Fetch assignments week 2
This commit is contained in:
441
Week 2/5 Discrete and Fast Fourier Transforms.ipynb
Normal file
441
Week 2/5 Discrete and Fast Fourier Transforms.ipynb
Normal file
@ -0,0 +1,441 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "4ec40081b048ce2f34f3f4fedbb0be10",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-98f724ece1aacb67",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# CDS: Numerical Methods Assignments\n",
|
||||||
|
"\n",
|
||||||
|
"- See lecture notes and documentation on Brightspace for Python and Jupyter basics. If you are stuck, try to google or get in touch via Discord.\n",
|
||||||
|
"\n",
|
||||||
|
"- Solutions must be submitted via the Jupyter Hub.\n",
|
||||||
|
"\n",
|
||||||
|
"- Make sure you fill in any place that says `YOUR CODE HERE` or \"YOUR ANSWER HERE\".\n",
|
||||||
|
"\n",
|
||||||
|
"## Submission\n",
|
||||||
|
"\n",
|
||||||
|
"1. Name all team members in the the cell below\n",
|
||||||
|
"2. make sure everything runs as expected\n",
|
||||||
|
"3. **restart the kernel** (in the menubar, select Kernel$\\rightarrow$Restart)\n",
|
||||||
|
"4. **run all cells** (in the menubar, select Cell$\\rightarrow$Run All)\n",
|
||||||
|
"5. Check all outputs (Out[\\*]) for errors and **resolve them if necessary**\n",
|
||||||
|
"6. submit your solutions **in time (before the deadline)**"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "raw",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"team_members = \"\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "2d40509e944f45e5c23cc3e732547aad",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-2a0ab25436430f05",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Discrete and Fast Fourier Transforms (DFT and FFT)\n",
|
||||||
|
"\n",
|
||||||
|
"In the following we will implement a DFT algorithm and, based on that, a FFT algorithm. Our aim is to experience the drastic improvement of computational time in the FFT case."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "90044d2a3233721361765db06afba03b",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-abee6fbaf30772f2",
|
||||||
|
"locked": false,
|
||||||
|
"points": 0,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Import packages here ...\n",
|
||||||
|
"\n",
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "bbe05b6dd0bc5b479cf66199114d7e4d",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-a1c3327dc1cad0db",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 1\n",
|
||||||
|
"\n",
|
||||||
|
"Implement a Python function $\\text{DFT(yk)}$ which returns the Fourier transform defined by\n",
|
||||||
|
"\n",
|
||||||
|
"\\begin{equation}\n",
|
||||||
|
"\\beta_j = \\sum^{N-1}_{k=0} f(x_k) e^{-ij x_k}\n",
|
||||||
|
"\\end{equation}\n",
|
||||||
|
"\n",
|
||||||
|
"with $x_k = \\frac{2\\pi k}{N}$ and $j = 0, 1, ..., N-1$. The $\\text{yk}$ should represent the array corresponding to $y_k = f(x_k)$. Please note that this definition is slightly different to the one we introduced in the lecture. Here we follow the notation of Numpy and Scipy.\n",
|
||||||
|
"\n",
|
||||||
|
"Hint: try to write the sum as a matrix-vector product and use $\\text{numpy.dot()}$ to evaluate it."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "2fded00d23ce12e99ba32c09a6370b3c",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-5f6638846212c9d1",
|
||||||
|
"locked": false,
|
||||||
|
"points": 3,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def DFT(yk):\n",
|
||||||
|
" # YOUR CODE HERE\n",
|
||||||
|
" raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "15164465870c44b9b4e6328f56eaed20",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-74e9ce917ff9d690",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 2 \n",
|
||||||
|
"\n",
|
||||||
|
"Make sure your function $\\text{DFT(yk)}$ and Numpy’s FFT function $\\text{numpy.fft.fft(yk)}$ return\n",
|
||||||
|
"the same data by plotting $|\\beta_j|$ vs. $j$ for\n",
|
||||||
|
"\n",
|
||||||
|
"\\begin{equation}\n",
|
||||||
|
" y_k = f(x_k) = e^{20i x_k} + e^{40 i x_k}\n",
|
||||||
|
"\\end{equation}\n",
|
||||||
|
"and\n",
|
||||||
|
"\\begin{equation}\n",
|
||||||
|
" y_k = f(x_k) = e^{i 5 x_k^2}\n",
|
||||||
|
"\\end{equation}\n",
|
||||||
|
"\n",
|
||||||
|
"using $N = 128$ for both routines."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "14cef25098dec15c058916f4fc58c133",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-7cc28776346ee714",
|
||||||
|
"locked": false,
|
||||||
|
"points": 1,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "1674c10abab84f4d7c15bc7e5fea53b2",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-e04e5bc7ed412f64",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 3\n",
|
||||||
|
"\n",
|
||||||
|
"Analyze the evaluation-time scaling of your $\\text{DFT(yk)}$ function with the help of the timeit\n",
|
||||||
|
"module. Base your code on the following example:\n",
|
||||||
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"import timeit\n",
|
||||||
|
"\n",
|
||||||
|
"tOut = timeit.repeat(stmt=lambda: DFT(yk), number=10, repeat=5)\n",
|
||||||
|
"tMean = np.mean(tOut)\n",
|
||||||
|
"```\n",
|
||||||
|
"This example evaluates $\\text{DFT(yk)}$ 5 × 10 times and stores the resulting 5 evaluation times in tOut. Afterwards we calculate the mean value of these 5 repetitions. \n",
|
||||||
|
"Use this example to calculate and plot the evaluation time of your $\\text{DFT(yk)}$ function for $N = 2^2, 2^3, ..., 2^M$. Depending on your implementation you might be able to go up to $M = 10$. Be careful and increase M just step by step!"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "0e92c1c2d548a1c9b1476dd295415c2e",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-0ab81532ab86e322",
|
||||||
|
"locked": false,
|
||||||
|
"points": 4,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "3063d5b408e133b1930c56fa45fed54e",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-73ca4de972164356",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 4\n",
|
||||||
|
"\n",
|
||||||
|
"A very simple FFT algorithm can be derived by the following separation of the sum from\n",
|
||||||
|
"above:\n",
|
||||||
|
"\n",
|
||||||
|
"\\begin{align}\n",
|
||||||
|
" \\beta_j = \\sum^{N-1}_{k=0} f(x_k) e^{-ij \\frac{2\\pi k}{N}} \n",
|
||||||
|
" &= \\sum^{N/2 - 1}_{k=0} f(x_{2k}) e^{-ij \\frac{2\\pi 2k}{N}} \n",
|
||||||
|
" + \\sum^{N/2 - 1}_{k=0} f(x_{2k+1}) e^{-ij \\frac{2\\pi (2k+1)}{N}}\\\\ \n",
|
||||||
|
" &= \\sum^{N/2 - 1}_{k=0} f(x_{2k}) e^{-ij \\frac{2\\pi k}{N/2}}\n",
|
||||||
|
" + \\sum^{N/2 - 1}_{k=0} f(x_{2k+1}) e^{-ij \\frac{2\\pi k}{N/2}} e^{-ij \\frac{2\\pi}{N}}\\\\\n",
|
||||||
|
" &= \\beta^{\\text{even}}_j + \\beta^{\\text{odd}}_j e^{-ij \\frac{2\\pi}{N}}\n",
|
||||||
|
"\\end{align}\n",
|
||||||
|
"\n",
|
||||||
|
"where $\\beta^{\\text{even}}_j$ is the Fourier transform based on only even $k$ (or $x_k$) and $\\beta^{\\text{odd}}_j$ the Fourier transform based on only odd $k$. In case $N = 2^M$ this even/odd separation can be done again and again in a recursive way. \n",
|
||||||
|
"\n",
|
||||||
|
"Use the template below to implement a $\\text{FFT(yk)}$ function, making use of your $\\text{DFT(yk)}$ function from above. Make sure that you get the same results as before by comparing the results from $\\text{DFT(yk)}$\n",
|
||||||
|
"and $\\text{FFT(yk)}$ for both functions defined in task 2.\n",
|
||||||
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"def FFT(yk):\n",
|
||||||
|
" \"\"\"Don't forget to write a docstring ...\n",
|
||||||
|
" \"\"\"\n",
|
||||||
|
" N = # ... get the length of yk\n",
|
||||||
|
" \n",
|
||||||
|
" assert # ... check if N is a power of 2. Hint: use the % (modulo) operator\n",
|
||||||
|
" \n",
|
||||||
|
" if(N <= 2):\n",
|
||||||
|
" return # ... call DFT with all yk points\n",
|
||||||
|
" \n",
|
||||||
|
" else:\n",
|
||||||
|
" betaEven = # ... call FFT but using just even yk points\n",
|
||||||
|
" betaOdd = # ... call FFT but using just odd yk points\n",
|
||||||
|
" \n",
|
||||||
|
" expTerms = np.exp(-1j * 2.0 * np.pi * np.arange(N) / N)\n",
|
||||||
|
" \n",
|
||||||
|
" # Remember : beta_j is periodic in j !\n",
|
||||||
|
" betaEvenFull = np.concatenate([betaEven, betaEven])\n",
|
||||||
|
" betaOddFull = np.concatenate([betaOdd, betaOdd])\n",
|
||||||
|
" \n",
|
||||||
|
" return betaEvenFull + expTerms * betaOddFull\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "fdad5c990a077e2bc2c58d4c4da46973",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-ce8233802d8ccb83",
|
||||||
|
"locked": false,
|
||||||
|
"points": 3,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def FFT(yk):\n",
|
||||||
|
" # YOUR CODE HERE\n",
|
||||||
|
" raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "33b415b478341202e57888621063fc35",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-a27cf0cb147b31ae",
|
||||||
|
"locked": false,
|
||||||
|
"points": 1,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Do your plotting here ...\n",
|
||||||
|
"\n",
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "c1d2dd0c2543e228d48d84e94720a3a8",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-c61537808f7cce68",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 5\n",
|
||||||
|
"\n",
|
||||||
|
"Analyze the evaluation-time scaling of your $\\text{FFT(yk)}$ function with the help of the timeit module and compare it to the scaling of the $\\text{DFT(yk)}$ function."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "bb4f1eee977aad469245f60fca596938",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-aaf90559928426bf",
|
||||||
|
"locked": false,
|
||||||
|
"points": 1,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
||||||
@ -0,0 +1,313 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "4ec40081b048ce2f34f3f4fedbb0be10",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-98f724ece1aacb67",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# CDS: Numerical Methods Assignments\n",
|
||||||
|
"\n",
|
||||||
|
"- See lecture notes and documentation on Brightspace for Python and Jupyter basics. If you are stuck, try to google or get in touch via Discord.\n",
|
||||||
|
"\n",
|
||||||
|
"- Solutions must be submitted via the Jupyter Hub.\n",
|
||||||
|
"\n",
|
||||||
|
"- Make sure you fill in any place that says `YOUR CODE HERE` or \"YOUR ANSWER HERE\".\n",
|
||||||
|
"\n",
|
||||||
|
"## Submission\n",
|
||||||
|
"\n",
|
||||||
|
"1. Name all team members in the the cell below\n",
|
||||||
|
"2. make sure everything runs as expected\n",
|
||||||
|
"3. **restart the kernel** (in the menubar, select Kernel$\\rightarrow$Restart)\n",
|
||||||
|
"4. **run all cells** (in the menubar, select Cell$\\rightarrow$Run All)\n",
|
||||||
|
"5. Check all outputs (Out[\\*]) for errors and **resolve them if necessary**\n",
|
||||||
|
"6. submit your solutions **in time (before the deadline)**"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "raw",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"team_members = \"\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "177d489a4104e3c95a4de1a4c7768c01",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-1e89a94d71771bb6",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Composite Numerical Integration: Trapezoid and Simpson Rules\n",
|
||||||
|
"\n",
|
||||||
|
"In the following we will implement the composite trapezoid and Simpson rules to calculate definite integrals. These rules are defined by\n",
|
||||||
|
"\n",
|
||||||
|
"\\begin{align}\n",
|
||||||
|
"\t\\int_a^b \\, f(x)\\, dx &\\approx \\frac{h}{2} \\left[ f(a) + 2 \\sum_{j=1}^{n-1} f(x_j) + f(b) \\right] \n",
|
||||||
|
" &\\text{trapezoid} \\\\\n",
|
||||||
|
" &\\approx \\frac{h}{3} \\left[ f(a) + 2 \\sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \\sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \\right]\t \n",
|
||||||
|
" &\\text{Simpson}\n",
|
||||||
|
"\\end{align}\n",
|
||||||
|
" \n",
|
||||||
|
"with $a = x_0 < x_1 < \\dots < x_{n-1} < x_n = b$ and $x_k = a + kh$. Here $k = 0, \\dots, n$ and $h = (b-a) / n$ is the step size."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "a60a63e0450a3157dd421b394288f18a",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-44d29c12deac7ed7",
|
||||||
|
"locked": false,
|
||||||
|
"points": 0,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Import packages here ...\n",
|
||||||
|
"\n",
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "e11bb7c15d840e7a9397f209769ebb66",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-ce9a56067e726f36",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 1\n",
|
||||||
|
"\n",
|
||||||
|
"Implement both integration schemes as Python functions $\\text{trapz(yk, dx)}$ and $\\text{simps(yk, dx)}$. The argument $\\text{yk}$ is an array of length $n+1$ representing $y_k = f(x_k)$ and $\\text{dx}$ is the step size $h$. Compare your results with Scipy's functions $\\text{scipy.integrate.trapz(yk, xk)}$ and $\\text{scipy.integrate.simps(yk, xk)}$ for a $f(x_k)$ of your choice.\n",
|
||||||
|
"\n",
|
||||||
|
"Try both even and odd $n$. What do you see? Why?\n",
|
||||||
|
"\n",
|
||||||
|
"Hint: go to the Scipy documentation. How are even and odd $n$ handled there?"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "2bc6bd3985c2b7ab4ab051ebe94496f9",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-59f0de06f77dce3e",
|
||||||
|
"locked": false,
|
||||||
|
"points": 6,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def trapz(yk, dx):\n",
|
||||||
|
" # YOUR CODE HERE\n",
|
||||||
|
" raise NotImplementedError()\n",
|
||||||
|
" \n",
|
||||||
|
"def simps(yk, dx):\n",
|
||||||
|
" # YOUR CODE HERE\n",
|
||||||
|
" raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "9599217f233689affb19148157e62b41",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-ff04b1d785ea895f",
|
||||||
|
"locked": false,
|
||||||
|
"points": 1,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Compare your results here ...\n",
|
||||||
|
"\n",
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "f3a2f1f2b9ba3ffeb8646c346797d95a",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-1a7e33464e3be83b",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 2\n",
|
||||||
|
"\n",
|
||||||
|
"Implement at least one test function for each of your integration functions."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "c3b7ee0d3ced97054590e89bba97e031",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-d8f2e0aa55860e08",
|
||||||
|
"locked": false,
|
||||||
|
"points": 6,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def test_trapz():\n",
|
||||||
|
" # YOUR CODE HERE\n",
|
||||||
|
" raise NotImplementedError()\n",
|
||||||
|
" \n",
|
||||||
|
"def test_simps():\n",
|
||||||
|
" # YOUR CODE HERE\n",
|
||||||
|
" raise NotImplementedError()\n",
|
||||||
|
" \n",
|
||||||
|
"test_trapz()\n",
|
||||||
|
"test_simps()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"editable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"checksum": "ead1d68798b82e5c9c5dba354a255abb",
|
||||||
|
"grade": false,
|
||||||
|
"grade_id": "cell-71d20f6b94c6ed05",
|
||||||
|
"locked": true,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": false,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Task 3\n",
|
||||||
|
"\n",
|
||||||
|
"Study the accuracy of these integration routines by calculating the following integrals for a variety of step sizes $h$:\n",
|
||||||
|
"\n",
|
||||||
|
"- $\\int_0^1 \\, x\\, dx$\n",
|
||||||
|
"- $\\int_0^1 \\, x^2\\, dx$\n",
|
||||||
|
"- $\\int_0^1 \\, x^\\frac{1}{2}\\, dx$\n",
|
||||||
|
"\n",
|
||||||
|
"The integration error is defined as the difference (not the absolute difference) between your numerical results and the exact results. Plot the integration error as a function of $h$ for both integration routines and all listed functions. Comment on the comparison between both integration routines. Does the sign of the error match your expectations? Why?"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"deletable": false,
|
||||||
|
"nbgrader": {
|
||||||
|
"cell_type": "code",
|
||||||
|
"checksum": "90eaf3d9beb2347589518aba4e8ad3c4",
|
||||||
|
"grade": true,
|
||||||
|
"grade_id": "cell-b0bb51b7eae7769b",
|
||||||
|
"locked": false,
|
||||||
|
"points": 4,
|
||||||
|
"schema_version": 3,
|
||||||
|
"solution": true,
|
||||||
|
"task": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# YOUR CODE HERE\n",
|
||||||
|
"raise NotImplementedError()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user