99Kdz/eXjgP+FJv19cGWsmDY9+3W2npMYF/WX17lLRBLWrXSAadOOI6TkKP/8rOHAr1K2H134HNj5rLp+hiIgsIvOqmZJcWJmEyyQMdZ+BeRao7jreC8C+9oFJA9VYMo21uKxJAQOxJK/5wv34DFzeUsNbnrKGK1truXJVDU2hBPzra2D55XDN28Dnp/S6d/CUX36El99yB8/c+joqS/J3/PzXXx7msXtu4d7ab9F89BCUN0IiAslhwsAa73IzQLCczIpVREqaKD9zH8Yfhpv/jsqd7wC/OoqKTMWNUR3NqA7EUgzFU1SE8/8by2Qs0aQ3PU18wN041DlmmdbaMu7Y15ln7Zw5VKsWSaCaGIZb3gsNm+C6P3a3Pemd8L9vhAM/gy1TlP8fvdsFnZ17XDCaScPwOTeGdLyK5VDTCu2PuWZGN/+NC4YD+ccLi4iI5KNAdQmzSZdJiPa2X+Q9GetMX3Sko+e+9oFJl/3z7+7mVG+E77/r+oLL3H2gi0Qqw3ff+WR2jB9v9n9/405eX/31kYyC7+o3kbn7E7wo8VM+fcdO/voFE0eBfueOX7Pu7r/hD8MPYIMr4flfhEtf5sZCJaMQ6YHIOdfAo/c49B7H13ucit4TcNkr4BkfhMrl03thRJawaCJNqZdRzWY52/uibGjK37orlnJdsMtCfjeVCLgurzla68o4N5RgOJ6ifFzAm23W1FxdOmvP4aK66++h/yS85WeuIy7ApudDdSvc/x+FA9XuI3DbX8OBW6B6Fbziy7D1Je5YZ63raBvpdmNf+05A7wl3zOs7AZe/Cp7+V25sqIiIyDQpUF3Kki5jkBw4e5F3ZKwHT7hsanVpcNJA1VrLfUe6OTcU59i5YdY25O8fe8e+TurLQ1y5atwYqPbd7gTt6jfDyh2jt5c34Nv2O7xqzw/Yed9eXrmjlU3LKxmMJbn7YBd9932ZV7R/ChPwkX7qX+C//o/cPH1ZwVLXTbK6BZqvmOnLICI5Yqn0SPa0pWZ0ippCgepwPCdQjWYD1XEZVW9amlO9UTYtH7udjgEvo7oYSn/bd8Nv/h2ueiOsvm70dn8Arnk73PEh6Hgclm8bu97DX4Of/qnLhD7jQ/Ckd0Ew5/UwXgfcULnLsq4aP4W6iIjIzM1iWz1ZaEzKZQwyg/MrUN11rIfykJ/nXdbM/vZBCjWIbu+PcW7IlZ3duid/VjiZznDn/rPctHkZ/tzOu70n4Cd/7Obhu/lDE1fc+buEM1FeE76XP/32o7zhv+/nqo/ezj3f/hSv7/gEpyqvwL57F/6nv39skCoicyKWzBAOZMeoukB1ss6/0UQ2UA2MZlSHOsYs01rrtpNvnGp7f4yg31BfHjrvfb9oMmk37cv33+GaFd38NxOXueqNECiF+z839vb7/xN+/G5YewP84cNww5+NDVJFRETmmALVJcx4k6b7Il0XeU/G2nW8h6tW17KtpYrBeIpTvfm7cu4+5SZwry4NFgxUdx3rYSCW4uatTW6S+8N3wDdeDZ+5ws3Z97x/yN9tsuUqaNnBu8p+yb72Pk73Rfnshsf4RPAL2PU3s/6PbyFcv3q2nrKITCGeTI+MRV9WGcZnmHQu1UgyBYwv/R2bUV3lZVRP5glUO/pjLKssyTu11Lw3cAbu/gd3nPv6y90whJf8+0jH4zHK6uCKV8Pu77gxpwC//mf42Z/D5hfAa74FlU0Xdv9FRERQ6e+S5k+7k7xQ7NxF3pNR/dEkBzoHee62ZrY0u9k597YPjJTo5dp9qo+Az/COp67jkz8/wInuYVbXjy3/vX1fJ+GAjxvjd8K/fhJ6jrimRze8B3a8xU30XsjOd1D1g3fw2OtDVMWOwk8/DhuehXnl15RZELnAosk0JQH33WrA72N5VcnIWPZ8sqW/pSH/aDOlcWNU68pDlIX8eedSbe+PLsyOv7f9Nfzm38CmYd3T4Vl/C5ueNzouNZ9r3wkPfcldUgn41T/AtpfDS/9Dzd5EROSiUaC6hPm9bo2liZ452X40keatX97FippSXrljJTvX1k05L+nDJ3uxFq5ZW8vm5ZUY4xoqPfvSiY2Hdp/qZ9PySl5yZQuf/PkBbtnTzrtuvGTkfmstt+/t5Nlrg4R/8i5Ydim87L9g64uK6z556Uvgtr+i6vb3uiYkG54Nr/qaOleKXASxZHrMnMorako5M0mgmi39LR9T+js2o2qMobW2jLY8c6l29MfY1lI9C3t+AUV6XJC68Tnw7L+FunXFrbdsswtq7/oEZJJw5RvghZ8pbsoaERGROaLS3yUs4GVUK1JzE6j+4JHT/OZoN7fuaedVn/8tT//Hu/i3Ow+PTPuQz4PHewj4DNtbaygLBVhTX563oZK1lt2n+rh8ZTUtNaVsb62ZUP57oHOQU71RXl13CGzGnXhd/oriA81A2DVa6j8JG5+rIFXkIsqdngaguaaU9kmOJZFEntLfxBDEh8Ys11pXxqlxGVVrLR0DsfPPqJ7dD+nk+W1jOg7d5jKpN7yn+CA167p3uyB15+/BCz+rIFVERC46BapLWCDjMqq1mb5Z37a1li/fd4ytzVU89Nc380+vuIKmqhK+8fNfYz61iT0P3Jl3vV3Herm0pdo1QAG2NFeyr31wwnInuiMMxFJcvrIGgOdf1szjpwc42T16wnnHXpc9uSqxC8oaYMWV038i1/8JvORz8MqvKkgVuUis9eZEHZNRLaG9L0Ymk7/ZWjSZW/o7CHjVHOPnUq0r5WRPZEzTtv5oklgyw/LzmZqm9zh87snw4Bdnvo1csQHXBG4y+38Klc0zO9ZdcjP82X547ifAp1MDERG5+PTfaAkLWheolpsY0eGJweD5uO9INwc7h3jL9WsoCwX4natX8u3fezI/ftYgTaaP/b/+wYR14qk0j57q45rVo82Ntiyv4mRPhMHY2KzEY6f6ALghdifc/3mee5krDb4lJ6t6+95OrlpZScnxO2HDM2d28hWugO2vnXx8l4jMqXgqA0A4J1BtqSklkc7QPZzIu86Y6Wnig26+UHBzG+dorS0jkkjTk7OdbKb2vDKq+37iKjmO/3ry5QbOwK3/DxITx8mOcev/g/98KiSG89+fjMHhX8Km58480KxqdlPOiIiIzAMKVJewkBeoAvSePT2r2/7SvceoLw/xwitWjLm9vvM+AKp6n+Dx0/1j7nv8dD+JVIYda+qg7QH49hvYusydKB7oGBtI7znVT0kAWnZ9HG77ACtLElyRU/7bORDjsVP9vHblOYj2uEBVRBakeNIFqrljVJurs1PU5B+nOlr6641RbfDGr49rqJTt/NuW0108OzzhvOZQ3fcTd31qFxSYYguAx74FD3x+dPl8klF3f6wPnvhh/mWO3Q3JYdj0/JnusYiIyLyiQHUJC9s4PaYGgMHuM7O23RPdw/xi/1lee+2qMSeWpJNw7B4ALvcd47/uOTpmvV3HewG4Zk0tPPZN2PdjticfBpgwTnX3qX5e1NiJGTwD6Tg88X2et205e073c7I7wi/2ublhn+57BIwf1t80a89PRC6sWMor4x1X+guFA9WReVSDxo1Nrd/g7phQ+jtxiprzzqgOdrgv26pbXWDc31Z42ZO/cdd7vlN4mUO3uSA0WAYPfTn/MvtvgVClm/dURERkEVCgukQl0xnCJOgLNQMQ7e2YYo3ifeW+E/iN4fVPGjfP6KkHITEIK3fSbLq5b/f+MdNL7DrWw7rGcuorwi4LAdQd/ynVpUH25oxTTWcsj5/p54Whh10QWrsWHv0Gz7vMPZdbH2/n9r0drKoro+7MXdB6bf65UkVkQcgGnbnNlFZkM6oFGioNJ9IE/YZgygtAa1rBH55Q+ruy1m2nLSdQ7eiP4jPQWDHDcen7bwEs3PQB93vbA/mXy6Th5G/BF4Qjvxydx3S8J37gxtk/7X1w6gHofGLcdjJw4Gew4WaNpRcRkUVDgeoSFUmkKSVBtKwFgET/7ASqQ/EU33mwjedf3kxT1bhsxNE7wfjg+j8GYJs5xpd+fQyATMby4Ilerlld57pydj4BvgBm/8+4fHl4TEb1SNcQkUSK7UO/ctmDa94Gp3bRmj7F5Sur+cHDp7n3SDcvWe/DdOxW2a/IApfNqOZWaNSUBSkN+ifJqKZGy34BwlVQ2TQho1oeDtBQERrT+be9P8ayyhIC/hn+i9z/U6i/xM1FGiwb+eJtgs7H3Ryv1/2h69b7xMSx+ySG4eDPYeuL3bQx/hA89JWxy5x+EIbPquxXREQWFQWqS1QknqTUJMhUrwQgPdg5xRrF+e6DbQzGU7z5ujUT7zxyp+tGufapAPxOcxfffOAk/dEkh7uG6I8m2bGmFs484pqQXPO7kBjkBaVPcKBjkLTX3fOxtj42mNNUDp+ALS+Ey17pMquPuazqgc5BEqkMLy73sg4bnz0rz01ELo7YyBjV0X9ZxhjX+be/0BjV9NipacKVULF8whhVgJW1ZWNKfzsGYjTNtOw32gvHfgWbXwD+AKy4Ctruz7/sCTdmn2ve5uZ53vPdicsc/DkkI3DpS6G8Hra8CHZ/a2zzpf23gC+gL+VERGRRUaC6REWj7iTHX1bLAGX4hrvOe5uZjOUrvznB9tYarlw1rtQ21g+nH3KTypdUQf0l3FB+iuFEmm89cJJdx91crtesqRvNPtzwZ1Bax5NjdxNNpjnR7bpd7j7Vz4tCD2Ix7mSwssmdoD32LZ63dRkA1aVB1vbeC1UtsGzreT83Ebl4Rkt/x87tuaKmlNN9+Ut/I8l0ztQ0jGZU83wp11pXRlvPaMDb3h+jeXxFSLEO3gaZlAsoAVp3Qsce1xBpvBP3Qs1qqF4Jl70c2n47cQqaJ34AFU2w+jr3+9VvcsfTvT8aXebArbD6eiitmdk+i4iIzEMKVJeoeMQFfb5QKf2mhmCswNioabj7YBfHzg3zluvXTLzz2D2utG39093vzdup6n2C69bX86V7j3PfkW4aK8OsrvfK5OovgYplsPXFrDx7N6XERuZT3X26nxcEH8K07oRKNy0N218Hg+2s6r+fp25s5OVXLMN37C7Y8CxNtyCywOUr/QU3TrVg1994ysuoesMGshnVoYnDHFbVue2k0i5z29Efm7zjb8fj0HMs/337fgyVK0bnMm3d6QLXM4+MXc5al1Fdfb37fdvvuOvHc7Kq8SHXSGnri8HnPfc1N0DdutGmSucOw7mDsFllvyIisrgoUF2iYlEXqPrD5QwG6ihJ9Jz3No/c9jmeVtE20tRojKN3QrAcVu50v6+4EgZO8wfXVNExEOPWPe1cs6YWAy5QzS637WX4UlFuDjzKvvYBEqkMg2cOszZ1xJX9Zm18DpTWwSNf56tv3clfX97vOn1ueNZ5Py8RubjiSS9QDUzMqHYNxol7gWwuV/obGFv6W7ncZSPHZTdba8tIZSzt/TEGY0mG4qnJO/5+723wpefC0LhKlEQEDv8CtrxgdC7Tlde46/Hlv+cOQqR7NFNauxpanzS2/Pfg/0Eq5sp+s4yBq9/ssq9n98OBW9ztm55XeH9FREQWIAWqS1Q8NgRAIFxGLFxHRer8AtVEMs3ru/+FT/v/haBNTVzgyJ2w5noIhNzvK7YDcF1ZG5uaKrEWdqyug97jMNwFK3e45VZfDxVNvLJkF3vbBzjYOcjT8U74Nr9gdPuBEFz2CjdWK9rrshD+0Mh4WBFZuLJjVEtDYwPVZm+Kms7++IR1osnxY1QrRiswxnX+bR2ZSzVC58AUc6ha645Tg+3w/be7zr1ZR34BqejYY1N5A9Sth7ZxDZVO3Ouus4EquPLfs3tHu/o+8QOobHYBbK4rXus6BT/8Fdh/Kyy/3HU1FhERWUQUqC5RyZgboxosKSdZ0kB1pu+8tnfs9BlKTJLa+CnY9YWxd/adhJ4jbnxq1vLLATDtj/HOG9cBcN0l9W4KG3DlcuDK3ba+mGvTD3HiTCePnerjOf5dJBq2Qd3asY+z/bVuTtXHv+8C1TVPcSenIrKgRZMTp6cBaKlxU8uczlP+W7CZEkzo/LvKC1RP9URz5lAtzb8zw+dclnPlNXD0Lrj7H0bv2/cTNxVWtpw3q3Wny6haO3rbifvc/tStG73t0pe6xnB7vgOxATh0O2x9yWh2Nqui0WVtH/kft12V/YqIyCKkQHWJSsZc6W8oXEamfBnVDJOI529KUoxTbccByATL4e5PQCQnQ3vkTne9PidQLamC+g1w5lFeeuVK7n3/TWxeXuXKfoPl0LhldNlLX0bIJtg2dC+P7t3P1b5DBLe9aOJONF/hOmfe+2lXVqeyX5FFITZJ6S+Qt/OvG6OaU/obqnTNlGBCRrW5ugS/z3CyJ5ITqBbIqPafdNdP+VOX2bz7E67cN5Vwpbqbnue6/eZaeQ1EzkGvN651ZHzqdWPH0Jc3wPqbYM/3XHVIOj627DfX1W/2xt9alf2KiMiipEB1iUplA9XSCnwVrlNub9fpGW/v7BnXqdI+44OuAchdHx+988gvXfla4+axK63YPtJgJJsZ4dQD0HLV2BO91muJlzbxAv9vKTnyf/iwmK15AlVjXFa1zzuRVKAqsiiMTk8zrvS3ugSfgRPdkQnrREZKfwfcXKb+gDsOwYSMasDvo7m6hLbeCB1eoLqsKpx/Z/ra3HV1Kzz/n2DZFvj+78Lub7vxr7lj57Nar3XX2fLfvpMwcHps2W/WZa9wwfCdf+e6lmfHuI635qlQuxaqV8Hyy/IvIyIisoApUF2iUnF3YldSVkao2mUZBs6dmfH2Brwg17/+6e6b/l3/BV0H3fitY3e7st/x3Xebt8PgmdHpIpJRN43D+BMzn4/01pfwNN9jvMz3K3pKVk0MerMu9+ZUrVsP9etn/HxEZP7Ilv6GA2P/ZZUE/ayqK+PQ2cEJ60QSOdPThCvdjaV1br7RPHOprqoro83LqDZUhAiPy96O6D/lrmtaIVQGr/wqpOLwkz9y1SC5Qxyylm1xGd1sQ6Xs/Kn5AtXNz4NAqQtWL33pxLLfLJ8PXvU/8KqvqrO5iIgsSgpUl6h0wpXKhUoqKKtz47YiPRNP3ooV7/PWrVgGN/4FhMrh9r+G9sdcc6P1eU7estM3tD/qrs886qZxyI5PzVF25SsJmTRX+g7Tt+Y5hU/MKpbBTR+AG98/4+ciIvNLPJkmHPDh80383G9oquRg59CY21LpDIlUhrJgYGyg6vO5OUnzzaVaW0Zbb5SO/ihNk82h2t8GoQooqXG/N2yAF30WbMbN5xzMs67P7ypFTj3gfj9xr1s/d4hDVrgSNj3X/Vyo7Ddr+bbR46iIiMgiE5h6EVmMbGJ0HtWKuhYA4v0T5xcsxmAsSSh2jnQwiL+kxgWRN7wH7vgQpBNuoXU3Tlyx+XLAuAB147Pd+FSAlh0Tl225mi5/E43pTqqvetnkO3TDn83oeYjI/BRLpieU/WZtaqrkl/vPEk+lR7KgES8DWx4el1EFF6jmmUu1tc5NdXPs3DCXLJukCVtfmyv7zf2ybNvvgPGNNInLq/VauOcf3dCI7PjUQtnSp/25m0u65erC2xMREVnklFFdojLZeQSDZdQuWwFAemBilqEYBzuHaDS9JEobR0/ern0n1Kxy41ObtrlM53jhSncyls2ontoFtWtcR8vxjOH4utdwKLCJ+g1Pmni/iCxasWSG0gKB6oamCtIZy7FzwyO3RRMuUJ1Q+gtunGq+jKrX+fd4d6Tw1DTgMqr5poK59KWTDzdo3emyrgd+5rqg5yv7zVq2BW76K5X0iojIkqZAdanySn8JlFBWUU3EhjHDXZOvU8CBjkEa6ceXnaMQXPnbMz/ifs6XTc1acaVrqGStC1RXTiz7zbrmdX/Dhg88oJM3kSUmmkxPmJoma2OTC0Jzy38jXqA6Mj1NuGp0hcqmvGNUs4EqTDI1DbhAtXrldHbfyc4Nfe9n3PVkgaqIiIgoUF2yUqMZVYBeXw2B6LkZbepAxwBNvn5CNcvH3rH1JfCCT8OT/6Dwyiu2u5PGMw+760IdLkVkyZqs9HddYzl+n+FQ52hDpeF4CoDS8WNUwc1dGu1x08nkaK0dDVSXFxqjGh9yY+6r82RUp1JaCw2boHOPa7q0/Irpb0NERGQJUaC6RJlUlDQ+8AcBGPTXUZLontG2DnQOstzXj6loGvcgBna8BapWFF65ebu7fuAL7rpVgaqIjBVLZQgXCFTDAT+r68s4mBOoRseMUR0YV/rrHafGTVHTUBEaKS8uPIdqtuPvqhk8C0aPb6uunTjXqoiIiIyhQHWJMqk4CRMeKaONhuooT/ZOezvWWo6091Jt+12TkunKNlR6/HtuSoambdPfhogsarFEmtICpb8AG5dVcihf6W/QB4mhiWNUYUKgaoyhtc6V/BYco9qfnUN1BqW/MDq0QWW/IiIiU1KgukT5U1GSZnRC+0RpA9WZ6QeqXUNxfFEvE1s5g0A1XOmmd0gn3HhVL8MrIpIVSxUu/QXYuLyS493DxLxMasQr/S3zpdyUV+O7/gIM5un865X/FgxU+06665mU/gJccjPUb4DNL5zZ+iIiIkuIAtUlyp+JkfSNBqq2tIEaO0gqmZhkrYkOdAzSaPrcLzPJqMJo+e/KPNPSiMiSF0umKQlMEqg2VZCxcKTLZVWzGdUK443FH5NR9cbS52modOmKKlbWllIWKlCW238KfIHRbUxXdQv84YOwbPPM1hcREVlCFKguUf50nLR/NGtgKpfhM5a+7unNpeoC1X73y0wD1RXb3bUaKYlIHrFkpmDXXxjt/Jst/83Oo1pmI26B3K6/5Y1uztOhiVPUvPumDdzyhzcU3pH+Njfm3lc4aBYREZHZoUB1iQpmYqRzMqrBKhdk9nedmdZ2DnQMsq7EGxuWb67UYmx5kZuDcLJpbERkyYom025O1ALW1JcT8JmRhkrRhNf1N5MNVHMyqj6/C1bzlP6GAj6qyyYZftDXBtUzbKQkIiIi06JAdQmy1hK0cdKB0bkCS2pdg5FIzzQD1c5BNld4J4MzzajWtMIrvgwlVVMuKiJLTyyZJjxJ6W8o4GNtQ/nIXKrDcZdRDaeH3QK5gSq40t08GdUp9Z9yxysRERGZcwpUl6B4KkMJCWxO6W9lvQtUY33Fl/5mMpaDnYOsDg9BSQ0EwlOuIyIyXfFkxjVT+vzT4d7P5F1mY1Mlh856GdVkmpKgD3/Sq/YYH6hWLM87RnVS6SQMnpl5x18RERGZFgWqS1AkkXaBanA0o1rd6E6+0oPFZxlO9kSIJTM0+wdmnk0VEZlEOmNJpDOUBnzQsRtO3Jd3uY1NlZzsiRBNpIkkUq4hUtybW3VCRrUJpnGsA2DgDNjMzDv+ioiIyLQoUF0ETvdFSaQyRS8fSaQoIQGBnIxqVS1xG4ShrqK3c8AbD1ab6Zn5+FQRkUlkp5yp8CfcVDPdR/Iut7GpAmvh8NkhIvE0pUF/TqA6blhBxXIY7oJ0qvgd6T/lrlX6KyIickEoUF3gEqkMz/rU3Xzj/hNFrxNNpCkxCQiWjdxmfD56TQ3+6Lmit3OgYxBjoCzRPfPpGkREJpENVKvwxpv2HssbYG7wOv8e7BwkkkhTHvZDfMDdGaoYu3DlcsC6YLVY/W3uWhlVERGRC0KB6gIXSaQYTqQ5dHao6HWGE2lKieMLjZ3UfiBQSzjeXfR2DnQMsqq2FN/wWZX+isiciHnVIhXZQDWTgv6TE5ZbU19GyO/j4NlBIsk0pdnSX19w4vj5SeZSLagvG6hqjKqIiMiFoEB1gYt62YYzfdGi13Glv0l8ofKx2wrWUp7sKXo7BzoHuWxZAJIRlf6KyJyIJrzSXzs8emP30QnLBfw+1jWWc6hziGgiRVm29DdcCcaMXbjCC1Sn0/m3v81Na5Mztl9ERETmjgLVBS6WdNmG9v5Y0etE4ynKTBxfaOwJVzxcT1W6t6htxFNpjp0b5qpa73GVURWROZAt/S3LDVR78o9T3dBUycHOQYbjacpCOYHqeJXe8SrPXKoF9bcpmyoiInIBKVBd4LIncaenkVGNxdyygXDZmNvTZY3U2n4y6fSU2zhydph0xrKpwntcBaoiMgfiKS9QTecMbyjUUGlZBad6o3QPxykLe6W/4xspwejxajoZ1b42jU8VERG5gBSoLnDZ0t/BWIrBWLKodRJRd8I3PlA1FcsImAz9PWen3MaBTtekZF2Jl+VQoCoicyBbNVKa8QLVqhboPpx32Y3LXfa0cyA+tvR3PH8QyhqKH6Nqrev6W7Nq2vsvIiIiM6NAdYHLZlSh+PLfRMwFl8GSsZ0wA9Uu2Ow/d3rKbezvGCTk97HM1+9uUKAqInMgO0a1JOVNNbPiyoKlvxubRoPS0pDX9TdfoAquoVKxc6lGuiEVVemviIjIBaRAdYGLJ0fnTy22/DcZiwAQLBmbUS2pcQ1GhrrPTLmNgx2DrGssxz/c6bpqltYWu8siIkWLeaW/odQgBEph2RboOwmpxIRlV9WVEQ64f2tuepoCGVVwX64NFTlGtc/rMqzSXxERkQtGgeoCNyaj2ldcRjUVz2ZUxwaqlXUr3Db7p84ynOiOsL6xAobOuo6/Pr2VRGT2ZUt/Q8lBKKmGuvVgM9A3ce5ov8+44xJQlp2eZjYyqv2n3HWNAlUREZELRdHFAhfNCVSLnaImFXcZVRMcG6hWN7a4+6cIVK21tPfHaK4ucc1INDWNiMyR7DEukBxwgWr9Je6OQuNUm1ygWhr0Q3xo8kB1qBMyUzePoz87h6oCVRERkQtFgeoCl802BP2m6EA1k/CWGzcfYFVtI0nrxw5N3kxpIJoimkyzfCRQ1fhUEZkb8WygmhiA0hqoX+/uKND5d4M3TrU8kHHjSvN1/QXXlMmmYWDqoQ70tUGwXEMcRERELiAFqgtctvR3dX05Z/qnGagGxgaqPr+fPlOFP9I16frtA2795upSVzqnQFVE5kj2GOdLeBnVsjooqSnYUGmTF6hW+ePuhkIZ1WVb3PXZfVPvRH+bK/s1Zjq7LiIiIudBgeoCly2LW99Yzpkix6japCv9JVgy4b4Bfy3hePek62e7Cy+vDELknAJVEZkzsWQGv89gYv0uUAWXVS2QUd2xppada+u4rN779zZloLp36p3ob1PHXxERkQtMgeoCF0+mMQbWNJTT0R8jk7FTrmOT+Ut/AYaDdZQleyZdv8MLVFtCw66picaoisgciSbTlAR8YwPVuvXQczTv8jVlIf73957MyrKUu6FQoFpaC5UrigtU+9o0PlVEROQCU6C6wMVSGcIBHy01pSTSGc4Nx6deKZm/9BcgHq6nMtU76ert/TF8BurpczcooyoicyTmBaqMyahe4rKcyUmGO8S9eVcLBaoATVunDlQTwxDtUcdfERGRCyxwsXdAzk8smaYk6GdFtQs6z/TFWFY5saQ3ly/llQjnyaimypqo6+slk07j8/vzrt/RH6WxMkww4jVdqlw+8ycgIjKJWDJDbTAJ8fTY0l+AnmMu2MxnJFAt0EwJXPnvsXsgnQJ/gX+H2alplFEVEZELbCCW5FDnINa6KdgCPh9+n8Hng2TKkkinSaQsyXQGnzE0VoZprAxTUxrE55vYVyGTsUSSaYbjKQZjKYbiKYZiKfw+Q0U4QHnYT0U4QFk4QDyZZshbbiCWZDieJpXOkLaWdMZdMhYCPuPtmyHg9xHwGa6/pIFQ4PzzoQpUF7hoIk1p0E9zjQtO2/uibG+tmXQdkypc+uurXUWoPU1n+3GaVq7Pu357f4zlVSUwdNzdoNJfEZkjsWSa+kAU4uSU/q5z1z1HJglUB9z1ZBnVZVshHXdlxI0b8y/Tp6lpREQWqv5okspwIG/QdjElUhn2nO4jmsgQCvgIBXwE/W4fnzgzwCMne3noRC+Hzg5hpx7VN0HQb2ioCFMa9BNLpol6l+xsIXPtsQ89S4GquNLfkqCflhoXdJ4uYooafzpGBh8+f2jCfaXL1sFe6D51qGCg2jkQY21DuZuaBqBcgaqIzI1YMk293zuujc+oFmioBBRX+rvMC3LP7i0cqGbnUFXpr4jIghFLpvm3Ow/zH3cf4Y1PXsNfv6DAl5oX0Om+KHcdOMvdB7q49/A5hhOF5/GuKglw1epaXnD5Ci5rqSbgN6QylnTakspYMtYS8vsIegFuOOAjlbacG0pwdjBG12CcrsE40aRLaJWG/JQG/YSDfirCfsrDASrCASpLApSHAqQzlqF4iuFEiqF4mkg8RTjgo7IkSGVJgIqSAJXhIAG/y576fQa/MfiM8TKsGZJpl2VNZSwV4dkJMRWoLnCxZJpwwEd1aZDSoH+kI+9k/OkYqUCYUJ6pFmpbLgFguONwwfXb+2Nct74Bhs66srpQ2cyfgIjIJGKpNMvHB6ol1VDWUHCKGqC4QLVxExifC1QvfUn+ZfrbwPihQkMcREQWgvsOn+Ovfvg4x84Ns6a+jC/de4yXX72SLc2TDAUZ51DnIF/5zXGaKkvY0FTBJcsqWF1fTtA/dZawZzjBvvYBjp4b5ljXMEfPDXGka4i2Hve/rKWmlBdf2cJTNzRSVx4ikcqMlPCmM5ZNyytY11Ax77LAF4MC1QUulkxTGvJjjGFFTQlnpsioZjKWQCZOyl/CxHwqLGvdQMYaUt3H866frVVfXl0CnR1qpCQicyqWzFDrGxeogmuoNGVG1UCovPAywVJXRjxZQ6W+NqhqKTyGVURknshkLN9+sI2XXdVCOJC/z8jFEkmk+JdfHuZdN66nsiQ4J4/RPRTnY7fu4/sPn2Z1fRn/87Zr2dZSxU3/dDcf/NHj/O/vPRlTxHzYx84N85ov3M9ANEkiPVoqG/AZ1jWWs62lmstaqrl8ZTVbm6uxWO4/1sN9h8/x68Pd7GsfGFmnNOhnbUM5l6+s4U1PXsONmxpZ31hR1H6IAtUFz3XEdAejFTWlUwaq0WSaUpMg7QvnvT9cUkanqSMwcDLv/dmpaZqrS+DIWQWqIjKnook0NQFv7ueSmtE76tfD4V8UXjE+6LKpU50MLNsCZ/cVvv/MI7Bsc9H7KyJysew+3c9ffH8PtWUhnrNtflWB3LHvLJ+76wibmip5yZUt5729TMZy9Nwwj5zs5ZG2Ph4+0cvBzkF8xvAHT1/PH960gZKgOz/+82dv4v3f38MPHz3NS6+cfE7s031RXv9f95Oxllv/+Ck0V5dypGuIw2fdZX/HIPccOsf3Hz4NgM+4JkfJtCvFvXp1Lf/v2Zu4srWGdY0VNFWFFZSeBwWqC1wsmaGhwv0ZV1SXsr9jcNLlI4k0JSTI5JmaJqs72Ex55HTe+7KBqmum1AnNV8xwz0VEphZLpakaCVRzMqp162Do6xAfgnDFxBWzgepUlm2F/be4qW7GN5jrPwXdh2DHW2b+BERELpChmJs/umtw6mFgF9quYz0A7GsfmJVA9X3f2813HnJd2StLAmxvreFZly7nhZc3s6Fp7LH/lTta+eauNv7u1v3cvKWpYEa3azDOG/7LZVK/+Y4ncckyt53LV9Zw+cqaMct2DsTYfaqfPaf7SaYzXLe+nh2r6ygNza9M9kKnQHWBy05PAy6j2jUYJ55KFyz5iCbSlBAn4y88hc1w2UpW9z+Q9772fpexba4udWNUlVEVkTkUT2aoLBl2v+RONTMyRc1RaL48z4oDxQeqNgNdB2DF9rH3Hb3LXa+7cZp7LSJy4UUSLlA9N5S4yHsy0a7jLlDdm1MWm89vjnTzvw+28Y+vuAJ/gTGaQ/EUP3r0DM+/rJk/feaGKcdz+nyGj7zoUl7y7/fy6TsO5W2s1B9J8sYvPkB7f4yvvW0n21qq82xpVFNVCc/cWsIzt+o8eC6df99guaiy3bwAVnhT1HRM0lBpOJGihAQ2z9Q0WanqVTTYXuKxyIT7stteVpKCxCBU6gMqInMnmkxTyTAEyyCQM7K+LhuoFhinOp2MKuQfp3r0LihvHF1GRGQeiyZdF9lzQ/GLvCdj9UeTHOgcxBjY1z555d/3Hj7FDx45zUMnegsuc8/BLhLpDG948mouWVZZVNOhK1prePU1rXz5vuMcyKk+zGQsD5/s5c1ffoAjZ4f4/BuvZseauuKfnMwpBaoLXCyZIZyTUQU401c4UI0k3BhVAoUzqoG6NfiM5WzboQn3tQ/EqC8PURI/525QRlVE5lAsmabcDo8t+4XRuVS7C3QoLzZQrVsH/vDEQNVaF6iuu3Hqca4iIvNAJDE/A9WHT/ZiLTxj8zLODblpUwrZfaoPgFv3tBdc5va9nVSXBtmxunZa+/H/nr2ZypIAH/zR49yxt5P3fXc3O//uF7zs3+/jiTMDfPY1V3LDhsZpbVPm1nkFqsaYOmPM7caYQ971hHeMMWa7MeY3xpgnjDG7jTGvOp/HlLHiyTQlQfdnHA1UCzdUinpjVM0kU8pUNLspanpPTQxUO/pjruPv0FlvYc2hKiJzw1rrAtVMnkA1XAGVzdB9NP/KxQaq/oCbQ3V8Q6Wze2G4S2W/IrJgDMfnZ+nvg8d7CPgMr9m5CmBMV9xcw/EUh88OAfCzx9vJZOyEZVLpDL88cJabNi8jUMRUMbnqykO891mbuP9YD2//6oPcuqedJ62r4zOv3s6uv7x53jWgkvMfo/p+4BfW2o8bY97v/f6+cctEgDdaaw8ZY1YADxljfm6t7TvPxxZco5Fs6W9ztcuSZseR5jOcSNFMAjNJ6W/9SjfxfbRr4glge3+MFdUlMHTG3aCMqojMkWTakrFQmhmC8jzjherWn3/pL7jS3mP3jL0tOz517dOK3l8RkYspOk8zqruO9XJpSzVXrXL5rH3tAzx148TM5RNnBshYePH2Ffzo0TM8dLKXa8aV4T50ope+SHLGY0OzwfKa+nJ2rq0jFFBx6Xx2vn+dFwNf8X7+CvCS8QtYaw9aaw95P58BzgLKq8+CVDpDMm1HmimVBP3Ul4c4PUnpbzSRpsQk8IcKB6oNy1cRt0Fsz/EJ93X0R11GdbDT3VChb59EZG5kx1uVpAcnZlQB6tcVnks1MTS2+dJklm2FwTMQzRkTdfQuN1drTev0dlpE5CKJZMeoTlJae77u3H+Wnzx2hpj3WFOJp9I8eqqPa1bXUlseYnlVScGMarbs909u3kgo4Mtb/nv73k5Cfl/eQLcYfp/h9U9azVM2NChIXQDO9y/UZK3Nvos6gEm/3jDG7ARCQN4zC2PMO4wxDxpjHuzq6jrPXVv8Yik3CXG29Bemnks1Oz2NL1xecBmf389ZXyOhwbaxj5dM0xtJusztUCcYP5RpwLnITOh4N7X4SKA6lD9QrVsPkXMQ7Rt7eyYz/YwqjJb/phJw/F6V/YrMAh3rLpxsRnU4kR75eTb1Dif4/a8/xB9+8xF2fuwOPvijx3n8dD/WTizRzXr8dD+JVGakQdGW5sqCDZV2n+qnubqEtQ3lPG1jIz/b0zGm/Nday+37Onny+noqwpq4ZCmYMlA1xtxhjHk8z+XFuctZ9y4t+E41xjQDXwPeYq3N5FvGWvt5a+0Oa+2OxkYlXaeS/TYrm1EFV/47WelvJJGilASBSTKqAL3hFqpiY+dS7Rzw5lCtLnWBankj+DRflMhM6Hg3tVjS/asIJQtlVN14+gnlv8lhwE4jUN3irrMNlU4/6LahQFXkvOlYd+Fkx6jC3JT/fmtXG7Fkho+/7DJu2ryMb+9q4wX/8mue+5l7eLStL+86u467SpUda1zZ79YVVRzpGiKemhhI7z7Vx+Ur3bH++Zc10zEQ45G20UqXw2eHONEd4WZNCbNkTBmoWmtvttZuy3P5EdDpBaDZQPRsvm0YY6qAW4C/stb+djafwFKW/bYsN1B1GdVJuv7G3fQ0gZLCGVWAaHkLjemOMbe1e1PTNGebKWlqGhGZQ6701xJMFQpUvSlqxjdUinvf1hcbqFavdGXC2Yzq0bvA+GDNDTPZbRGRiyKSU44724FqKp3ha785zpPX1fPqnav49Kuv5IG/upm/fck2eoYTfOhHj+fNrD54vId1jeU0VIQB2NJcRSpjOdQ5NGa5/kiS490RLl9ZA8BNW5YR8vu4Zffouejt+9yws5u3qJHnUnG+pb8/Bt7k/fwm4EfjFzDGhIAfAF+11n73PB9PcmS/jcoNVFtqShmKpxiIJfOvE4/iM3bSMaoAtmY11QzT33tu5LbsHKrLq0ug/5TGp4rInIol05QRx2fTBUp/14E/BO2Pjr19uoGqMS6r2ullVI/eBSuugtKaGe65iMiFF02k8Xtzis5259/b9nZypj/GW65fM3JbdWmQ1z9pNX/4jA08dqp/JHualclYdh3v5ZrVo8PEtjS73gHjx6nuOd0PMJJRrSoJ8tSNDWO6/96xt5PLWqpprp78HFYWj/MNVD8OPNMYcwi42fsdY8wOY8x/ecu8Engq8GZjzKPeZft5Pq4wWhZXkjMYvLnGdf4tNE41FRt2PwQLT08DEGp0cxR2nTwwcls2o7o8nISufbBi+4z2W0SkGLFkmiq8Y1a+QDUQhpXXwPFxHXtHAtUimymBG6d6di/EBuDUgyr7FZEFZzieYoV3HjjbGdUv3XuM1rpSnrFlYjXdy69aSV15iM//amx1y+GuIfqjyZGyX3DddkuCvgnjVB/zGild3lIzctvzLmumvT/GI219dA3GeaStj5vzPL4sXucVqFpru621z7DWbvBKhHu82x+01r7d+/l/rLVBa+32nMujs7DvS152jGppaGzpLxQOVJPxiPshUDLptqu8uVQHOw6P3NbRH6WqJEB516NgM9C6c6a7LiIypVgqQ5Xxjln5AlWAtU+F9t1jO/bGvW/qi82oggtUY32w5ztg0wpURWTBiSbTtNa6RMRsdv59/LTLlr7pyWtGMra5SkN+3vCk1dyxr5MjXaMlvbuO9wCMmWLG7zNsWl41IaO6+1Qfa+rLqC4Ljtx289YmQn4fP9vTzi/3d2ItM56WRhYm9WVewKJ5mim1jASq+cepZuJeADtFRrWxdRMAsa5jI7e198dcuUXb/YBxmQwRkTkSTUyRUQVvHKl1XXqzplv6C6MNle7/DwiU6os4EVlwIok0NWVBqkoCs5pR/dK9xykL+XnFjsLTdb3hyasJB3z81z2jWdUHj/fSUBFmdf3Yc86tzZXs6xgYM6Z1z6n+kfGpWVUlQW7Y0MDPHu/g9r2dtNSUsqV5Gsd1WfAUqC5go6W/o4FqQ0WYgM8UzKimE9nS38kzqtV1jQxQjq/vxMhtHQMxmqpLXKDadGnhE0cRkVkQT6Wnzqiu3OECy9zy3xkFqt4UNecOwurrXFmxiMgCEk2kKQ0GaKgMz9oY1a7BOD957Ay/c9VKqkuDBZdrqAjzO1ev5HsPn6bLy+buOt7DzrW1GDM2C7uluYq+SJIObzaJrsE4Z/pjI+NTcz3vsmZO90X5xf6z3Lxl2YRtyeKmQHUBG52eZvTP6PcZlleXFAxUM4niMqoAZ/3LKRkanUu1vT/GisogtO2C1mvPY89FRKbmxqhmA9Wa/AsFwrDqWjh2noFqeT1UeCVlKvsVkQVoOJGiPOynoTxM1yxlVL/5wEkS6QxvzmmiVMjbnrKWpNcduL0/yqneKDtyGillZRsq7T3jyn93Z8enjsuogiv/DfqNV/arJp5LjQLVBSxf6S/AiupSzvTnL/21yeLGqAIMlKygJtEOQCKV4dxQnEuDpyExqEBVROZcLJmhykxR+guu/PfsEzDsdSnPBqqhaZaIZbOqClRFZAGKJNKUhvw0VIZmpfQ3kcrwtd+e4GkbG1nfWDHl8usbK7h5SxNf/e0J7jnojse541OzNi93x+bsONXdp/rxGbh0xcQGeNWlQZ66oZHKkgA7107clixuClQXsHihQLWmcEbVJovPqCYqVrI83UkmnebsYAxrYUvSm75hlQJVEZlb0dyM6mQdfNc+zV1ny3/jA+4Y5w9M7wHXXO+mvGnaNv2dFRG5iNIZSyKVoSwYoKEiPCvNlG7d007XYLyobGrW7z11HX2RJP/w8/2Uhfx5x5RWlgRprSsd6fy7+1QflyyroDyc/5j9sZdexjd/90mEAgpblhr9xRewkTGqwbF/xhU1pXQOxEhnJk687BsJVKfOqJq6tYRNku7OtpE5VFuH9rj5U2tWn+fei4hMLpZ0Y1RtsAwCocILrtgOoQo49iv3e3zQ/T5dN7wX/uAB8Olfo4gsLJFECoCykJ+GijADsRSJVOa8tvn9R06zur6Mp21oLHqdq1fXcuWqGs4NJbhqVS0Bf/7j6Rav86+1lt15GinlWl5dwrYW9UVZivTfeAGLFcioNteUkkzb/GUfaa8kODj1ZMkly9xcqt1tB0cGvNf2POKyqRrMLiJzLJbMUOuLYKZq3OYPwqonj45TjQ9Ob3xqljFuWyIiC0wk4c4Jy8IuUAXoHj6/rOreMwNcs6YOX54paQoxxvCOG9z5Y+78qeNtaa7iWPcwR7qG6B5OcEWeRkoiClQXsGgyTcBnCI77tqrFm+z5dJ7yX1/KC1QDUweqNSs2AG4u1Y7+GMvoJTTYpvGpInJBxJJpanyR4jqMr30qdB+CgfaZB6oiIgvUSKAa8tNQ4SpQzg3OvPNv91Ccc0PxkfGk0/GsS5fzgedv4bXXriq4zJbmKqyF7zx0CoDLJsmoytKlQHUBiyUzE7Kp4Ep/AU71jg1UU+kMwYz37VoRGdWmVS5QTXUfp70/xvWhQ+6O1iedx16LiBQnlkxTbYoNVG9w18fvUaAqIktOtvQ3Oz0NcF4NlQ50uvGjG5umfyz1+wxvv2EdyyoLDzPb6nX+/d5Dpwj6jeZHlbwUqC5gsVR6wvhUgDX15fgMHD47NOb2SDJNCcUHqiWl5ZyljsDASTr6Y1wfPuIysc2Xz8r+i4hMJjtGtahAdfnlbrljv/IC1UmaL4mILDJRL6NaHvbT6JX+ns8UNQc6XKA6k4xqMVbWllIRDnBuKMHm5VWEAxMTLyIKVBewWCLtMqr7bx2dlgE3ZnV1fTmHvG/DsiLxNCUmgcWAf5LGJDm6g8spj5yivT/KlRyAlqs0hktELohYMuO6/hYTqPr8sPopXqA6oIyqiCwpwzmlv/XZ0t/zCFQPdg5SWxak0cvOzjafz4wEwZdrfKoUoEB1AYul0tQEkvCt18JvPzfmvg3LKjg4PlBNpCglQdpfUnQzpKGyldQl2unt62dN8ojGp4rIBRNNpqmww1BSU9wKa2+AvhMwcEaBqogsKdGc0t+yUICykP+8xqju7xhkY1MlZg6bZ27xyn8VqEohClQXsFgyQ10gClg4u3fMfRubKjneHSGeSo/cFkmkKSFBxj/11DRZqapVLLPdtA7vxk8aVml8qohcGLFEinI7VFxGFVxDJYBMSoGqiCwpuc2UADeX6gwzqtZaDnYMzlnZb9ZlXoB65arC3YFlaZvmbOgyn8SSaRp83kGo84kx921cXkk6YznaNTzyjVU06QWqRXT8zfLXrcHXZnmBuc/dsPKaWdl3EZEppSL4yRQfqDZugbJ6iHQrUBWRJWU4Z3oagIaK0IynpznVG2U4kWbjHAeqL72yhdV1ZTNq2CRLgzKqC1g0mabW700303cC4qPNkzY2ucnuc8t/h+MpSk0CgsVnVCuWXwLAc/0PMFS1HsrqZmHPRUSmFogPuB+KDVR9PljzFPezAlURWUKypb9lIZeDaqgIz7j0d64bKWUF/T6uXVc/p48hC5sC1QUslsxQ5YuN3tC1f+THtQ3l+H2GQ52jwWs0kSZMAoJlRT9G3Uo3RU2liZJoVjZVRC6cUKrf/VBsoAqj5b/q+isiS0i29LfUm7awoXLmpb/nMzWNyGxSoLqAxZNpqkzOXKk541TDAT9r6svGZFQjiTSlxKeVUW1sXkPCuoNeaO1157/TIiJFCiW949d0AtUNz4LyRli2eW52SkRkHoom0oQDPvw+1/yooSJMTyRBKp2Z9rYOdAzSUlNKZYlmeZCLS4HqAhZNpqkyORnVs/vG3L+xqZJDOXOpRhIpSkwS3zQyqv5AgLO+ZQCUX3L9+e2wiMg0hFPe8Ws6gWrNKvh/h6H5irnZKRGReWg4kaI8PNp6prEihLXQE5l++e/BzkE2zXHZr0gxFKguYLFkmopsRrV2zYSGShuaKjnRPUws6cpBshlVX6j4QBWgJ7yCPqow9etnY7dFRIoSTs8goyoisgRFEumRsl9wGVVg2uNUk+kMR7qGFKjKvKCuvwtYLJmhnIj7pfVaOHLnmPs3NlWQsXCka4hLV1SPTE/jD08vUC151gdpGzhHzRzOpSUikiuTsZRlhsFP8fOoiogsUdFEemRqGoD6bKA6zXGqR7uGSaYtmzQ+VeYBZVQXKGstsVSachuBQIkrcxs+C8PnRpbJHmSy41SjyTSlJoEJFj89DcDGq27kshtfPns7LyIyhXgqQxXD7pcSNUYSEZlMJJGmLKf0t6EiBEw/UM02UlJGVeYDBaoLVDyVwVootVE3DcOyLe6OnIZKaxrKCfoNB73Ov256miRMM1AVEbnQ3Bj8CEl/KfjV0ENEZDKRRIqy3NLfypllVA90DOD3GdY1ls/q/onMhALVBSqedF3cSmwEQhWw7FJ3R+dooBr0+1jbUM6hbEY1kaaEuMvAiojMY7FkmioiJIP6Vl9EZCqRcaW/leEAoYCP7qHpjVE90DHEuoZywgH/1AuLzDEFqgtULOUaJJWkh11GtWIZlNaNyaiCa6iUzahG4qlpz6MqInIxxJJpqswwqaDKfkVEphJNpCnNCVSNMTRWhOmadunvgMp+Zd5QoLpAZTv5hjMRN7G9MbBs64RAdeOyStp6I0QTaRKJKD7stOZRFRG5GGLJDFVESIcUqIqITGU4kaI8NLZHakNFiHPTyKgOxVO09UTVSEnmDQWqC1TUC1RDKS+jCtC01c2lau3IchubKrAWDp8dIh33OgQroyoi81zUy6hmwgpURWRp+btb9/Hfvz42rXUi4zKq4KaoOTdYfEb1kBopyTyjQHWBinljVEOpodFAddkWSAxBf9vIchu9g82BzkEyCS9Q1RhVEZnn4t4Y1UxYc6iKyNJyx95Ofv54x7TWGT89DXiB6jRKfw90uEB183J9QSjzgwLVBSpb+hvIzajmaai0uq6MkN/Hoc5BMsmYu1Fdf0VknoulXNdfShSoisjSEkumOd0XLXr5RCpDKmMpD48t/a2vCNE9nCCTsQXWHOtA5yBlIT8ra3WeKPODAtUFKlv660/mZlQ3u+uccaoBv491jeUc7BzEJrw5CRWoisg8F42nqWIYX2nNxd4VEZELKppM0zEQI11kgBlJpAAoDU7MqKYzlr5osqjtHOgYZENTJT6fmd4Oi8wRBaoLVDyZJkQSXyYxGqiWVEN168SGStnOv9mMakCBqojMb6nYIH5j8ZUqoyoiS0ssmSGdsXQVOb40knDJiwmlv9OcS/VAxyCbmiqmsacic0uB6gIVS2aowCsLyW02smyLa6iUY2NTBaf7omSS3vLKqIrIPJeJ9gHgL6u5qPshInIhWWtHpiAstvw3G6hObKYUAiiqodK5oTjdwwk2aXyqzCMKVBeoWDJNhckGqjnd2ZZtga4DkB4t89jgtRkvwTtQKVAVkXnOxvoB8JfVXuQ9ERG5cOKpzMjkDWeKDFSjXqA6fnqaxgovozo89RQ1o42U1PFX5g8FqgtUNJmmknyB6qWQSUL3kZGbNo4Eql7wqkBVROa7qAtUg+U1F3c/REQuoLg3qwNAe39xgeqwN0Y1X9dfKC6jmg1UN2oOVZlHFKguUGNLf8dlVAHOPjFy06q6MsIBH6XZjKqmpxGRec7Es4GqMqoisnRky34BzvTFilonWqD0t7o0SMBnihqjerhriNqyII3euFaR+UCB6gLlSn+9eVFzA9WGjWD8Y8ap+n2GS5ZVUGK80o9g2QXcUxGR6fN5garR9DQisoRkpx+E6Y9RHT89jc9nqK8IFRWotvdFadG0NDLPKFBdoGLJNDV+78CTG6gGS6B+/Zi5VMGVcpSSGF1GRGQe8ycG3A8lNRd1P0RELqRoTqA63dLf8dPTANSXhzk3NPUY1fb+GMurFKjK/KJAdYGKJdPU5gtUAZZtnTBFzYamCkpQRlVEFoZAwo2XokQdKEVk6Yh5Y1Sbq0umXfo7fowquClqismodgzEaK5WIkPmFwWqC1QsmaHa7x3A8gWqvcchMTxy0/bWGkpMHIsBf+jC7aiIyAwEUwNEKQF/8GLviojIBZMt/V3bUE7PcGJMKXAho/OoBibc11ARmrKZUjSRpi+SZLkCVZlnFKguULFUmhpfDIxvYoa0aStgoWv/yE3XrW/gLTuXY4JlYMyF3VkRkWkKJQcZNuUXezdERC6obOnv+sYKoLgpaqKJFMZASXDiaX1jhSv9tdk5b/LoGHCJD2VUZb5RoLpARRNpqkzUZVPHB55N29z1mUfG3FzpS2p8qogsCOH0EBFfxcXeDRGRCyruBarrGt0XdcWU/w4n0pQF/Zg8iYiGijCJdIbBeKrg+tmxsMqoynwzsUZAFoRYKkOFiUE4z/it2jVQuQKO/xquefvo7amYxqeKLGC9Xe2c3HPPxd6NC6IufppoQIGqiCwt2TGqaxu8QLWIhkqRRJrSPGW/AA2VbrhX12CcqpL8Qyk6+rMZVTVTkmnIZAALvoljo2eLAtUFKpZMU0lk4vhUcBnWtTfAkV+CtaMZ12REc6iKLGCnD+ziil/97sXejQvmofDTL/YuiIhcULljVI0pvvQ3XyMlgBVe8Hm6NzpSTjxeuxeoLq/SOeK8kBh2VZFt90PbLjj7BFhcQOgLuN4NxgfpBKTi7jqdAH8YGjfBsi3u0rjFNSTsPwUDp6H/NAycctu3FrDedT7WLRcbgPgAxAfdJZ0Em4ZMTobeF4RQmUuGZS9v/imU1pz3S6FAdYGKJdOUZ0t/81nzFNj9beg6AMs2u9uSMQjq2zKRhWr1ZU/hYNmPLvZuXDCbN2y/2LsgInJBZceoVpUEaagIFxWoRhLpgoFqa52rpGvrjRRcv6M/RnVpkNIC21iwUnH44e/D9tfCJTdf7L1xor1w9C44fAcc+xUkoy7ADIRGm52eO+SCQYD6S2DlThecZlI5l8zoOtlLYtj1p3nwS5DK974xUNGUM2zQjF7nEyp3y1a3uArOcBX4A2D8Lmg2frd+MupdIt4lCoHwrLxcClQXqFgyTbmNQLg+/wJrbnDXx+/JCVQjClRFFrDK6joqr7rxYu+GiIjMkWzpb0nQz4qa0pFs52QmC1SbqkoI+X2c7JkkUF2sU9Pc+1l4/Hsu8Fv/jAvfTDTSAz1HofswnDvohuSd2gU2AyXVsPZpUFY/NjOaScPm50PrtbDyGiirm/7jZtLQdwLO7nfn/lUroKoFKptdcLuAKFBdoGLJDKW2QOkvuHGq1a3u25qdXqlgKqbSXxEREZF5Klv6Gw74WFFdwoHOwSnXiSRSo1PTRHrGBDd+n6GltpRTPYUzsx39scXXSKn7CPzqky4469gNJ38Dq6+b+8ftPQG/+BuXNY10j95u/NB8OdzwXpfdbbnaZSfngs8PdevcZYFToLpAxZLpyQNVY1xW9dDPXXmAz+e+VSmdwTczIiIiIjLnYqk04YAPn8+woqaUOw+cxVqbt6NvViSRpqEi7IKzf90Bb/k/WHXtyP0ra0snLf1t74+xrSVPc86Fylr46Z+68tO33ApfuAl++7m5DVQTEbj3M3Dvp9340W2/48aL1l/iLjWrF1w2cz5QoLpARZNpSnyR/F1/s9Y8BR77BnTtg6ZLvTGqi+wbMxEREZFFIpZIUxJ0ZbwrakqJJTP0RZLUlhcOckZKf/tPubLSrv1jAtVVdWXcsqc977qJVIZzQ3GWVy2ioWG7/xeO3Q3P/yeXVbzqTXDfZ6HvJNSsmnr9wQ74xUdd2XC4wpXnltW7THX5Mqhd7QLP2jXu56N3w20fgP422PZyeOZH3LhOOW8KVBeoZDJFKDhJMyVwnX8Bjt3jAlVNTyMiIiIyb8WSGUqCPgBWeOW4p/uiUwaqpaGA68oKLtDK0VpXRl8kyWAsSeW4KWo6B7JT0yySREakB37+F25859Vvdbft/F2471/ggS/Asz5aeN1kFH7zr3DPP0MmCZe/ynXZjXS77Z477M6pY30T1226DF76n7Dm+jl5WkuVAtUFKJ2xBNMRCAKhSeYZrFnlvvE5fg886Z2ankZERERkHoulxmZUwU1Rs62luuA6I9PTZAPVoXGBaq3X+bcnytYVYwPVDi9QXTRjVG//IMT64YWfccPeAKpXwpYXwsNfgRvf77rZ5rIWnvg+3P4hlxXd8kKXFS00xjPW78ai9p2A3uNQ1gCXv3JO5xNdqhSoLkCxZJoKvEHxk2VUwY1T3f9TN05V09OIiIiIzFvRRJrScYHqZJ1/rbVEkmnKcwPVwc4xy6zKmaJm64qxQ8ay214UGdXj98IjX4Pr/8RVEuZ60u/D3h/CY9+Ca942eru18H/vh/v/A5ZfBi/53GhFYiEl1a4xUvPls/0MZBzfxd4Bmb5YMk2FKTJQXXuDK1HofFzT04iIiIjMY7FUhrAXqNaXhwj5fZPOpRpLZrAWr/R3wN04PqNa58792vJMUdPR77a9oDOqPUfhjg/Dt1/vqgmf9r6Jy7ReC83b4f7/dMEpuGlcfvJHLki99vfhHXdPHaTKBaWM6gIUS2WoxDvYTNZMCUbnUz18B2AVqIqIiIjMU7FkmpKAyyP5fIbmmhLOTJJRjSRSAK70dzj/GNXq0iCV4UDeQLW9P0Z5yD9h7Oq8l0rAgVvgoS+7qWCMHzY9F278Cwjl6cdijMuq/uD34Mgv3RymP3wn7PmOmzLmpg9c+HlWZUoKVBegaWVUq1tcjf2h293vAQWqIiIiIvNRPJke0zhpRXXppBnVSMLNu1oW8kNPdoxq5+jUhIAxhta6Mtp6J25nwc6h+v3fdaW81a3w9A/Ala+DqhWTr3PpS+G2v3aNlR76Euz7CTzjg3DDey7ILsv0KVBdgKKJaYxRBTdNzSNfdz8royoiIiIyL0WTaZoDo015mmtK+M2R7kmXByjL7fqbSUG0B8obRpZrrSvlSNfwhPXb+2M0Vy+wc8Non+u/suOt8Lx/LL6JUSDsxqfe9ffu9+d8wjUblXlLY1QXoHhqGhlVgDVPBesOZApURUREROan3OlpAFpqSukciJFKZ/IuPxzPKf3NBqowcYqa2jJO9Uaw2fGZns6BWcioPvxV6Dp4ftuYjsN3uGD88ldPv9PujrfBiivhRf+iIHUBUKC6AMWSGSqnm1HNUqAqIiIiMi/FkqPT0wA0V5eSsdA5GM+7fNQr/S3NBqp+r2x4XEOlVfVlxJIZuoZGt5NKZzg7GD+/jr99J+HHfwj3fmbm28jVcxR2/ffky+y/BcobYeWO6W+/ohHecRdc9cYZ7Z5cWApUF6BpTU8DUNUM9Ze4nzVGVURERGReio4LVFfUuCCy0DjV7BjV8mzX3+zcn3kyqjC28++5oQTpjD2/jOq+n7rrUw9MvlzPMfj05dD5xOTL3fVxuOXP4Mwj+e9PxV3flY3P0bylS4AC1QUo6jVTygTKiv+QZrv/KqMqIiIiMi/Fk5kxgWqLN5dqoUB12Ov6O5JRzSYmxgeqI1PUjG6n3Zua5rwyqvu9QPXcQYj0FF7u0G3Qd8KVCReSjMH+W93PD30l/zLH74HEIGx+wcz2VxYUBaoLUCyZoYIomWKyqVnrn+6uS2vnZqdEREREZMbSGUsiPXaMavNIoJp/ippobtffxBBULIOSatf5N8fKPBnVDm/am+VVM0xiDHXBiftgtTfE7NSDhZc9ca+7fvz7kE7lX+bwHS4IrVvvpo2JD01cZv+tECyDdU+b2T7LgqJAdQGKJdNUmiiEphGobnkRvPXnsHzb3O2YiIiIiMxIPOWCztyMakU4QFVJoMjS30E3JKxi+YSMaknQz7LKMCdzAtV2L1CdcUb1wK2AdVO8GH/h8l9rXUBbsRyGz8LxX+Vf7okfQGmda3SUGILHvzdxOwd+ButvUoXgEqFAdQHKjlE1JdMIVI2BVU+au50SERERkRkbaYwUHDusa0VN6UiZ7oR1vOlpSv1pSMVcoFrZNCFQBby5VHMyqgMxwgEfNWXBme3wvp9A7Rpo3QlNl0Lb/fmX6z4Mw13w1PdCuAr2fHfiMomIC0K3vghWXweNW+ChL49d5swjMHgGNj9/ZvsrC44C1QUo5o1RNdMp/RURERGReSuWclPQ5Jb+ggtUTxco/R2Opwj4DKG0F4CGq1zmcmhioLqqrmzcGFU3NY0xZgY72w/H7nZjRY2B1mvh9MOQSU9cNlv2u/4mV+G398eQHBd4H74dksNw6cvc9q5+M5x5GNofG13mwK1gfK6RkiwJ5xWoGmPqjDG3G2MOedcFB0AaY6qMMaeMMf96Po8po2NUp5VRFREREZF5K5acWPoLrvPvZKW/rpHSgLshXAmVy2Gw05XK5mitdZnZpDcna0d/lOVVMyz7PXQ7pBMu8ASXVU0Mwdm9E5c9cR+UL3MdiS97uRuHeui2scs88QM35czq693vl78SAiVjmyrtvxVWXQdldTPbZ1lwzjej+n7gF9baDcAvvN8L+ShQoChdpsONUY1hwlUXe1dEREREZBZkS38nBqql9EeTDMcnNiGKJtKj41NhNFBNxyHWN2bZlXVlZOxoB+H2/tjk41P3/hge/GL++/b9BCqaYOU17vfWne46X/nviftcOa8xsPapLmjd853R+xPDcPDnLuj1B9xtZXWw9SWw+3/d/T3H4OwTsPl5hfdXFp3zDVRfDGS/6vgK8JJ8CxljrgaagNvy3S/Tk52epqg5VEVERERk3svXTAlgRbVrHJRvnGokmXYdf7OBaqjCBZAwYZzqqrps598omYzl7ECc5dWTNCW677Pw0z8dnTImKxl1GdXNzwefF0rUrHYBaNuuscv2nYT+ttFMqc8P234HDt4G0T5328GfQzIC2142dt2r3+yyr49/32vcBGxSoLqUnG+g2mStbfd+7sAFo2MYY3zAPwHvnWpjxph3GGMeNMY82NXVdZ67tnjFEmnKiShQFVnAdLwTkaVAx7rixZLeGNXAxDGqkH+Kmkg8NTqHKrgxqpXL3c8T5lL1AtXeCD2RBIl0ZvKMav8pd/3Dd0Lv8dHbj97lxpPmzmVqjMuqjs+onrjPXa++bvS2y17hMr7ZOVif+L4Lrlc9eey6q54EDZvg4a+4YHnZVqhbW3h/ZdGZMlA1xtxhjHk8z+XFuctZay1g82ziXcCt1tpTUz2Wtfbz1tod1todjY2NRT+JpSadjBAgo0BVZAHT8U5ElgId64pXaIxqNpjMN041khiXUQ1XQmWz+3ncXKrLq0oI+g0neyKjc6gWClRTCRfoXvEa9/v/vhGSXqC87ycQroY1N4xdp3Un9B5z86tmnbjXzeu6bOvobS1XufGqe77j9vvQ7bD1xS7bmivbVOnULrcddftdcqYMVK21N1trt+W5/AjoNMY0A3jXZ/Ns4snAu40xx4F/BN5ojPn4LD6HJcfEcg5GIiIiIrLgjUw1ExobsLnOvHA6X6CaTFMWCoxtplSg9NfvM7TUlNLWE5l6DtWBU4CFNU+Bl/yH677787+AdMqV4W56DgRCY9dZ6Y1TPZVT/nviPtcAyZcTchjjsqrHfuWaJaVirttvPle8Gvxhty8q+11yzrf098fAm7yf3wT8aPwC1trXWWtXWWvX4Mp/v2qtnazpkkzBl8wp7xARERGRBW+09HdsoBr0+1hZW8rRc8MT1onEUxMzquEKN1a14FyqUTq88a4FM6rZst/qVtfA6Lo/co2VbvkziPaOLfvNWrEdfMHR8t/BTjeHam7Zb9a2l4PNwC8/6jLArdfm34+yOrj8FS4Du+LK/MvIonW+gerHgWcaYw4BN3u/Y4zZYYz5r/PdOcnPnxxyPyijKiIiIrIojJb+Tjw937iskkOdgxNuH52eZhAwECp3d1Q05Z1LdWVt2UhGNeAzNJSH8+9MX5u7rl7prp/xQTeG9OGvQKAULnnGxHWCpdB8+WhG9WR2fOr1E5dt3AjNV7hs6taXjM24jvf8f4bf+5XLxMqScl6BqrW221r7DGvtBq9EuMe7/UFr7dvzLP9la+27z+cxRYGqiIiIyGIzEqiOK/0F2NBUybFzwyNzoGZFkznT04SrRoO5ymaX0RxnVV0ZPcMJjnQN0VRVgs9XIPjrHxeo+oPw8i+6uU43PWc0IB5v5U44/TCkk67sN1jmgtd8Lnulux7f7Xe8QEjnvEtU4GLvgExfQIGqiIiIyKIyEqgGJgaqG5sqSKYtx88Ns6Fp9Pwvksgp/c09L6xsgjOPTNhOa53rIPzg8V7WNBQINsEFqhXLIZCTca1aAe+6f+xtEx5gJ9z/OejY4wLV1p0uyM1n5ztg+bbROVhFxjnf0l+5CEJpb4yCAlURERGRRSGWzOAzEPRPzHJu9ILTg51DI7elM5ZYMuOV/g6MPS+sWO4yqnbshByttW6Kmu7hROHxqeBKf7PZ1Fzl9W4MbCHZoPPQ7dD5RP6y36xACNbdWPh+WfIUqC5AoVQ2UFUzJREREZHFIJZMUxL0Y/KMxVzfWIExcDBnnGq2S3DBjGpyeLTJkmeVN5cqQHPVZHOotkFN6/SfRPVKqGqBBz4P2PyNlESKpEB1AQpnM6qhSb7REhEREZEFI5pMUxqcWPYLbsqa1XVlYwLVSCIF4E1PMz5QzT+Xak1ZkIqwG/lXMKOayUD/adfxdyZWXgORc+APQcvVM9uGCApUFxxrLeFMhLQJTD5GQEREREQWjFgyQ0mBQBVcQ6UxGdXEJBnVAnOpGmNYWevGqTZXl+Z/oOEuSMdnHqhmy39brnadgEVmSIHqApNMW8qJkvCXq023iIiIyCIRS6UJ55maJmtjUwXHuyPEUy5AHY7nBqpD4zKqy931UP7OvzDZHKpex9+ZlP7C6JyoKvuV86RAdYGJpdJUmCjJgMp+RURERBaL+CSlv+AaKqUzlmPn3BCwaHJ86W9O75JsoDrYPmE7rV6g2jxVoDrTjOqKK+H6P4Gr3jSz9UU8mp5mgYkl0lQSJRVUoCoiIiKyWES9ZkqFbFg22vl38/IqItnS36CBxLjS33AVBEonlP4CPH3TMg50DLKsssAQsr5xc6hOl88Pz/ybma0rkkOB6gITS2aoIEpagaqIiIjIouHGqBYudlzXWI7PwCFvnGq29LfcxNwCuYGqMa7zb57S36dsaOApGxoK70h/mwt0S2um/RxEZpNKfxcYV/obIaOOvyIiIiKLRiyZpiRQOKNaEvSzpr58pKFStvS3nKhbIDdQBW8u1YkZ1Sn1n5p52a/ILFKgusBEE2kqiGJDlVMvLCIiIiILQjSZpiTkh56jBQPMjU2VHOwcAhgp/S23EXfn+EC1coaBal/bzMt+RWaRAtUFJpZ0zZQmHIxEREREZMGKJzMuo/rdt8Kt7827zMamCk50DxNLpkempynJZAPVqrELVy7PW/o7pf6TM+/4KzKLNEZ1gYmlMlQSpU+BqoiIiMiiEUum3RjVwU7XxTePDU2VZCwc6RoaGaM6GqiOL/1tgvgAJCIQKityJwYg1q/SX5kXlFFdYOLxKCUmiRn/rZmIiIiILFix7PQ0sX7oPQ7p1IRlNja5YPRQ5xCRZIpwwIc/4QW1+Up/AYamUf7bf8pdq/RX5gEFqgtMKuoORv5SBaoiIiIii4G1lmgyTZnfQnIYMilXgjvO2oZyAj7Dwc5Book0ZSH/aPY1PK7R5shcqtMJVL2paWpWzeBZiMwuBaoLTCbaDyhQFREREVkskmlLxkKVLzJ6Y/fRCcuFAj7WNJRzsHOISCJNWSiQE6jm6foLMwtUVfor84AC1QUmE3MHo0CpxqiKiIiILAaxlBtvWsXw6I3dh/Muu7GpgoOdg0QSKUpzM6rjZ4QYKf2dRkOlvjbwBd34VpGLTIHqApMNVIPl1Rd5T0RERERkNsS8Dr4V5GRUe47kXXZjUyVtvRG6hxKUh/yuYVKwDPzjeqSW1oI/NP2ManUL+BQiyMWnd+FC431rFiqtubj7ISIiIiKzIpbMAFBhvYyq8UF34UDVWnjizMBoRjXfbBDGuPLfaQWqp1T2K/OGAtUFxnid3XwaoyoiIiKyKGRLf8vtkLuhYdMkGVXXNGkonhodo1po2sLKpul1/e1rU6Aq84YC1QXGV6gFuYiIiIgsSLGkC1RL016g2nI19J2EVGLCsqvrywn6DcBo199C54UVTW5e1mKkEjDY/v/bu/sguepywePf37xkJjOTEDIhEI2Q4SWQhGCQCReNgSyglRVvRBCytRtJfFkLLC1fI7l1UZQqvSllV6V4cUER1tL1FlEQFNeLQLyiCCbZoLkBDeF1IkpIzMtMpic9PWf/6JnJC/PWM91zTvf5fqqm+vQ5Z7qf53TPk3ryO+d3YIqNqpLBRrXMVB3sLWA2qpIkSRWhs/ca1Yk9fY3q2RD15O+nepTa6ipOnpYfVR22UZ10wshHVPf/BYgcUVVi2KiWmZpsOz0EqG2MOxRJkiQVQaY7f41qffd+CNVwwpvzGwY5/fe04/sa1b5Tfwe5JGzSCdD5d+juGj6IPX23pplZUOxSqdiolpma7nY6mehsbJIkSRWi79TfCd3tUH8MNJ+S3zDIhEqnH58fQZ04oRoODnXqbwH3Uu27h+qUE0cct1RKdjtlpra7g86qhrjDkCRJUpEcalT35xvVhqlQP2WIEdV8Y9o43Km/x87KPw7yOkfY25Z/nPzGAiKXSsdGtcxMyNmoSpIkVZK+RrU2uy/fqAI0nwq7nh1w/76Zfxtqh2lUp8/JP7769PBB7HkJGqdDbX1BsUulYqNaZupyHXRVeX2qJElSpei7j2r1wcMb1VNg13MD7t8yrZHr/3Eul8w9Fnq6B29UG6flm8+/bR0+iL0vO+OvEsVGtczU9xygq9pGVZIkqVL0jahWdx3WqE49Bfa1QbbzdfuHEPjAohaOr8vmVwx1N4jj58KrI2lU25zxV4lio1pmJvZ0cLDGRlWSJKlSdPY2qqHrqBFVgN3PD/6LXfvzj4PN+gswfS7sfAZ6egbfJ4p6G1Vn/FVy1MQdQDFs/Nm3Oe33X4g7jHFxYnSAnTVvjjsMSZIkFUkm28OE6ipCZs9hI6on5x93b8+Pig6ka1/+cagR1elzIXsA9rxw6DWP1rETujPO+KtEqYhGddKM09h63LviDmN8hMBxb18VdxSSJEkqkkw2R2NtT76hrJ+SX9l/i5qBJ1QCDhtRHaZRhfyESoM1qn23pvHUXyVIRTSqs99yAbzlgrjDkCRJkgqWyeY4riYD3RwaUa0/BhqPG/ReqsDIGtXjTs8//m0rnHHJwPvs6WtUPfVXyeE1qpIkSVKMMtkc02oy+Sd9jSrkJ1TaPfDMv8DIGtW6pvz9VIeaUKlvRNVZf5UgNqqSJElSjDLZHqZW987ue3ij2nzKCEdUh5hMCfKn/w7VqP79RZgw6dBpx1IC2KhKkiRJMcp05wZuVKeeDO1/ha72gX+xbzKlCU1Dv8H0OflrXbu7Bt7+0uPwxrMhhMICl0rIRlWSJEmKUefBHFOqDuSfHDGiemr+cfcgo6pd+6GqFmrqhn6D6XOhp3vgiZnaX4W/bYGTlxQct1RKNqqSJElSjDLdPUypGuTUXxj89N+u/fnrU4cbCe2b+fdvA5z++/y/5x9tVJUwNqqSJElSjLqyOSbTkX9y9Km/MPSI6lATKfVpPhWqaga+TvW5R/PvOWNBQTFLpWajKkmSJMUok80xORyAUA0TGg9tmNAIk2bArkFm/u3aP/xESgA1E2Da7Nc3qlEE29dDy/lQVT3q+KVSsFGVJEmSYtSZzdEUdcDEKa8/jXfqKQNfWwojH1GF/IRKRzequ5+DfW2e9qtEslGVJEmSYpTJ9tAUtR952m+f5lOGOPV3X2GN6p6XDt3SBvKn/QKc/J8KC1gaBzaqkiRJUowy2RwNPR2DN6oHdkHnntdv62ovoFGdl3989ZlD655bD8eceOhaWClBbFQlSZKkmPT0RHR199DQM8iI6tTemX8HGlUt9NRfOHT6b08uP+PvyRd4/1Qlko2qJEmSFJOu7h4A6nNDnPoLA0+oVEijOuUkqG081Ki+shkye70+VYlloypJkiTFJJPNAVCX2z9wo3psCxBg17Yj1+ey0N05sll/AaqqYPoZhxrV59bnH1suGFXcUqnZqEqSJEkxyXT3Nqrdg4yo1tbDcWdA2++PXN83KdJIR1Shd+bfp/PL2x+F4+dD03GjiFoqPRtVSZIkKSadB3PU0k1NrnPgRhWgZTG89DvoPnho3aga1XnQsRP+/iK8/ET++lQpoWxUJUmSpJhksj1M4kD+Sf2UgXdqOR+yB2DHxkPrRjuiCrDhTsgd9LY0SjQbVUmSJCkmme4ck0NH/slgI6onLQICvPDrQ+tG1ajOzT9uvAuqauGktxYarjRubFQlSZKkmGQO5pjcP6I6SKPaMBVOmJ+/nUyf/kZ1hJMpATRNh4ZmyOyBN/0DTGgcVczSeLBRlSRJkmKSH1EdplGF/Om/Lz8J2Uz+ede+/GMhI6ohHBpV9bY0SjgbVUmSJCkmmWwPkxnm1F+AWYsh1wVtT+afj+bUXzh0neopXp+qZKuJOwBJkiQprTLZEY6onvQ2CNX5039bzh99o3rm5XBgF8xYMKp4pfFioypJkiTFpDObG9mIav1keMMCeL53QqWu/UAo/DrTE8/L/0gJ56m/kiRJUkwy2R4mhwNEVTVQ2zD0zi3nw44N0NWeb1TrJuWvO5UqkI2qJEmSFJNMtnfW3/pjhm86Zy2Gnm54+XeHGlWpQtmoSpIkSTHJZHMcEzqGPu23z4nn5e9/+vyv87P+2qiqgtmoSpIkSTHJZHMcW3WAMJJGdUIjzGzNT6jkiKoqnI2qJEmSFJNMtodjwoGRjahC/jrVVzbDvh02qqpoNqqSJElSTPpvTzPSRnXWYoh64LU/26iqotmoSpIkSTHpzOaYxAivUQWYuRCq6/LLNqqqYDaqkiRJUkwy2R6aogJGVGvr4cR/yC/XTS5dYFLMxtSohhCmhhAeCiFs6308dpD9Tgwh/FsI4ekQwtYQwqyxvK8kSZJUCXLZTurpGnmjCjDr/PyjI6qqYGMdUV0DPBxF0WnAw73PB/K/ga9FUTQHOBd4dYzvK0mSJJW90LU/v1A/ZeS/1GKjqso31kb1PcDdvct3A5cevUMIYS5QE0XRQwBRFLVHUXRgjO8rSZIklb2a7L78QiEjqm88B1o/BKe+ozRBSQkw1kb1+CiKXuld/itw/AD7zAb2hBB+HEL4fyGEr4UQqgd6sRDCR0IIG0IIG3bu3DnG0CQpuax3ktLAWje82mzfiGoBjWp1Dbz7f8L0M0oTlJQANcPtEEL4JXDCAJv++fAnURRFIYRokPdYDJwNvAT8K7AK+M7RO0ZRdDtwO0Bra+tAryUlXjabpa2tjUwmE3coZa2+vp6ZM2dSW1sbdyglYb1TubPWFYe1ThNG06hq3FjrimM0tW7YRjWKoosH2xZC+FsIYUYURa+EEGYw8LWnbcDmKIqe6/2d+4DzGKBRlSpBW1sbkyZNYtasWYQQ4g6nLEVRxK5du2hra6OlpSXucCQNwFo3dtY6AdR126gmmbVu7EZb68Z66u/9wMre5ZXATwbY5/fAlBDCcb3PLwS2jvF9pcTKZDI0NzdbzMYghEBzc7P/eyklmLVu7Kx1AqjPtfcu2KgmkbVu7EZb68baqK4F3hFC2AZc3PucEEJrCOHbAFEU5YDPAg+HEP4IBOCOMb6vlGgWs7HzGErJ59/p2HkMNTHniGrS+Xc6dqM5hsOe+juUKIp2ARcNsH4D8OHDnj8EnDWW95IkSZIqSTbXQxMd5EI11bUNcYcjJcpYR1QlJcyePXu49dZb4w7jCPfffz9r164dcFtTU9M4RyOpEljrVAky2RyTOcDBmkngqJ0GkdZ6Z6MqVZjBill3d3cM0eQtW7aMNWvWxPb+kiqPtU6VIJPtYXI4QLZ2ctyhKMHSWu9sVKUKs2bNGrZv386CBQtYuHAhixcvZtmyZcydOxeASy+9lHPOOYd58+Zx++239/9eU1MTn/rUp5g3bx4XXXQRffe72759O0uXLuWcc85h8eLFPPPMMwAsWLCg/2fixIn86le/Yvfu3Vx66aWcddZZnHfeefzhD38A4K677uJjH/sYAM8//zxvfetbmT9/Ptddd914HhpJFcRap0qQH1HtoLt2UtyhKMHSWu/GdI2qpKF96YH/YOtf9hX1Nee+YTLX/+O8QbevXbuWLVu2sHnzZtavX88ll1zCli1b+qcDv/POO5k6dSqdnZ0sXLiQyy+/nObmZjo6OmhtbeXrX/86N9xwA1/60pe4+eab+chHPsK3vvUtTjvtNJ544gk++tGP8sgjj7B582YAHnjgAb761a/ytre9jU9/+tOcffbZ3HfffTzyyCNcddVV/fv1+cQnPsE111zDVVddxS233FLUYyMpHtY6a51GJ5PNMTkcIFd33PA7K3Zx1DpIb72zUZUq3LnnnnvEPatuuukm7r33XgBefvlltm3bRnNzM1VVVSxfvhyAFStWcNlll9He3s5vf/tbrrjiiv7f7+rq6l/etm0bq1ev5tFHH6W2tpbHHnuMH/3oRwBceOGF7Nq1i337jizov/nNb/r3ef/738+1115bmsQlpYq1TuUok+1hMgfITXDGX41cWuqdjapUQsP9D9l4aGxs7F9ev349v/zlL3n88cdpaGhgyZIlg97TKoRAT08PU6ZMed3/nAG0t7dz5ZVXcscddzBjxoyCYnKad6myWOsGZq3TcDLdOaaHDnrqvUa1HCSh1kF66p3XqEoVZtKkSezfv3/AbXv37uXYY4+loaGBZ555ht/97nf923p6eli3bh0AP/jBD3j729/O5MmTaWlp4Z577gEgiiKeeuopAD74wQ/ygQ98gMWLF/e/xuLFi/n+978P5AvntGnTmDz5yH98Fy1axA9/+EOA/n0lqVDWOlWCvll/g/dQ1RDSWu9sVKUK09zczKJFizjzzDNZvXr1EduWLl1Kd3c3c+bMYc2aNZx33nn92xobG3nyySc588wzeeSRR/jCF74A5AvOd77zHd785jczb948fvKTn/Diiy+ybt067rzzzv6L7jds2MAXv/hFNm7cyFlnncWaNWu4++67XxffN7/5TW655Rbmz5/Pjh07SnswJFUsa50qQaazk4nhIKF+StyhKMHSWu9CFEVFe7Fiam1tjTZs2BB3GFLBnn76aebMmRN3GAVramqivb097jCOMNCxDCFsjKKoNaaQSsJ6p3JkrSsea116/d8n/8jSB9/Oq+d/mekXfizucDSAcq11kLx6V2itc0RVkiRJikHPgT0AVE+cEmscUhLZqEoCSNT/uElSqVjrlCRR5x4AahqPjTcQVaRyr3c2qpIkSVIcMnsBqLVRlV7HRlWSJEmKQVVXvlGd0Dgl3kCkBLJRlSRJkmLQ16jWNDiiKh3NRlWSJEmKQfXBffkF76MqvY6NqlShvvzlLzNv3jzOOussFixYwBNPPMGHP/xhtm7dGndoklQ01jqVs5qD+8lSA7UT4w5FCZfGWlcTdwCSiu/xxx/npz/9KZs2baKuro7XXnuNgwcP8u1vfzvu0CSpaKx1Kne12X2008CxIcQdihIsrbXORlWqQK+88grTpk2jrq4OgGnTpgGwZMkSbrzxRlpbW2lqauKaa67hwQcfZMaMGXzlK1/hc5/7HC+99BLf+MY3WLZsGXfddRf33nsve/fuZceOHaxYsYLrr7+ejo4OrrzyStra2sjlcnz+859n+fLlPPzww3z2s5+lu7ubhQsXctttt1FXV8esWbNYuXIlDzzwANlslnvuuYczzjgjzkMkqQJY6yrTa399me3rro87jHHxpr0b6ahqwitUNZS01jobVamUfr4G/vrH4r7mCfPhP68dcpd3vvOd3HDDDcyePZuLL76Y5cuXc8EFFxyxT0dHBxdeeCFf+9rXeO9738t1113HQw89xNatW1m5ciXLli0D4Mknn2TLli00NDSwcOFCLrnkEl588UXe8IY38LOf/QyAvXv3kslkWLVqFQ8//DCzZ8/mqquu4rbbbuOTn/wkkC+qmzZt4tZbb+XGG2+s+P8FlFLFWmetK6LO9j2c/tov4g5j3Px56kXMjDsIjYy1blxrnY2qVIGamprYuHEjv/71r3n00UdZvnw5a9ceWQQnTJjA0qVLAZg/fz51dXXU1tYyf/58Xnjhhf793vGOd9Dc3AzAZZddxmOPPca73vUuPvOZz3Dttdfy7ne/m8WLF/PUU0/R0tLC7NmzAVi5ciW33HJLf0G77LLLADjnnHP48Y9/XOIjICkNrHWV6U2nzocv7og7jHFzbtwBKPHSWutsVKVSGuZ/yEqpurqaJUuWsGTJEubPn8/dd999xPba2lpC7zUxVVVV/aeTVFVV0d3d3b9fOOq6mRACs2fPZtOmTTz44INcd911XHTRRbznPe8ZMp6+16+urj7i9SVVAGtdP2udVMGsdf3Go9Y5669Ugf70pz+xbdu2/uebN2/mpJNOGtVrPfTQQ+zevZvOzk7uu+8+Fi1axF/+8hcaGhpYsWIFq1evZtOmTZx++um88MILPPvsswB873vfe91pKZJUTNY6SWmQ1lrniKpUgdrb2/n4xz/Onj17qKmp4dRTT+X222/nfe97X8Gvde6553L55ZfT1tbGihUraG1t5Re/+AWrV6+mqqqK2tpabrvtNurr6/nud7/LFVdc0X/R/dVXX12C7CQpz1onKQ3SWutCFEXj+oYj1draGm3YsCHuMKSCPf3008yZMyfuMIrirrvuYsOGDdx8882xvP9AxzKEsDGKotZYAioR653KkbWueKx1UnJZ64qn0Frnqb+SJEmSpETx1F9Jg1q1ahWrVq2KOwxJKilrnaQ0KLda54iqVAJJPaW+nHgMpeTz73TsPIZS8vl3OnajOYY2qlKR1dfXs2vXLovaGERRxK5du6ivr487FEmDsNaNnbVOSj5r3diNttZ56q9UZDNnzqStrY2dO3fGHUpZq6+vZ+bMmXGHIWkQ1rrisNZJyWatK47R1DobVanIamtraWlpiTsMSSopa52kNLDWxcdTfyVJkiRJiWKjKkmSJElKFBtVSZIkSVKihKTOYBVC2Am8WMCvTANe610+Btg7wPJong+3fqTbC91vOCPJdyS5jSbfQnIodr5D5TTafMvxsx3N85HGmcR8D18+KYqi44rwvolRYL3z+zH08mDvXW617ujXrPR8/S6/fjnttQ6K8/0oZF0h2wvdbzhx1nZr3eCSVOsKWVfI9kL3G06h3+XBa10URRXxA2w4bPn2gZZH83y49SPdXuh+xch3JLmNJt9Ccih2vkPlNNp8y/GzHc3zcs63WO9VCT9+PwrPfbT5xlnr0pav3+Xivlel/BTj+1HIuqR/P0ab/3BxWuvGL1+/y4W9X6We+vvAIMujeT7c+pFuL3S/QgyW70hyG02+heRQ7HyHymm0+ZbjZzua58OtH+n2QvcrxEi/y8rz+zHwe1VCrTv6NSs9X7/LpXuvSjCW70ch6wrZXuh+hRjvvwdrXXH2LfT1/C4PI7Gn/hYqhLAhiqLWuOMYL+ZbudKUK6Qv37FK2/Ey38qWpnzTlGuxpOmYpSlXMN9KVsxcK2lE9fa4Axhn5lu50pQrpC/fsUrb8TLfypamfNOUa7Gk6ZilKVcw30pWtFwrZkRVkiRJklQZKmlEVZIkSZJUAWxUJUmSJEmJYqMqSZIkSUqUim1UQwgnhxC+E0JYF3cs4yGE0BhCuDuEcEcI4b/FHc94SeHnfGnvZ/yvIYR3xh1PqYUQ5oQQvhVCWBdCuCbueJIohX8Dqax1kK7P2lqno6Xp+w/WurR81ta6oZVVoxpCuDOE8GoIYctR65eGEP4UQng2hLAGIIqi56Io+lA8kRZHIfkClwHroij678CycQ92FArMb0Dl9DkXKd/7ej/jq4HlpYx3rIqU79NRFF0NXAksKmW8SWKt619fEbUO0lXvrHX96611w7DW9a+31h2mXD5ra13/+tLVuiiKyuYHOB94C7DlsHXVwHbgZGAC8BQw97Dt6+KOezzyBf4JWNC7zw/ijr0E+c0HfnrUz/Ry+pyLnO//AN4Sd07jkS/5f6B/DvzXuHNK4rE7bHvi/waK9F0pu1o3ihzLut5Z66x1pTh2h21P9Pe/iN8Va13CP2trXelrXQ1lJIqifw8hzDpq9bnAs1EUPQcQQvgh8B5g6ziHV3QF5tsGzAQ2UyYj5YXkF0XRvwDvHucQi6oY+YYQArAW+HkURZtKHPKYFOvzjaLofuD+EMLPgB+UMOTEsNYBFVTrIF31zloHWOtGxFoHWOusdda6QZXNF38IbwRePux5G/DGEEJzCOFbwNkhhH+KJ7SSGDBf4MfA5SGE24AH4gisSAbLb0AV8DkXlC/wceBi4H0hhKtLGViJFPr5Lgkh3BRC+F/Ag6UOLuGsdZVV6yBd9c5aZ60bKWudta6cP2trXRFrXVmNqBYiiqJd5M/3ToUoijqAD8Qdx3hL4ed8E3BT3HGMlyiK1gPrYw4j0VL4N5DKWgfp+qytdTpamr7/YK0jJZ+1tW5olTCiugN402HPZ/auq1SVnm+l53c0863sfIspbccuDfmmIcc+acoV0pdvMaXt2KUh3zTk2CdNuUKJ862ERvX3wGkhhJYQwgTgvwD3xxxTKVV6vpWe39HMt7LzLaa0Hbs05JuGHPukKVdIX77FlLZjl4Z805BjnzTlCqXON+4ZpAqcber/AK8AWfLnQH+od/27gD+Tn3Xqn+OO03zNz3zTl6/HznzTnmMac01jvh478017jmnMNa58Q+8bSJIkSZKUCJVw6q8kSZIkqYLYqEqSJEmSEsVGVZIkSZKUKDaqkiRJkqREsVGVJEmSJCWKjaokSZIkKVFsVJVYIYRZIYQtccchSaVmvZOUBtY6FcJGVZIkSZKUKDaqSrrqEMIdIYT/CCH8WwhhYtwBSVKJWO8kpYG1TiNio6qkOw24JYqiecAe4PJ4w5GkkrHeSUoDa51GxEZVSfd8FEWbe5c3ArPiC0WSSsp6JykNrHUaERtVJV3XYcs5oCauQCSpxKx3ktLAWqcRsVGVJEmSJCWKjaokSZIkKVFCFEVxxyBJkiRJUj9HVCVJkiRJiWKjKkmSJElKFBtVSZIkSVKi2KhKkiRJkhLFRlWSJEmSlCg2qpIkSZKkRLFRlSRJkiQlio2qJEmSJClR/j90CcHQeGP+3gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -444,6 +456,8 @@ "source": [ "fig, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(16,6))\n", "\n", + "fig.suptitle(\"Difference estimated integral minus true analytic value for three functions and two algorithms:\")\n", + "\n", "ax[0].set_xlabel(\"h\")\n", "ax[1].set_xlabel(\"h\")\n", "ax[2].set_xlabel(\"h\")\n",