From fd55a71a9e1f60d97a4d608cfc57412bda1db8fc Mon Sep 17 00:00:00 2001 From: Kees van Kempen Date: Thu, 13 Oct 2022 11:17:05 +0200 Subject: [PATCH] 05: Fix HDF5 exercise --- Exercise sheet 5/exercise_sheet_05.ipynb | 53 +++++------------------ Exercise sheet 5/test.hdf5 | Bin 30152 -> 30152 bytes 2 files changed, 12 insertions(+), 41 deletions(-) diff --git a/Exercise sheet 5/exercise_sheet_05.ipynb b/Exercise sheet 5/exercise_sheet_05.ipynb index 894cfe7..40542be 100644 --- a/Exercise sheet 5/exercise_sheet_05.ipynb +++ b/Exercise sheet 5/exercise_sheet_05.ipynb @@ -226,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "id": "9df6a9cc", "metadata": { "deletable": false, @@ -247,12 +247,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "testarray[325] = 0.6809296786477453\n", - "f[\"test\"][325] = 0.6809296786477453\n", - "test[325] = 0.6809296786477453\n", - "f[\"test-plus-one\"][325] = 1.6809296786477455\n", - "f[\"test\"][325] = 0.6809296786477453\n", - "f[\"test-plus-one\"][325] = 1.6809296786477455\n", + "testarray[325] = 0.13910269568464984\n", + "f[\"test\"][325] = 0.13910269568464984\n", + "test[325] = 0.13910269568464984\n", + "f[\"test-plus-one\"][325] = 1.1391026956846497\n", + "f[\"test\"][325] = 0.13910269568464984\n", + "f[\"test-plus-one\"][325] = 1.1391026956846497\n", "data sets in test.hdf5: ['test', 'test-plus-one']\n", "data sets in test.hdf5: ['test-plus-one']\n" ] @@ -319,7 +319,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 4, "id": "51e6fe2c", "metadata": { "deletable": false, @@ -349,7 +349,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 5, "id": "916e8389", "metadata": { "deletable": false, @@ -396,7 +396,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 6, "id": "23067631", "metadata": { "deletable": false, @@ -413,37 +413,9 @@ } }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "ename": "ValueError", - "evalue": "2 indexing arguments for 1 dimensions", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Input \u001b[0;32mIn [33]\u001b[0m, in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(f[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrandom-walk\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 7\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure()\n\u001b[0;32m----> 8\u001b[0m \u001b[43mplt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marange\u001b[49m\u001b[43m(\u001b[49m\u001b[43mN\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrandom-walk\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 9\u001b[0m plt\u001b[38;5;241m.\u001b[39mxlabel(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstep $i$\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 10\u001b[0m plt\u001b[38;5;241m.\u001b[39mylabel(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mposition\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[0;32m/opt/jupyter-conda/lib/python3.9/site-packages/matplotlib/pyplot.py:2757\u001b[0m, in \u001b[0;36mplot\u001b[0;34m(scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2755\u001b[0m \u001b[38;5;129m@_copy_docstring_and_deprecators\u001b[39m(Axes\u001b[38;5;241m.\u001b[39mplot)\n\u001b[1;32m 2756\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot\u001b[39m(\u001b[38;5;241m*\u001b[39margs, scalex\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, scaley\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m-> 2757\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgca\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2758\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mscalex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mscalex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mscaley\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mscaley\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2759\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m}\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m/opt/jupyter-conda/lib/python3.9/site-packages/matplotlib/axes/_axes.py:1632\u001b[0m, in \u001b[0;36mAxes.plot\u001b[0;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1390\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1391\u001b[0m \u001b[38;5;124;03mPlot y versus x as lines and/or markers.\u001b[39;00m\n\u001b[1;32m 1392\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1629\u001b[0m \u001b[38;5;124;03m(``'green'``) or hex strings (``'#008000'``).\u001b[39;00m\n\u001b[1;32m 1630\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1631\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m cbook\u001b[38;5;241m.\u001b[39mnormalize_kwargs(kwargs, mlines\u001b[38;5;241m.\u001b[39mLine2D)\n\u001b[0;32m-> 1632\u001b[0m lines \u001b[38;5;241m=\u001b[39m [\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_lines(\u001b[38;5;241m*\u001b[39margs, data\u001b[38;5;241m=\u001b[39mdata, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)]\n\u001b[1;32m 1633\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m line \u001b[38;5;129;01min\u001b[39;00m lines:\n\u001b[1;32m 1634\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39madd_line(line)\n", - "File \u001b[0;32m/opt/jupyter-conda/lib/python3.9/site-packages/matplotlib/axes/_base.py:312\u001b[0m, in \u001b[0;36m_process_plot_var_args.__call__\u001b[0;34m(self, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 310\u001b[0m this \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m args[\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m 311\u001b[0m args \u001b[38;5;241m=\u001b[39m args[\u001b[38;5;241m1\u001b[39m:]\n\u001b[0;32m--> 312\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_plot_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43mthis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m/opt/jupyter-conda/lib/python3.9/site-packages/matplotlib/axes/_base.py:488\u001b[0m, in \u001b[0;36m_process_plot_var_args._plot_args\u001b[0;34m(self, tup, kwargs, return_kwargs)\u001b[0m\n\u001b[1;32m 486\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(xy) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[1;32m 487\u001b[0m x \u001b[38;5;241m=\u001b[39m _check_1d(xy[\u001b[38;5;241m0\u001b[39m])\n\u001b[0;32m--> 488\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[43m_check_1d\u001b[49m\u001b[43m(\u001b[49m\u001b[43mxy\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 489\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 490\u001b[0m x, y \u001b[38;5;241m=\u001b[39m index_of(xy[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m])\n", - "File \u001b[0;32m/opt/jupyter-conda/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1327\u001b[0m, in \u001b[0;36m_check_1d\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1321\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m warnings\u001b[38;5;241m.\u001b[39mcatch_warnings(record\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m w:\n\u001b[1;32m 1322\u001b[0m warnings\u001b[38;5;241m.\u001b[39mfilterwarnings(\n\u001b[1;32m 1323\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124malways\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 1324\u001b[0m category\u001b[38;5;241m=\u001b[39m\u001b[38;5;167;01mWarning\u001b[39;00m,\n\u001b[1;32m 1325\u001b[0m message\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSupport for multi-dimensional indexing\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m-> 1327\u001b[0m ndim \u001b[38;5;241m=\u001b[39m \u001b[43mx\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39mndim\n\u001b[1;32m 1328\u001b[0m \u001b[38;5;66;03m# we have definitely hit a pandas index or series object\u001b[39;00m\n\u001b[1;32m 1329\u001b[0m \u001b[38;5;66;03m# cast to a numpy array.\u001b[39;00m\n\u001b[1;32m 1330\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(w) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n", - "File \u001b[0;32mh5py/_objects.pyx:54\u001b[0m, in \u001b[0;36mh5py._objects.with_phil.wrapper\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32mh5py/_objects.pyx:55\u001b[0m, in \u001b[0;36mh5py._objects.with_phil.wrapper\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m/opt/jupyter-conda/lib/python3.9/site-packages/h5py/_hl/dataset.py:710\u001b[0m, in \u001b[0;36mDataset.__getitem__\u001b[0;34m(self, args, new_dtype)\u001b[0m\n\u001b[1;32m 708\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fast_read_ok \u001b[38;5;129;01mand\u001b[39;00m (new_dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m 709\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 710\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fast_reader\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 711\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 712\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m \u001b[38;5;66;03m# Fall back to Python read pathway below\u001b[39;00m\n", - "File \u001b[0;32mh5py/_selector.pyx:351\u001b[0m, in \u001b[0;36mh5py._selector.Reader.read\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32mh5py/_selector.pyx:107\u001b[0m, in \u001b[0;36mh5py._selector.Selector.apply_args\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: 2 indexing arguments for 1 dimensions" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANQklEQVR4nO3cX4il9X3H8fenuxEak0aJk5DurmRb1pi90KITI6VpTUObXXuxBLxQQ6QSWKQx5FIpNLnwprkohKBmWWSR3GQvGkk2ZRMplMSCNd1Z8N8qynSlOl3BNYYUDFRWv704p51hnHWenXNmZp3v+wUD85znNzPf+TH73mfPznlSVUiStr7f2ewBJEkbw+BLUhMGX5KaMPiS1ITBl6QmDL4kNbFq8JMcSfJakmfPcz5JvptkPsnTSa6b/piSpEkNucJ/GNj3Huf3A3vGbweB700+liRp2lYNflU9BrzxHksOAN+vkSeAy5J8YloDSpKmY/sUPscO4JUlxwvjx15dvjDJQUb/CuDSSy+9/uqrr57Cl5ekPk6ePPl6Vc2s5WOnEfys8NiK92uoqsPAYYDZ2dmam5ubwpeXpD6S/OdaP3Yav6WzAOxacrwTODOFzytJmqJpBP8YcMf4t3VuBH5TVe96OkeStLlWfUonyQ+Am4ArkiwA3wI+AFBVh4DjwM3APPBb4M71GlaStHarBr+qblvlfAFfm9pEkqR14SttJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJamJQ8JPsS/JCkvkk965w/iNJfpLkqSSnktw5/VElSZNYNfhJtgEPAPuBvcBtSfYuW/Y14Lmquha4CfiHJJdMeVZJ0gSGXOHfAMxX1emqegs4ChxYtqaADycJ8CHgDeDcVCeVJE1kSPB3AK8sOV4YP7bU/cCngTPAM8A3quqd5Z8oycEkc0nmzp49u8aRJUlrMST4WeGxWnb8ReBJ4PeBPwLuT/J77/qgqsNVNVtVszMzMxc4qiRpEkOCvwDsWnK8k9GV/FJ3Ao/UyDzwEnD1dEaUJE3DkOCfAPYk2T3+j9hbgWPL1rwMfAEgyceBTwGnpzmoJGky21dbUFXnktwNPApsA45U1akkd43PHwLuAx5O8gyjp4DuqarX13FuSdIFWjX4AFV1HDi+7LFDS94/A/zldEeTJE2Tr7SVpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDUxKPhJ9iV5Icl8knvPs+amJE8mOZXkF9MdU5I0qe2rLUiyDXgA+AtgATiR5FhVPbdkzWXAg8C+qno5ycfWaV5J0hoNucK/AZivqtNV9RZwFDiwbM3twCNV9TJAVb023TElSZMaEvwdwCtLjhfGjy11FXB5kp8nOZnkjpU+UZKDSeaSzJ09e3ZtE0uS1mRI8LPCY7XseDtwPfBXwBeBv0ty1bs+qOpwVc1W1ezMzMwFDytJWrtVn8NndEW/a8nxTuDMCmter6o3gTeTPAZcC7w4lSklSRMbcoV/AtiTZHeSS4BbgWPL1vwY+FyS7Uk+CHwWeH66o0qSJrHqFX5VnUtyN/AosA04UlWnktw1Pn+oqp5P8jPgaeAd4KGqenY9B5ckXZhULX86fmPMzs7W3NzcpnxtSXq/SnKyqmbX8rG+0laSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmBgU/yb4kLySZT3Lve6z7TJK3k9wyvRElSdOwavCTbAMeAPYDe4Hbkuw9z7pvA49Oe0hJ0uSGXOHfAMxX1emqegs4ChxYYd3XgR8Cr01xPknSlAwJ/g7glSXHC+PH/l+SHcCXgEPv9YmSHEwyl2Tu7NmzFzqrJGkCQ4KfFR6rZcffAe6pqrff6xNV1eGqmq2q2ZmZmYEjSpKmYfuANQvAriXHO4Ezy9bMAkeTAFwB3JzkXFX9aBpDSpImNyT4J4A9SXYD/wXcCty+dEFV7f6/95M8DPyTsZeki8uqwa+qc0nuZvTbN9uAI1V1Ksld4/Pv+by9JOniMOQKn6o6Dhxf9tiKoa+qv558LEnStPlKW0lqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSE4OCn2RfkheSzCe5d4XzX07y9Pjt8STXTn9USdIkVg1+km3AA8B+YC9wW5K9y5a9BPxZVV0D3AccnvagkqTJDLnCvwGYr6rTVfUWcBQ4sHRBVT1eVb8eHz4B7JzumJKkSQ0J/g7glSXHC+PHzuerwE9XOpHkYJK5JHNnz54dPqUkaWJDgp8VHqsVFyafZxT8e1Y6X1WHq2q2qmZnZmaGTylJmtj2AWsWgF1LjncCZ5YvSnIN8BCwv6p+NZ3xJEnTMuQK/wSwJ8nuJJcAtwLHli5IciXwCPCVqnpx+mNKkia16hV+VZ1LcjfwKLANOFJVp5LcNT5/CPgm8FHgwSQA56pqdv3GliRdqFSt+HT8upudna25ublN+dqS9H6V5ORaL6h9pa0kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kn1JXkgyn+TeFc4nyXfH559Oct30R5UkTWLV4CfZBjwA7Af2Arcl2bts2X5gz/jtIPC9Kc8pSZrQkCv8G4D5qjpdVW8BR4EDy9YcAL5fI08AlyX5xJRnlSRNYPuANTuAV5YcLwCfHbBmB/Dq0kVJDjL6FwDA/yR59oKm3bquAF7f7CEuEu7FIvdikXux6FNr/cAhwc8Kj9Ua1lBVh4HDAEnmqmp2wNff8tyLRe7FIvdikXuxKMncWj92yFM6C8CuJcc7gTNrWCNJ2kRDgn8C2JNkd5JLgFuBY8vWHAPuGP+2zo3Ab6rq1eWfSJK0eVZ9SqeqziW5G3gU2AYcqapTSe4anz8EHAduBuaB3wJ3Dvjah9c89dbjXixyLxa5F4vci0Vr3otUveupdknSFuQrbSWpCYMvSU2se/C9LcOiAXvx5fEePJ3k8STXbsacG2G1vViy7jNJ3k5yy0bOt5GG7EWSm5I8meRUkl9s9IwbZcCfkY8k+UmSp8Z7MeT/C993khxJ8tr5Xqu05m5W1bq9MfpP3v8A/gC4BHgK2Ltszc3ATxn9Lv+NwC/Xc6bNehu4F38MXD5+f3/nvViy7l8Y/VLALZs99yb+XFwGPAdcOT7+2GbPvYl78bfAt8fvzwBvAJds9uzrsBd/ClwHPHue82vq5npf4XtbhkWr7kVVPV5Vvx4fPsHo9Qxb0ZCfC4CvAz8EXtvI4TbYkL24HXikql4GqKqtuh9D9qKADycJ8CFGwT+3sWOuv6p6jNH3dj5r6uZ6B/98t1y40DVbwYV+n19l9Df4VrTqXiTZAXwJOLSBc22GIT8XVwGXJ/l5kpNJ7tiw6TbWkL24H/g0oxd2PgN8o6re2ZjxLipr6uaQWytMYmq3ZdgCBn+fST7PKPh/sq4TbZ4he/Ed4J6qent0MbdlDdmL7cD1wBeA3wX+LckTVfXieg+3wYbsxReBJ4E/B/4Q+Ock/1pV/73Os11s1tTN9Q6+t2VYNOj7THIN8BCwv6p+tUGzbbQhezELHB3H/grg5iTnqupHGzLhxhn6Z+T1qnoTeDPJY8C1wFYL/pC9uBP4+xo9kT2f5CXgauDfN2bEi8aaurneT+l4W4ZFq+5FkiuBR4CvbMGrt6VW3Yuq2l1Vn6yqTwL/CPzNFow9DPsz8mPgc0m2J/kgo7vVPr/Bc26EIXvxMqN/6ZDk44zuHHl6Q6e8OKypm+t6hV/rd1uG952Be/FN4KPAg+Mr23O1Be8QOHAvWhiyF1X1fJKfAU8D7wAPVdWWu7X4wJ+L+4CHkzzD6GmNe6pqy902OckPgJuAK5IsAN8CPgCTddNbK0hSE77SVpKaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrifwHXe3WluIZOawAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEaCAYAAAACBmAUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABZmklEQVR4nO2dd5gb1bXAf0d1+67XDfcGBmxjwJheQ+8lkISQEFIJpL2ENCB5qQ8CJCGEEhJ4yQspQOgQCM10MDYYsLHB2Nhg3O11WW9Xve+PmdGOpJE0u6uVtNL9fd9+K029M5q5555zTxGlFBqNRqPR5MJT7AZoNBqNZmigBYZGo9FoXKEFhkaj0WhcoQWGRqPRaFyhBYZGo9FoXKEFhkaj0WhcoQVGDkTkZyLyj2K3wy0iskZEjjc/u267iFSLyL9FZJeI3Du4rXSHiCgR2b1I535HRI7J97b9bMtEEekQEW+WbYp2r/pCPtspIpPN4/nycbxCMlR+r1SGpMAwO8Vu8yXaLCJ/FZG6YrdriHMeMBoYrpT6RKFPLiLPi8iXC33eTCilZiqlns/3tv1sy1qlVJ1SKgaDd6+GcgdcCYjI50Xk5WK2YUgKDJMzlFJ1wH7A/sAVxW3OkGcSsFIpFXVaWSmdSKVc51CjmL+LfiZsKKWG3B+wBjje9v064DHb98uB1UA78C5wjm3d54GXgd8AO4EPgVNs66cAL5j7Pg3cDPzDtv5M4B2gFXge2DulXd8H3gY6gT9jjNofN483DxiW4ZpeAM41Px8BKOBU8/vxwGLz8zTgWWA7sA34J9DkdG+An1ltB/zAXcD9QCDl3D8HwkAE6AC+ZN6nV4DfATuA/wEagb8BLcBHwI8Bj+2+Wtu3Ah8Ah5nL1wFbgYsyXPtVQAzoMc9/s7lcAZcA75u/1S2A2Pb7IrDcXPckMCnLM5Prd/uh+buFAF/KfawG7jDPsxz4AbA+yz2/x7xP7eY552Zo08+Bm2y/Tydwne2cPcAwYLJ5L3z9vVcp5z0IWAS0AVuA683la83jdJh/h+Luefueee92Af8Cqmzrvw9sAjaav5cCdjfXnQa8ZbZjHfAz237WNX/JbNeLgBfjvd2G8Xx93bovWfqJbG37CrAK4/l+BBhrW6fM47+P0UccA6w3f/ut5jWdDZwKrDSPcWXKPX4V43nbhNGPBFKOv3uGdn/evL5289yfAfY2f/OY+du0mtsGzXuy1vwt/whUm+usNl9p3rM1wGds5zkVo39sBzYA38vZ9xayo8/XH8kv6HhgKfB72/pPAGMxNKhPYbyIY2w/RsR8WLzApebDLOb6V4HrzR/iKPNmWp3udPNYJ2C84D8wH7iArV0LMITEOPPBehNDAwpivHg/zXBNv6C387gSQ+Bda1v3e/Pz7ub5g8BIjBfphiyd1z8wOp/HgL8C3gzn/xnJgvHzQBT4JkZHVY3RCT4M1GO80CuBL6Vs/wXzvv6P+RDfYrb1RPNe1mU4//PAl1OWKeBRoAmYiCGoTjbXnW3e+73N9v0YmJ/h2G5+t8XABHpfNvt9vAZDoA/DeN7eJrvA6MF4Gb3Ar4AFGdp1LLDU/HyY+ZsvtK1bYn6ejK1j7Ou9cjjvq8CF5uc64BCn8/TheXsN431rxhCol5jrTsboxGYBtcCdJAuMY4B9MN7T2ea2Z6e05W/mvtUYAvE983dqBp5Lba9DP5GpbcdidKJzzGu7CXgx5X4+be5XbbY1CvwE4xn6inmP78R4H2aav/tUc/8DgEMwns3J5rm/nXL8NIFhXmsbsKf5fQww0/aOvZyy/Q0Ywq7ZbMe/gV/Z7m+U3v7saIz3wDr2JuBI8/MwYE7OvnewO/fB+DMfhA6MDkgBz2Ab9Thsvxg4y3bTV9nW1ZjH2A3jRYsCtbb1d9IrMP4buMe2zoMhmY+xtcsuwe8HbrV9/ybwUIY2Hge8bX5+AvgyZkeD0Vl9PMN+ZwNvpdwbe+f1iLn/jWQYcdq2TRUYa23fvRij7xm2ZV8Fnrdt/75t3T7mfR1tW7Yd2C/D+Z/HuRM8wvb9HuBy8/PjmMLK9lt04aBluPzdvujwjFn38QPgJNu6L5NdYMyzrZsBdGe4ZkuLGI6hFV+JMSKsw9A+bjS3m4w7geF4rxzO+6J5/BEpy5PO04fn7bO279cBfzQ//wW4xrZuOtlH1jcAv0tpy1Tb+mcxO3zz+4nZ2pujbX/G1ObM73UYA8nJtvt5rG39MUA35oALo3NWwMG2bd7AFHgObfk28GDK75VJYLQC52IOXlLeyZdt3wVDAEyzLTsU+NDW5tT+7B7gv83PazHe4YZMv3fq31CewzhbKVWPcVP2AkZYK0TkcyKyWERaRaQVY4QzwrbvZuuDUqrL/FiHMRLZqZTqtG37ke3zWPt3pVQcQ5UeZ9tmi+1zt8P3TJPzrwLTRWQ0xrzM34AJIjICQ7190by2USJyt4hsEJE2DA1iRIZjgjHKmY3x4qos2zmxzvZ5BBAg+X58RPZrRynl9vozsdn2ucu2/yTg97bfeAfGCzSOdNz8butSd0rZ374+27ZOba5ysoMrpboxTENHY2izLwDzgcPNZS/kOE+u82a611/C6LzfE5HXReT0TAd0+bxlOm/qfbM/O4jIwSLynIi0iMguDA0i9dj2/bMeLwPZ2mZ/JjowBjTZnontynQ8wHy+yfB+i8h0EXnUdMppA64m+3tqtaMTwypyCbBJRB4Tkb0ybD4SY8D7hu09eMJcbuHUn401P5+LoQl/JCIviMihudo3lAUGAEqpFzBMLb8BEJFJwO3ANzA8fpqAZRidSS42AcNEpNa2bKLt80aMjgrzXIKhHm/o/xUYmILrDeC/gGVKqTBG53EZsFoptc3c9FcYo5PZSqkG4LNkv7anzH2eMYVRn5pl+7wNYwQ2ybZsInm4dodzuWEd8FWlVJPtr1opNd9hWze/W7bzb8IwRVlM6GNbs/EChnlkf+B18/tJ2AYJDvT1XiXvrNT7SqlPA6OAa4H7zGfe6bh9fd7sbCL5Xk1MWX8nhgY8QSnViGF/Tz22vU25jtcXUp+JWgxNz+0zkYtbMcxne5j37Upc3jel1JNKqRMwzFHvYfRnTu3ZhiGkZtregUZlOANZOPVnG83zvK6UOgvjOXgIQ/vIypAXGCY3ACeIyH4YKp3CsC8iIl/A0DByopT6CGPE93MRCYjIEcAZtk3uAU4TkeNExA98F8NM49RJ9YcXMASdNbJ8PuU7GKpwB9AqIuMwJhWzopS6DuPlfMbUWPqMObK6B7hKROpNwXwZxogzH2wBpvZh+z8CV4jITAARaRSRTO7AA/3d7jHPNcy859/oQztz8QLwOeBdc5DwPIbJ60OlVEuGffp6r5IQkc+KyEhT02o1F8cw3pl4yrH7/LzZuAf4vIjMEJEa4Kcp6+uBHUqpHhE5CLjAxfG+JSLjRWQYhhmvv9wJfEFE9hORIIYGsFAptWYAx7RTjzEX0WFqCJe62UlERovImWYnH8K495ZWswUYLyIBSGjKtwO/E5FR5v7jROSklMNa/dmRwOnAveb3z4hIo1IqYrY1Rg7KQmCYL9bfMGxz7wK/xTDxbMGwpb/Sh8NdAByMYeL4qXlc6zwrMEZYN2FI9zMw3HvDebgMMDqPenpHlqnfwbA9z8Hw+ngMeMDNgZVSv8QYRcwTkeZ+tu+bGDbTDzA8ze7EsFPng98D54nIThG5MdfGSqkHMUbHd5sq/zLglAzbDvR3+wXG3MKHGJ5u92G8zPlgPsZchvUbv4sxr5FJu4A+3isHTgbeEZEO81jnK6V6TC33KuAV08RxCP183gCUUo9jDOaexXAyeDZlk68BvxCRdozJ5Fwj3NsxvOGWYDiTuG6LQ9uewZjbuh9Dc5kGnN/f4znwPYy+pB2j3f9yuZ8HY0CzEaMPOhrjPoFx/94BNouIZXH4Ica9XWC+B/OAPW3H24zhNbcRw8PtEqXUe+a6C4E15n6XYLwjWbE8gzQajUtE5FKMTvboYrdFo8mEGNkH/qGUGp9jU9eUhYah0QwmIjJGRA4XEY+I7IkxAnyw2O3SaAqNjmDUaHITAP6EEdTZCtwN/KGYDdJoioE2SWk0Go3GFdokpdFoNBpXlIVJasSIEWry5MnFboZGo9EMKd54441tSqmRubc0KAuBMXnyZBYtWlTsZmg0Gs2QQkTcRMsn0CYpjUaj0bhCCwyNRqPRuEILDI1Go9G4oqgCQ0T+IiJbRWSZbVmziDwtIu+b/4cVs40ajUajMSi2hvFXjLw2di4HnlFK7YFR52IgCcY0Go1GkyeKKjCUUi9iJNiycxZGOUzM/2cXsk0ajUajcabYGoYTo5VSmwDM/6OK3B6NRqPRUJoCwxUicrGILBKRRS0tmcoGaCqNnkiM+95Yj055o9Hkn1IUGFtEZAwYWUKBrU4bKaVuU0rNVUrNHTnSdaCipsz5zZMr+N69S3huheNjo9FoBkApCoxHgIvMzxcBDxexLZohxs6uCADb2vNV00qj0VgU2632LozKeHuKyHoR+RJwDUa51feBE8zvGo0rqvzGIx2K5qw2qdFo+khRc0mZheidOK6gDdGUDVV+LwA9kXiRW6LRlB+laJLSaPpN0Gc80j0RrWFoNPlGCwxNWWFpGK3dkSK3RKMpP7TA0JQVNQFDYCz4YHuRW6LRlB9aYGjKkvaeaLGboNGUHVpgaMqKaNwI2IvG9KS3RpNvtMDQDHlumLeSJetaAYhZAiOuI701mnyjBYamILR2hXlz7c68H1cpxQ3z3uesW14BegVGTAsMjSbvaIGhKQjfvOstPv6H+XSF8zu3EIomm54szSKsTVIaTd7RAkNTENbt6AJg+ab2vB7XLhjeXLuTG595H0gXJBqNZuBogaEpCKMbqgDY2Nrtep9oLM76nV1ZtwnbBMPH/zA/abnOWKvR5BctMDQFodqMj2jtcp8U8Non3uOIa59ja1tPxm3CWTQJrWVoNPlFC4w8sGprO48s2VjsZpQ0VT5DYFjZZN3wqhl8d+8b6zNuowWGRlM4tMDIA8df/yLfuustbQLJgjUZvbMPGka1mebj10+uyCgYsk1ud4d1PimNJp9ogZFHunQHlREr3XhrHzSM6kBvMuXpP37cUQBk0zA6QjraW6PJJ1pgDBB7RPGOTl20JxMhM914XzSMGlPDsHhkyYb045oC45z9x6Wt69QCQ6PJK1pgDBC7kGjtijB/9TaWbdhVxBaVJj390DCsRIIWdo3DwtIwPjl3ArdcMCdp3X1Z5j40Gk3f0QJjgOywjZh3dIW54PaFnH7Ty4ARbXz90yvZqTWPhGBtaQ+53qcqRWDUBb1p21hzGAGfh9Nmj+Ggyc2JdX9f8JHOKaXR5BEtMPrAy+9vY9Ou5DgC+7zFDfNWJq1btGYHNz7zPj+4/+2CtK9Uefa9Lazfady3Da3dLN/U5mq/gDf58XTyKbDcdBur/QDcdfEhzLvs6MT6Np21VqPJG1pguEQpxWf/vJAjrn0usWxre0/SROxba1uT9rFiD97b7K6DLFdumGdEX192wnQAVm3tcLVfNJ6sHThNcG9tMzSWUQ1BALweYUxjVWL9Ll1ISaPJG1pguMTqeKykdo8s2chBVz3Dy6u2ZdzHciXdssu9GaYcCXg97Du+ka8cORWAtTuyR29bRGPJKoWTC+3W9h6q/B7qg73zG7VBH16PANCmBYZGkzdKVmCIyBoRWSoii0VkUbHbk2p7n28KilufX51xn5ffN7ap9ER44VicYbUBqgNeagJe16N+677NnTTM+O6gYbT3RGmo8iMiScv/dfEhgNYwNJp8UrICw+RjSqn9lFJzi92Qlo5kgXH36+ty7nP90ytzblMJhKPxxHxETcDn2t01GlNMHl7DLZ8xvJ8isfRJjHAsTsCX/hg3mHMaWmBoNPmj1AVGyWA3bThFdJ93wPhCNmdIEY72duq1QW/GAMfU1OfReByf14PfFDbhaPp+kZhyFBiNWmBoNHmnlAWGAp4SkTdE5OJiN8bubeM00r36nH2Svn+0vTPpeyWnDQnZBEYmDeOyexYz4ydPJsWwRGIKn0cS+zrd94hNe7FjCYwfP7TM9SS7RqPJTikLjMOVUnOAU4Cvi8hR9pUicrGILBKRRS0tLYPeGLuG0R1JHun+4OQ900a5R//6+aTvlVwyNByLE7Q0jICzhvHAm0YU96I1OwCIxxVPv7uF9za34/dK4jhOx/Y7CIyg7fdY+OH2gV+ERqMpXYGhlNpo/t8KPAgclLL+NqXUXKXU3JEjRw56e+waRihFYEwdUQfAZw6eCEDK/KuxTwVnTk2awwj66MxSdW9bhxFX0W6734GESSr9HkZi8YRAsWOfBHcSKBqNpu+U5JskIrUiUm99Bk4ElhWzTe09yRqGvZMaURcA4Kpz9uGMfcc6BphlS5JX7iTNYQS8dIXSNQwrM23E1CLazPt97bn7ICIEfR56IjG2dYSSkgqGo84ahh0ngaLRaPpOSQoMYDTwsogsAV4DHlNKPVHMBvXYtIr2nmiSiWl4XTDxeen6Vsf9K1lghKKx5DkMBw3DEhSW2cnSMKy5iNqgj45QlLn/M4+Tb3gxaT+nSe/kY1euOVCjySclKTCUUh8opfY1/2Yqpa4qdpvsEd07OsNJWsRwU8MAuDklAZ5FpQqMaCxOXEHQLKDk5CUVj6uEALaC9SyNrr7Kn7aflWYETC+pDBrGRYdOAnRdDI0mX5SkwChFuiOxRPTwPxd+lLTOHmW8x+g6x/3DscrstOzJAcHZSypiSwFipQOxNIz6KuPe1gZ8SWZBi6UbdiV+l1QuP2VvQNcp0WjyhRYYLumOxBnbZOQoevKdLUnr7BOs1kga4Psn7Zn43BOpTA3D0qwsLaA24CUUjSdlkbWbjMJRRU8kxrtmgsLmWkN7qwv62LQrubb3iysN77in3k3+PSyq/B5EoDvLJLtGo3GPFhgu6YnEGNNYnbZ8yojajPt84fDJ/N8XDgQqNz1IQmD4er2kADpto/5INFnD+NIdr3P90yvxeSRxz2uDPja2JmcKTv2eiohQ7c8cKKjRaPqGFhgu6YnEqA14OXfOeGrNLLQ/O2MGz33vmIz7VPu9BLO4hFYCoRSBYd27M256mQ+3GcGNEZswXb6pjVdWGXETTTWBhLmpsdrPzpTiS5a31Mj6IJmoCXjpimiBodHkAy0wXNIdjlEd8FIb9CZGx94Mk63TzXkMESHor2yBYWlWViDdzLGNgJGx9tbnVyVtA7Byi3NU9tb2nrRllonq6e8clbbOojrg1ZPeGk2e0AIDY4R7we0LElHGTnRHYgR93kSNCwBfhsnWB792OAuvPA6AgNfYvlID91LnMOxOAeOaaoDMbq8x22T4qfuMSVu/aVc3U0fW0lQTSFtnUeP3JeWo6tHahkbTb7TAwHDTnL96O9+9d0nGbULROFV+D7W2utKZvHNqgz5GNxgT5JYppmI1jBSTlD1lR61ZcjXTvbFH1194yKSkdVvaeti0qyepWJIT1bZUJM+v2Mpe//0ES9a19u0iNBoNoAUG8bjiFbO2RWrBHjshU8OocaFh2EkIjAp1q7U0K8t7zO5RZq3735c+SNrn9R8dD8Awm+aQWu9ixeZ2WrsiNNdmnr+A5PiNpeuNxIYPvrWhz9eh0WjAl3uT8uYfCz/iJw+/A6SXBLXTE40T9HuocaFh2NEaRrKGYccyD7Wn1N0eURfg1s/MYc/d6jMetycSo70nQl0w+yNc7fexo9PwpvKaKUKy/c4ajSYzFS8wrJrQkNmWrpQiHI2naRhuBIZlgqnYOQxTs8omMMYPqza8mUxNQEQ4xWHOImnfaJy2nigNVdkf4ZqAl7buCD9+aCkdpmDSbrYaTf+oeJOUlasIjJQfIYciPVZnX+X3JAmMHZ3hnMfXGkbypDfANR83aodYaeKjceXKvGenvSdCOBpPRIJnoibgZUNrN/9YsJaHFm8EYKeL302j0aRT8QKjNsWk8dx7W9O2sdvh7SapNhfV3KyOslI1jLfWtuL1SNLk9PkHTWRcUzXdYeOeRMyaFk995yge+Nphro67rd3o9HOapGwC3uKjHV1um6/RaGxUvEkq1Z7tZK6w6l8EfR5qgr0d0OcPn5Lz+NlqOVQCd7++jmP3GsWw2mTX1yq/hx5Tm4vGFH6vh+mjM89ZpLK90zAl1uQQGDUOAuODlk62d4SSsgxrNJrcVLyGEUrJ8RRxSOHRa5JKnsPINboF8HgEv1cqMjVIOBpnV3eEfcc3pq2rDnjpMYVzJB7H18eaFVat7ip/ukCwY9cI7azY0t6n82k0Gi0wEh35Xz4/1/juoAlY8xpBn4cGM932pOE1rs8R9HnTBFMl0NplmI2cAuuqfN6EhhExNYxc/OnCA/jzRXPxeiQhMII5amFUZxAoF9y+kPU7tWlKo+kLFW+SssxNB0xsBiDs4CllZZoN+jyMbarmD5+Zw8yxDa7PEfB5KjIOY53ZITfV+NPWVQe8iTTn0Vjc1aT3STN3M/b1e2ntcicwUk1Sx+w5kudXGFlu31zbyvhh7gW/RlPpaIERjRP0eRLeTE4mqfc2G+aLoDladUpTkY2A11ORcxjn3voqAE3V6RpG0Odlu1m/262GYdFY7WdLW0/iONmwT3qvueY0Xl29PSEwNBpN36h4k9Tqlg5C0Xii7nPEoWP/npkypCrHaDYTAV/lCIx1O7pQSiXlbKoNpnfq1QEvPZEY9yxax7zlWxzdmbNhJR60kjtmwtJArEBxuwCplN9Eo8kXFS8w5i033Gi9HkEkWcO4/qkVzLMV5wnmmGDNRMDnqQi32vmrt3Hkdc/xyJKNSWVUU12XwRC+PZEYt71opAWxB1DmYoOtDkYuk5T1m9WY/+PKXqyp/H8TjSafVLxJCuBje45ERPB7PYRsAuPGZ1clbZerc8pEsEI0jDfW7ARg+ab2pMJSTq6t1QEv3ZEYDVbgZB+cpD6+/zgeMPNB5TJJVZnrfabJyx6oGe6jVqPRVDolq2GIyMkiskJEVonI5YNxDstsMneyMeEd8HqIRDMnIMzlwpkJY9K7/AVGq+m51FjtT6pB4eTaakx6x/CYtiKnuaNMfMEW/5JLiFeZJisrjcu0kXX81ayCWAlan0aTT0pSYIiIF7gFOAWYAXxaRGbk+zxW0jsrH5HfK4mOKxZPFxz91TAC3sowSVnWnmufeI9VLb2FkJw0jKbqAOFYPHG/+1LzvM6WDiSnScrUMDy2bLeHTRsBZDZJ9URi/PnlDx2fAY2mkilJgQEcBKxSSn2glAoDdwNn5fsk7T3GiLjejK3wez288dHOtElbi34LjAqZw7DzoweXJT473TfLNNTWkzu9Sir2/FGNDi67diwNw+62azk4ZNL6bnluFb989F0eXqzToGs0dkpVYIwD1tm+rzeX5RVLw7A6oK3tId7d1MZjSzclEuPZ8es5jKxkijVJrWUBvbEZXnPdnV852PV5rOBJyD2H4fMkm6Ss9gR8Hm56dhV/e3VN0vbxuGJbhzEBr7PaajTJlKrAcJoCTbIPiMjFIrJIRBa1tPTPr37y8Fr+fNFcZo9vSlr+YUsn972xPmnZlBG11LtIBeJE0OetiAlWJ6FolapNpcnUMLZ1hNl3fGPCTOQGp1TpmbA0jH3GJacnsdp69X+WJ5Y9vHgDU6/8DxtbDZddfx/TlWg05U6pekmtBybYvo8HNto3UErdBtwGMHfu3H4Zmxtr/By39+i05V6vcM3j7yUtu/mC/R1Hym6o8nsrYrQajsbTYk6qMmgAE5qNCOtwLJ4wCfaF+y89jKiLifJRDVXcffEhaQLDwiqlC/DEss0AvLCyxWybnsPQaOyUqobxOrCHiEwRkQBwPvBIoU7u8wjDU7KrZkpi54amGn8ilUU5E47F0+5bXYZ6FeOaqhOagt3V1S0HTBrGwVOHu9r2kKnD02JBTjbTjOxlq+pnCTELN+nrNZpKoiQFhlIqCnwDeBJYDtyjlHqnUOf3iHD47skmklH1/U+FPazGT3ck5jiRXk6Eo/Gkzv9bx+6esSqhxyM0m0kJG/ohMAbKzRfsT13QR12w99y7UoT66q0dTL78MRZ8sL3QzdNoSpKSFBgASqn/KKWmK6WmKaWuKvT5u8LJdaadopXdYmVr3WUbsd792lqmXPFYn+IPSp1QNE6V35solpSrVsVmMx/Uqq2FTzXu83oYWR9M8pTalaJRPLZ0EwD/en0dGo2mhAVGMbj6HKN0aE8kRkco2m832lQsj6DWrgjLN7XR0h7iqv8sRykSdabLAWsO4+ApRiBkrUP8hRMHmdsXmqDPk8hWDOkCw3KFXrphV0HbpdGUKlpg2Ljg4In4PEJ3JEZXOJY0IToQrEJLHaEIp/z+JU6/6aWEG1hnuIwERszI/GuN2t2amr534p6D2ayMpEbg2wXGSJsJctXWDpTSE+AajRYYKUTjilueW82qrR0DmrewY8V57Og0OqQttkR75eQ9FY7Gk1K550ql8tWjp7Lv+MZ+e58NFEPDcBYYY5uqk7Ytp99Jo+kvWmBkoCscY1RDfgSGNbH61DubE8vaTFPUBy0dXPng0j6n9y5FLJOUZcrJFS9xxSl78/A3jihE0xzJpmGMbUzWLnd0hgvWLo2mVNECIwuj6o1OY0zjwExTVj2Ie1OCAQEu+ceb3LlwLQs/2DGgc5QC4ZghMKxiSJnKo5YKQZ83IaijsTgdoSiXHD2Nl37wMXZL+c13dmmBodFogZHCj07dO/G5vsrHrZ+Zw32XHjagY9YHc9vyyyHRnWWSuvqcfbjk6GkcOLk4k9luqfJ7EkkPt7YbZsIJzdVMaK5JGyQsWa8nvjUaLTBSOHbvUYnPtUEfp+wzhnEp9uy+4lRxLpXtZWDysExSuzVWcfkpe2WMwSgVagO+RF3xTbuMokzW3MX+E4clbfvAm+naoUZTaWiBkUKdLXbArVtoLnwu6lW3tLuvOFeqWAJjqFAb9CXcmi1HhN1Mz7gDJzfzw5P3Smz71tpW1m7vKnwjNZoSYui83QXCLjBmjG0oyDmbawOs3dGZtrw7bNS8HiounaFYPGf22FKivspHeyjKBy0ddJiahv33v/SYaUnbl5MLtEbTH0o1+WDRqA36+OVZMzlyj5FMtpUZHUymjKjlg5Z0gXHN48u549WPGNNYxZF7jCxIW/qLUmpIahgAx/72BY4wU8FUZ9Eqy2GeSaMZCEPn7S4gFx46uWDCAmB0QzBRg8HOBjPNdmcoygG/fJr/fmhZ2jalQsTM7Jqv6PhCYE/38vKqbUB2z65ySuOi0fSHofN2lwlOMWrNtQFHP/95y7cARjLE7Z1h/r7go8FuXr+x4hkCLuZrSoWpDoOC1GDDeZcdxa/Pmw3Awg938PN/FywHpkZTcgydt3uI8z9nzwKSa0v/8uxZ3PHFg2iuDdLaHclo8nCq/ldqhF0G65USh04dzs/OmJEI0gv4PGmeXbuPqmfcMMNz6prH3+P/XllTFkGWGk1/GDpv9xBnvwlNgDECH292QBceMomjp4+kucaPUvDW2p2J7e0T3TuHgMvtUBQYHo/w+cOnMG1UHZDZHGWVebUop4SRGk1fGDpv9xDHXixo3mVH8+4vTkqsa64zUpCc98dXE8sitmpvW4eAy61V68MqiTqUsHJ91WSY8E7VOtqHmMBYvK6V215cXexmaMoA7SVVIKwJ06Yaf5qd3F6lTimFiCTlOFq2sa0wjRwAltms1NOBOFFrVlO06pak4ksRGJYL7lDh7FteAeDio6bl2FKjyc7QGw4OUaxU6V88fEraOrsZ58l3jIlue13sF80a0wDxEnXtTAiMAZSyLRZWTfHpo+sc1w91DcNiMJ6dth5dxraS0AKjQIyoC/Lhr07lkwdOSFu3p62u9IfbjHiMTBOrpToB3hMeuhpGQ7Uh5EbWOWcn9nmHtoZhEc6zW/BDb21g9s+e4r3Npa8Ba/KDFhgFJFPdh4YqPx/+6lSCPk8iRYhdw7BTqnUZuoawwLDyR2WKvUk1SQ1VL6l815S3NN93NmiBUSkMPftBmSIijG6oYntndoGR75c+X/SapIbeGOS8OeNpqPJx4ozdHNd7U7yk7EWXSh17jY+ePLfbMqXmW3PRlC4l93aLyM9EZIOILDb/Ti12mwpFY7Wf1i7jBQ8NMQ3jf1/+EMhdZa8U8XiEk2eNwZMhu266hjF0Osh1O3oTJuZbM0oIjCF0PzQDw5WGISIjga8Ak+37KKW+ODjN4ndKqd8M0rFLlqYaf2JEmNopDavxs7MrQkeoNCcZl6xrBXonkMuJ1EnvoWSSsj9HedcwzKj+RR/t5KLDJuf12JrSxK2G8TDQCMwDHrP9afJIQ7WftoTASO6Uppj29e0dpRnEN2NMAyPqAjRWl5/AGMoaRshmwsyXOTMai/PuxrZEDZd/L9mYl+NqSh+3cxg1SqkfDmpLkvmGiHwOWAR8Vym1M9cO5UBzTSCRhHBnZ7ImMWVEHW+ubS3Z2tKxuGLupNKusNdfUjWMUp1HcsLuVZcPQdcRijLrp08O+DiaoYlbDePRfM4liMg8EVnm8HcWcCswDdgP2AT8NsMxLhaRRSKyqKWlxWmTIcfYpmraeqJ0hqLsMCe/rSJOU0eaGkaJCoyeaGxIRnm7wZ4axO+VIaVh2AVGZx7cgZ3SokxoHlhFSs3Qwa2G8V/AlSISBqyhr1JK9avCkFLqeDfbicjtwKMZjnEbcBvA3LlzSzOarY+MbTKC+za2drPNND1VB7x0hmOMrAtSG/CWrEmqOxzLWktiKOM14zACPg8Br2dIeUnZ5y3sHlP9xSnFe77nRjSliyuBoZSqz71VfhCRMUqpTebXc4DSLQKRZ4aZqSl2dUfY0RmmqcYPGJ1VVcBLc10goXmUGt2R2JD0kHKD14yfGdtYRXtPlJ4hNOlt1zBauwY+2HByoe0pUc89Tf5xbUMQkTNF5Dfm3+mD2KbrRGSpiLwNfAz4ziCeq6SwRujdkRg7OsM01wYSWWurfB6G1wZL1iQVisTLVmBUB7xcd95s7vzKIdRV+Uo2NUg0Fmf+6m1Jy+xmqF3dA2+3k3ZVqtkHNPnHlcAQkWswzFLvmn//ZS7LO0qpC5VS+yilZiulzrRpG2WPFSXdE4mzrSPEiNpgIjq8yu9leIZCS8UmGosTjsWHZJS3Wz45dwJjm6ppqgnw7yUbS7LO+s3PreKC2xey4IPtiWXLNuxiTGMVdUFfXkxSThpGNK50NcIKwa2GcSpwglLqL0qpvwAnm8s0ecQaobe0h1j44Q6G1fqxCthVB7w01wZKcg6jx5wELtdJbztWvMljS0tvHPP+1g4AtrT1JJat3dHF9NH1VPk9eYkfCWXQJp5fUR6OJ5rs9OUNb7J9bsxzOzT0drhWMrfdR9Ul7OdVPmsOI1xyo9vuIZxHqq+MbjASFC7fNDTyJ3X0RKmv8hmT9QP07pq/ehufum0BAKfuk5xG5c21FeH5XvG4FRi/At4Skb+KyB3AG8DVg9esyqTapmEAHD5thM0k5WFEbZBwLF5y2VJ7iyeVv8B4+OtHANAZGhp2+zZTYAT93n6l8GjriXDTM+8TiyuefndLYnmNmcZ+2shafB4hQ1aVvBKLKyZf/hh/MdPQaAqPK4GhlLoLOAR4wPw7VCl192A2rBKxJr0ts1Nt0IcVAuDzemg2Cy2V2jxGJQmM3RqrGNNYRVfYENpXPriUyZc/xlabGWiwuf+N9fxz4UeJ7/9Y8BFb23qw+mxL42vribCtI0RtwNIw+i7krnp0Ob99eiXzlm/B7+3tLqz4IL/XQ5OZtmaw6TTv+TVPvDfo59I4k1VgiMhe5v85wBhgPbAOGGsu0+SRKp/xEr62ZgdgCIxR9UZshkeguc4QGNtKbB5jKFfb6w81AW9Cw7hz4VoALvzzawU7/3fvXcKPHjS8zVdt7eDHDy3ju/cuSay3NNDrzI518bpWAj5PvzQM61jhaJxttlLBVi0mQ2AE2No2+O7eliAs1SJilUCuOIzLgItxjrZWwLF5b1EF4/EIYxqr2LTLGK3WBX3c+pk5PPHOZiYNr6XNdIssNQ3D6rzKNXAvlbqgLzHatVixpb0g546ldJbWBHc4Gk9oelbHarnAHjilmdc/3DGgOYxwNM7jyzYDRjzKXmOM0CyfV5gzpomHFm8kHlcZM/7mAytTc6zE5vAqiawahlLqYvPjKUqpj9n/0F5Sg8JujVWJz3VVPkY1VPG5QycDvRrG5l3dxWhaRpZu2AVA0Ff+XlJg2O+fX9HCmTe/XPBzp8Y8WLnHRtQHWWV6SUVicc6+5RXufWM9AJedMD2hYRx//Qt8+Y7X+3ze97d20B2JccsFc5h/xXGJJJN+j4cpI+oIR+M8+NaGPs0vxOOKW59fnfA8y4VlBtTyoni4fcPnu1ymyRNHTR9JXTBZAdytwbCfP/ve1iK1Kp3VLR2Jz6U2GT9Y1Jq/y9vrdyUtt8rrDiZ2t1alVCK78ftb2lm30xhIhGOKxWYnvOfoevxeDwGf4SW1amsH85b3/fmxanePMActVn6tgM9Dtend9917l/CLR991fcxXP9jOtU+8x2+fXulq+1KtBVNJ5JrD2E1EDgCqRWR/EZlj/h0D1BSigZWGpdBffOTUtHVej7D7qLrEBGM4Gucrf1vEis2FMYfE44qPtnfy4FvrE8vs/veHTB1ekHYUm1njnFOofew3zw/6ue1mpc5wjDYz6nzllo6EucoeRFdlmgmD/ZzDUBjHtJIOWsLSOldd0NdvU+Q7Gw2B69ZN3C4whlLG4HIi1xzGScDngfHA9bbl7cCVg9SmisZyo/V7nW3BtQEfm805jmUbd/H0u1vY2tbDw984YtDbdsLvXmB1izGKPm7v0TRU+Rluem5BZXhJgREfY+fEGaN5yuZyOpjYBUZ7T8QxTYndG6rKZ2kC3gEF7rWbGkZ9lS/te39/97VmNUDrmLmwpzm58oGlXP+p/fp1Xk3/yfpLKaXuAO4QkXOVUvcXqE0aegVHKrVBX2KktbHVMEEUSlW3hAXAY29v4tMHTSRqjjSvPXefgrShFEg1FU4dWQcUSmD0/tbtPdFEx23HnoI8aHbmo+uDPNnaf9ffHaZWa127ZaJqqPanCYwel4koN7X2TtjnQinF1/75ZuK75UmoKSy5TFKfNT9OFpHLUv8K0L6KY59xRhB9c61z5braoJeOUJSucJRv3PkWUBzb7hUPLGXJutbERORxe48ueBuKRWoZ2iP3GFGwc9uT/33zzrcSQZ522mwCw9Iw9hnf6JgHyi07Tc+8OlMbOO+ACRw0pZmvHDk1zZ3abXLGzZaHVyy3SWqtrTY5VM58WamRSxesNf/XZd1KkzeuPHVvzth3LLuPcs4oX2smkXvord6ymMXKFrqjM5wQVjUV4lILhtC2M2FYDafNHlOQdCF2k9SKLe2O7rxttiSDloYxsj44oPNaHXbQjBVqrg1wz1cPBWDdzvTO3M35LMESdmEq25iiHXkzaOCawSWXSepP5v+fF6Y5moDPwwGThmVcb5kErnxwaWJZV7iwo61Dpjaz4IMdhqYTiiLSG3RYCdgr8AE01vip9nsLUhfCjfnGnpXW0jCabXNNfcHNfHSqhvG5vyzkpR9kD9Ha2Nqd0FoiLjSM1Gy4VX5jTubsW+bz36ftzWG7F07Lq2Tcpje/TkQaRMQvIs+IyDabuUpTQCy3RjuFrnjWYJpkdnVH6ArHqPF7BzVgq9SY2JzsIFgf9FHl9ySy9g4muSauR9QFkgRG0HR5ba7pn8BwQ+p8xbod2eOEfvTgUg675lnabVHkuYjGk7fZ0NrNK6u2sXxTGz//t3tXXs3AcBuHcaJSqg04HSM9yHTg+4PWKk1GJg+vzb3RIGB3fRw3zKjh/ItH36UzHKU64LbSb3kQ8Hl46OuHUxPwcsKM0Xg8QpXPWxBXz1zR2sNrg+y0VdazNL+mFIERdTmf4XFh+umrW+0/zXQqFm5qaThpIVc+YGQYGJZhvk+Tf9wKDOsXORW4SymlXRSKxMFTh/fbvDAQrAnTg6c084OT9jKWReO8unp7mk2/EthvQhPv/uJkbv/cXMAYZRdiLimXhtFY7U/qXC0NI5AShb/DZblWNxPlA80h5krDcBAY1qR5X96H51ds5fqnVrhvnCYJtwLj3yLyHjAXeEZERgKFS8+pSeLYvUYV/JxWfqKTZ+2WNKJcs72rYpIOZsPv9aBUeq6nfGN5SV137uzEsvGmxgfpgsE+t2SPd9jW7lJguOjM+/L77+qKpE2IuxFKlhby+/P3S7vG/yzdzCNLNjrtlsbn/+91bnx2FZFYnB89uDQR06Rxh9v05pcDhwJzlVIRoBM4azAbpslMahwAMOjpta00GE7eUANx1ywXfGag5WCXKrVMUsft3TtoOHHGbjzwtcN47nvHpP0+9vmF0Q29ecqsHFS5cCMw+pJD7Lw/zk9yBR5W43d1Duu+zpk4DJ/DfNm37nrLdRsA5q/ezj8XruWKB97u036VjttJbz9wIfAvEbkP+BKwPftemsHCKTJ2/urB/Tk+9xcjfbfTfIXfUxlJB7MRMGtFDL7ASK89UhPwMmfiMKaMqE0zzwRtZXNv/9zchHbqWmDE4hlToVh4PJJVaCilOP+2V7nrtbWJMrIWE5praOkI5RQaVoCo3+vJixZnzeHko855JeH2Tb8VOAD4g/k3x1zWL0TkEyLyjojERWRuyrorRGSViKwQkZP6e45yptZBw/hou+ELv7W9h9cHMQq2xsH8oF3iezUMJ1t7PrFMUvYO2m4iTJ3ctm83ZUQtN5y/H0DG2vA9kViSMInE4gxz4WGVaeJ7864e7nptHQs+2MEVDyxNWz9rXCNKwWk3vpT1+JYg9nmFeD/T1T77Xm80vhX4N1QqJ5YKbgXGgUqpi5RSz5p/XwAOHMB5lwEfB160LxSRGcD5wEzgZOAPIqIN5Ck4maTWbDfSdpxyw0t84o+vDtq5/WYH9NMzZiSWZUpjUkn4LA0jPvgmKa9HEueD5DmE1AwBQvJvUx/0EfB5MmoYH//DfOb+zzwWrdnBGx/tJByNuwrKtKrxWY+C5VX3yT+9mhQzlMqps8YAsLU9RCyuuO+N9Y4eXNZEvt/jSWgbbglFY8Tiii/+dVFimVWETEeM9w23AiMmItOsLyIyFei3aFZKLVdKObkqnAXcrZQKKaU+BFYBB/X3POVKqsCYNLwmITC2D3JxpYhpOjh0Wm9m2iq/Nkn5PQXSMKKxhPnrpJlGOhZ7osq6YLLASC02JCKMrAs6phRRSvGuGa1+3h9f5dxb5xOOxgm4CMq0TmPFe6zc0kFbTyQtpUcqe+5Wz5eOmEI0Fufu19fyvXuX8LdXP0rbzhIifp+wxyj3iSfWbu9izx8/wXf+tThpuSUw+6utVCpu3/TvA8+JyPMi8jzwLPDdQWjPOIwSsBbrzWUaG6kCY/eRdWzYmRws5dbPvq+MajA8XIK2TqSSorwzYY34B1tg3P7Shwn33eF16ek3UoW3k71/RH2QFrPD7AhFE/EjVsElOx9s60wIqGxYGsUwcw7lpBte5LP/uzDrPl87Zhoj64M0VvvpDMcSHkvbO9OFmaVV+Dwe/vnlQ3K2B2Ddji6O+vVzAGleVFa5Wa0b9w23AuMV4E9A3Pz7E5DV7iEi80RkmcNfNu8qp9/P8Q0UkYtFZJGILGppaXHapGyxEsBNHl7D4/91JFNG1CalfobcAV59Zda4BkbWB5k9vglIto0HtYaRGOUPpkkqtW6E9bLYl6ZGXTuNoEfV92oYs376JKea8wdrMhSAemTJBsAwZ2Vsm/nfHlGeWmDKzjn7j+MHJxvxPE01hlbUambEdQoWtCbF/V5hZH2QaSPTA1hT70+2CW1Lw9Dm1L7hNkT3b0Ab8Evz+6eBvwOfyLSDUur4frRnPTDB9n084OhgrZS6DbgNYO7cuRWlV1oaRlNNgL3HNFAT9NEViRG3jSZD0Ti1A8s3l0QkqpgzsSnx3d4xXXr0NIc9Kgsrv9RgahipKWCsvs7+u6dqGKlpTADGNFaxYPX2xH4fmGnrM3l4RWKKxT85AW+W9C/xhIbhLurabkazPLu2thsahtNZovE4Po8kOnh7qn2LKVf8hw+uPjWRpiZbIOVgm27LFbdDwz2VUl9WSj1n/l2MkR4k3zwCnC8iQRGZAuwBvDYI5xnSWALDirCuDXhRCq598r3ENgMpluNEOJZsyx5mjgqDPg8HV0ilvWwUIg6jPWSMmP/7dMPhYIRpkrKnW7fMg3MnDePRbx7BMXumB3nOGttIeyjKh9uTO91MSQCvO282TTWBtLTudizh4zbq2h58N7bJCDzcYNZ3cXK76wrHEhPrdqaPTp7PeNeWMbg7SzLIbQ5zOJrcuNUw3hKRQ5RSCwBE5GAMM1W/EJFzgJuAkcBjIrJYKXWSUuodEbkHeBeIAl9XSmm/txQsk1StGRNhebH86YUPEtuE8pyQMBSJJZmhRIQXvn+Mq1xDlUAh4jCswkhWlcNLj5nG8LogZ+/fO81naQEKw2XViammOWd9yrxXJjNmtuzJFlbw5nCXaq298x9vCQyzPU5P1OJ1rcwYmx4PctOn5/DUO5sTdcFXt3QkrjubhmF5SenHt2+41TAOBuaLyBoRWYMxf3G0iCwVkT6HSiqlHlRKjVdKBZVSo5VSJ9nWXaWUmqaU2lMp9Xhfj10J9GoYlsBIl/v5nsMwNIzkx2XS8FomOJg8KpFEHMYgpgZZusGYE7ACN4M+LxceMinJVGSZbLLVybZSc6R6SmUSdm6q51nmMqdO3Qn7fMiIuiABrydRq96p5S3tISYNT3/Wmmr8nH/QxMT31bbAQCcNY+8xRvssAbd+Zzd3zF/jqs0a9wLjZGAKcLT5NwUjEeHpwBmD0zRNJoI+Dz6PJExSTn7y+TZJhaLxPqWAqDSsOYzB1DDeWtsKwLSRmd1KE3EQWY5jmbJSBYY92nqyrXOucvG7/+T0Gcwa15A4djbGNFZxyTG9814ejzCmqTdtidOzm+n5q/J7kzIf2Oc2vm260i644rjEshvP3y+hYVn89JF3crZZY+A2l9RH2f4Gu5GaZESEU/cZwyHm3MGscY3UpgiNXDUy4nFFZyia1c5rJxRN1zA0vfgLEOndEYoytrGKySMyp7jfzcwXdWiWeaXaoI+ANz14LxKLM2VELX/4zBx+eubMxPKgCw3ji0dM4dFvHulqUPHzM2emacWjbAkJ//HqR6xPqeIXjsaTXLktqv3eJA0otfqftY01txL0eRP1XOxsbM1ew0NjoHuAIcqNn96f02ePBYx8PI9884ik9VtyJCP8xaPvMvOnT7L3T57IeS6llPHCuvDHr1SsOIwv/vV1Hl68YVDO0d4TyTrxDMaz8Pz3juG7J+6Zdbug35NUyhUMgVET8HLqPmOSYn3caBiJbV0IF6c0Ivb9OsMxzr4leYo0FI05CiNLUF99zj5MbK5Jcy8HaKj2cfU5s6gP+hhZH3TMrnvOH/o9JVsU1u3oKkhJ4FR0D1AmNFYndySrUpK8pXJnShGbbFj2XjcjzUrFMgtG44r/unvxoJyjIxR1TDyZyuQRtVldYMEYaVs1tS1C0XhiMtoejOnrw0DBjYbhJFRStYdttlxXSqmMGq41Z3PBwRM5cHJzksZc5fdw8VFTERFOnjWGpT8/ieqAl06HksZb2vLvNbWhtTvhKpxvjrzuOU75ffb8W4OBFhhlQqrA2JrDbbAvVdIs27abiN9KxSm/V75p74kmPOQGStDnoa0nXcOwOuX+eg+50jCcBEaW4M9oXKFUsjC68JBJaWnOa4NeukzPqF3dEXoi8bT3Agxt5Mg9RiRSqwwWh1/zLAdd9cygnqPQVFZtzTIm1Uc9tTNI3959j2B5XOmI7szkqyPPRkdP1DEQrz8E/Z40DcNINGhcx95jGvjmsbtz0WGT+3ZcW6fuEXByGnPWMNKfLaUUItL7/Nm0kF+ePYtfnj0rafvqgJcuM/vs8yu2AjB7fLpr8axxjfz9SwezqyvC+p0LeGdj4U07QxXdA5QhDVW+NPt0KgdNaU58zuaCCVrDcENtAeqa90RieatuGPR5ae1OjnaOxFRCw/B6hO+euKcrryc7dmEwJcPkvFOySqcJ7TZToIVMrSHXgKU24CMci/PS+y3sNCO5Z4zJ7ObbWONnd1siw0LUZM8HxazhoXuAMmRMY3XOh8pu681VkEZrGLnJNWeQD3qicVcmHzfs6AyxbkeyZ1AkFu+T5umEXVOwV/iz4yT0nITIv5ds5JbnViXm0HINWKx5pAv//Bqd5vPtVDvGzgW2GI6dLuucuyE+iPE4j77dmy1p866enAO+fKJ7gDJkTFNVIpGbneWb2njVrMxnj4LNlBLColfD0JPexSQ12n4gOE3yhm2T3v3FYxOclhDda7d67r/0sMRyp/kzJw3jxw8t49dPrkhkMMjl1m131f31kyvM42bf5+Cpw7nx0/sDOHpY9ZcOh4n1fHD90yv50YPLEt8P+dUz3PbiB1n2yC9aYJQRv/vUvuy1Wz3TRtaxuS195HHK71/i07cvIB5XdNviNFa3ZPeosgKpdOCeewZj1JdPDcMJp2j+gWBNSn/m4IlJ6UWcMhMEsmg2fzUjsXOZx5wCWN1ko60zA2A78lh9L5/Cx87tDsLh/jfT09IPFroHKCPO2X88T3z7KMYPqyYcjWfMyLmtI5T0QJ9+08tsz1LjOaFhaIHhmnynZonG4sTiatCE9o8fWmoUS8rjPJXVWTtpD6mETS33O8dP58Xvf8xxm8nDMwcsgrPAcIM1/9TRk79OPhLtHTDk0zxlJf20k1oLZzDRPUAZMqbRSOa2qbXXB9z+0K7b2UVrVzjJdTLVY8ZOr5eKflyyceKMXjfNfCd/7DF/g3xpGE9++6ik7/9YsJat7aG8DgqsgUajQyeXyt5j6gHweqAm6HyNY5uc50QsnDQXN1gebvkq19reE+GmZ99PfA/nMV3MUdNHArC/rdTA907KHqSZT3QPUIZYL9bGXb0jD3uw0uJ1u9jZFUlKx5AtB5LWMNxx62cP4OdmSo185vLqCEWZ9dMngfw5Huy5Wz0f3z+9mOVA5zAAPj5nHJefslfC68iKhXj5hx9j/uXHOu5z5r5jueFT+/HFI6ZkFIq5AghT742VBj4XVgxNvgTG1f9ZnlS9MJ8CIxSNM6G5ms/b3J2dXIcHC90DlCFWfYFNtvw4f1/Qm/Lrufe2EosrRtX3jtiyPdROfvCadLweSXjl5NMk9aEtoV4+y+H+9pP78vvz90talg+Bcf0n9+OSo6fRYwpNSwCMH1aTeDZTERHO3n8cNQGfYyoSN05oqds4mW+csCbhu/M0UZ1axzySx2ehJxKjyudNrnhZwPdSC4wypMkc0dnNTEvNcpnjh1Xz8qptQG+aa8juKWWNlrWGkRvrRc6XT/87G3dxxs0v9x4/j67NIsL4YckdeD5/44+ZxZvGNmY3JaXipEnc+ZXcdby9nuT93JrvLDffXAk73ZI6F5JPDeP5FS14RJIEu5NL8mChe4AyxOf14PVI0ih3TGM1tQEvB07uDdizj1LcmKT0HEZurE4qXxrGaTe+nPTdKdXFQJjYnDyRnM9okm8fP53XfnQcozLEY/QFp9rkqcwe18hXj5qa+O62I61KCIz8CPnUOe5t7eG8pL1ft6OL7kiMFVvakwS71jA0Aybo8yTZ0bvCUWqDviR3z+P3Hp2IdI1EDS+cM29+mceXbko6lp70do91j/Jdj8TCbUU7t4yoSy6punlX/pLleT2SZPbsD187ZhpHTx/JnIm5q/55PMIVp+6d0Gjcmu/8XqO+TLYKfX0hNYjzjJtf5tt5SEhpT/dj1zAK+V7qHqBMMQRG76imIxSlLuhLGv2MH1bNtefOBgy1eVd3hLfX7+LSf76ZdCw96e2ehMDIg3kj7KClNNe5q5ntFhHhjR8fn3CAsOqGlwrnHziRO754UJ+8ww6dNgIgZyp4OwFfb8W/geIULf9YyiCsP1jZG/YcXa81DE1+Cfq8SZ1WVzhGTdBLzKZh1AR8Cb/7aExlzD+lJ73dY3Vs/3574B2EUwJJtxO5fWF4XZDffnJfAMcMAcVkokNZ1lxcc+4+/PPLBzNrnLtysWC8H3e9tjYvMROSV8NeL7vM3+aG8/dLipepCmgNQzNAAikmqY5QlJpAskmqJujF7zMe7rU7uvjPMudOTmsY7rEmpe96bW1aCdS+4iTA85V8MJW5k5o5eEozV56696Acv69MaK5m7qTcZign/F4Ph+8+wlWUdypOtTL6Ss8gmSMtDaOx2l9ZGoaIfEJE3hGRuIjMtS2fLCLdIrLY/PtjMdpXDqSapLa29TCqPsjRZuAPGKNhyxb6i0ff5bonVjgeKxSN4fNIQRLsDXXsL+8hvxpYLQSnYMr+dIJuqA54+ddXD2XWuML59GfjpR8cy322/FOFoi0P0d6ZJs93ZMi84JZEQsWALy/uz/2hWEPGZcDHgRcd1q1WSu1n/l1S4HaVDUG/J6EZxOOKDa3djB9WwyfnTuC6c2ezx6g6RtYF8XtyPwK6nrd77BOQubIAZ+L6p1cyf/W2vKcX0eSmPUcdGTdkcs996f2WAR63N837QLMK95ei9AJKqeVKKefhrCYvBH3eRIezsytMJKYY3RBERPjkgRN4+rKjCfg8CZOUnVRFoqMnWpCKcuVAahW4vhKKxrjxmfe54PaFg+ZppUnn7186CIAzbno5x5a5yaRhbGwdmAdaKBJDxBiUFGsAV4rDxiki8paIvCAiRxa7MUOVoM+TqCdsuQs6JWdzUm1TPVLaQxFXtaQ1MKqhakBujuttieTynY9KkxnLoypXqn83ZHLP7Rrg/EhPNE7Q50FECJqlBqZmKFI1WAyawBCReSKyzOHvrCy7bQImKqX2By4D7hQRR1cHEblYRBaJyKKWloGpeuXIQVOaWbmlg61tPQlNw8k10alSXFc4xptrdya+t/dE++SiWOl8cu6Efu+7pc0Q8vbAS3swmmZwsMejDMRTaldXhPaeKF86YgrXnrtP0rrOAaZP74nEEu9wY42f686dzb++euiAjtlXBm3YqJQ6vh/7hICQ+fkNEVkNTAcWOWx7G3AbwNy5cwtXcmqIMHWkEZB30NXPcLBZjtXJm6LKbwQtRVNekk/ftoAV/3MKYEwENmgNwzUDsUpZ5oxYXCVMUhccPJHTZo/BM0gT3prkNDmdYfcDpLfXt/LM8q1854TpvLNxVyIyf8Kwaj45dwI/vH9pYtsBaxgpJXo/eWD/Byb9paRMUiIyUkS85uepwB5A4cpJlRH2FBILP9wBOKdKEBFHc1NS0F+PNkkViu5w7323x7/MHt9UMh5M5Yh9MNUXTeDMm1/h98+8TyQWT0rj0lQTSPNo6wrHuOmZ9/ncX17rVxt7IoNbQMsNxXKrPUdE1gOHAo+JyJPmqqOAt0VkCXAfcIlSakcx2jjUsQsMa/SU6WFryJGfqBQe1KFEJtfX9Tu7eH9Le9Z97ROmoYiudFhIvnD4ZAA6+hHtnlq1clhtekR+VzjKb59eyYsr+2dC78ljid7+UiwvqQeVUuOVUkGl1Gil1Enm8vuVUjOVUvsqpeYopf5djPaVA3aBYQWAZer0nbQHuzYSicWL/qAOJYbVpHcWSimOuPY5Tvidkye5QSQW58oHe00YCQ2jgNlIK5kj9zBSitz07Ko+73vyDS8lPp+2zxgOnzY8ab3fKwOew+i2zWEUC/0klin2tNW9k97OP/fIlFrJPo8wuiG5VkaxAoWGIofvPjxt2T8Xrs253/zV2xO/lUd6/fnzWTZVkxnLAeThxRv7tX+138vuo+q45TNzEinav3bMNAAOnNycNIfRn5rvnaFo0U3D+kksU/xeD//7ublJyzJl75zY3JuvZ2xjFecdMJ7ucIyW9hDhaJxIVAuMvjB3cjNH7D4iKXYl1WThhH1C0+fxJCLsc1Wa0+SH2gHGGnVHYkmZFAB+cPJerLrqFJpq/IlIbehf7Y2OUNTRq7GQ6CexjDl+xuiEhxT01i5OZYJNYPztSwdT5feytT3EgVfN4/L73yYSU1pg9JGZYxuSaiC4uX927yoRQzPUpsDC0dfR+99eXZO2bP3OrrRlPq+HmoAvKTWIlbNq1dYO3vhoZ9o+TnSGYgMWagNFP41ljhUR6vUIzQ62dTBKZ4LRye0+qi5RshLg0aWbCMd0apC+EvB5CMfiCdODPQ9XJj9/u2da1HSrLbbNupLI1BnPX72NJeta05b/5OF30pZ9tD1dYIARNGsXGF3mfMaFf17IubfOd1VPvEObpDSDjWX/Hl4bwJMhQGBCszHfceKM3QCSBIuVTjtQpNw1Q5Wgz4NSvZHD9pQhmSKBrdxfo+qDxOKKnojWMAqJ3YRoF+oX3L6Qs255xdUxfnLGDMflNSmmpK6IISA2mQWrrIDNTCil6AxFqQ3qSW/NIGKZQrK5zs4c28hj3zqCbx67OwCjGnonwQ+ZOjzpOBp3WBqZVc/ZHnTXFXYWGJaGYZXR7QxFCWoNo2DYhbNT4seW9hDrdhgahFMHf87+4zjMLN6USm1KWp5oSgqSXOVhw7E40bhKEzyFRvcCZY7CeDDP3Hds1u1mjm1MaCB2D6lOU1XWJqm+YWl24WicUDTGSlv8RXdGgWGmrzZHkR2hqNYwCoiIcKnp1WRpgXZvpoOunseR1z0HwK/+szxtf/tcYCo1Keau1EzGuTITW5pqsT3mdPhumWM9mH1J7TF5eG9CM6smg9Yw+oalGYSiMb7w19eTbOCRuHPnYJmkrFFkpxYYBWeyWeGvJxJDKcXPHumdp7Bkx9a2Hh5ycL21O5ikkqZhpDwDOTWMEilipgVGmWMNZKodMtVmYnRDcl4dKP7IZqhh1zBSJ0zt3lN2rFGmZUvvDMWSAjA1g4/lZPDyqm2cNGM37nj1o7RtDro6uTDWny48gNnjGxnTWJ22rUXq+xeNKT6wuVrnykxsCYxiD9x0L1DmWJOtffG2ERGe/s5RjGuqpsPSMBzqZmgyk5jDcDA1RKLOXlIJDcNuktJR3gXFek9+cN/bbO/MXWJ3zTWncdLM3bIKC0jPCh2LK1ZusQmMHLVPrEFGsTUM/TSWOf19wPYYXc+YxirWmG6ChawbXA5YpiS7bdoKzAu71TDC2iRVaOzBk9sHWFLVTk0w1SSlksxSuQL5QiViktJPY5kTcOi43GJPed6g62H0Ceu+2wO5rHQtmUxSznMYWlAXErvpaHtHbg3DLaneTdF4PMkM5VrDKLJ7uxYYZY6VCK8/tRTsQqahWk939QVLYHzrrsWJZVeetjeQbQ7DSAVi7RuJKW2SKjD29DnbOrJrGGfvl93z0I5Vg3vWOKMeXDSm6LEJiUyecxalMumtn8Yy5zsnTOcbH9s9p1utE3aXQq1h9I1U89NBU5oTAZHZNIygz5PkYKA1jMJSHei999tNgfF/XzgwbbupI2q5/pP7uT7uzLGN/OnCA7j6HKMKXyyuEhqG1yO8vmYnf3h+VUZvKes5Kvaktx42ljl1QR/fO2nPfu1rr+uQKQ+VxplUE8Rh04YnXvZMdaNDUSMFi732up7DKCx2Ab21vYfGaj9H7zEybTufVzJmTsjESTN3Y9VWIx7HSP1iCIEDJg7jsaWbeGzpJnwe4eKjpqXtG7E0DO0lpSlV7M9mk3bv7BM1KW6Ulx4zjYDpaZZdw/Am2dG1Saqw2C23H7R0MrohmCQYpowwYpTsHk59wecxfs9oPJ7QJuyZFTJmAbA0DB2HoSlVrHmPe756qE6x3UdS/e4DXo9Nw8ggMMwkj3ZPHW2SKizjmqqpD/poD0V5b3MbB5nBeL/71L60tId49O1NAzq+lYQyGjM0jIDXw3Bbdb5MAkNrGJqSxxIY3j6q3pp0DUNEegVGhjiMUNQowVmtTVJFQ0S44lTDOWFnV4QJZibnc/Yfz8VHTUt06F//WLrZyA0+c/L7+/e9TVfYiLNptCX73J5hot2awyj286CfRk1GLEHRn+pglY5TsSpLYGSKwwjrOYySwO6JlFqbu8vMrXb+gRP7dWz74GvllnaCPm8iIzTAru50gfHOxl3c/tKHQPEnvfXTqMnIAZOGAc4F7TXZcZoQtacLccIqmJRkktLZagtOksBIqSFz5Wl701TjT0rQ2ResOQwwamcEfZ6kc7R2RdL2Oe3GlxPpZSrSrVZEfi0i74nI2yLyoIg02dZdISKrRGSFiJxUjPZpDH5w0p48+s0jmDayrthNGZJ878TpSd+rTJfNTPUwer2keqcW64pc/6ASsc8T2Ef/AKfPHsvin5zY747bZwu827Srhyq/J6lw086u7LEflaphPA3MUkrNBlYCVwCIyAzgfGAmcDLwBxHRb0yR8Hk9zBrXWOxmDFm+ctTUpO8BrwevRzIGabW0h2iuDRDweRjTaIxgR9f3bySr6T92M2BThiqV/cWXonmmOjVsbQtlNQFXpIahlHpKKWXVJFwAjDc/nwXcrZQKKaU+BFYBBxWjjRrNQEn1aBERYnHFzc+tYvmmtqR1sbhi/c4uJjYbbptH7G4U4hnblD2pnSb/JM9h5NedPNWBJOj3MHu8MSg7dOpw2kNRdnWnm6USbatQDcPOF4HHzc/jgHW2devNZRrNkEOypGP5/bz3k75vbushElNMMusx/Pysmdz5lYOZPKLWaXfNIGIXGE3V+dUwgj4v13x8n8T3Kp+X0Q1VrLnmNC46bDIA63d2u2pbMRi0s4vIPBFZ5vB3lm2bHwFR4J/WIodDOepnInKxiCwSkUUtLS35vwCNZhBJHWl+tL0TgIlm1baagC9juU/N4GIfxTfV5D9g9fyDJibqnNgDM0fWG8IpW5bcYru4D1rgnlLq+GzrReQi4HTgONVrtFsPTLBtNh5IL21lHP824DaAuXPnar9PzZDisaWbWPW7F7n30kNpqPKzsdWoET1Om6CKTtw2h9CXOjJ9oS7oY1d3JGm+ZHitEfGdzyy5+aZYXlInAz8EzlRKddlWPQKcLyJBEZkC7AG8Vow2ajSDzYot7SxdvwuAjh7Dbt2gU7AUHctr6aJDJw3aOaxYG7tAGlFvCIzL7lnCV/62aNDOPRCKlRrkZiAIPG3aeRcopS5RSr0jIvcA72KYqr6ulMqe91ejGcJYMRmdpudUaoS4pvBMH13Pf751JHvtVj9o56gxhZJdw7DX/X763S0AiWSFpUJRBIZSavcs664CripgczSaQaOpxp/k9eKR3jrrAF/46+usueY0usJRvB7Rkd0lwoyxDYN6fEs42N1qRYSA15OUCWCDaaosFfTTqdEMIguuOI7lvzg58f0np89w3K4zFKMm4M3qWaUpHyyzV1VKNuJUL6hiu9GmUlqt0WjKjCq/N8lO/fnDpzhu1xWOUhvQyaMrhRoHDcP4ntwl+4pckjUVLTA0mhKgMxzT8xcVhCUYUgVEauqPSIa8Y8VCCwyNpsA4udKHIvFBc+HUlB5WfZlcv3mmzMbFQgsMjabAXGnWW7CIxuJEYvGiV1PTFA6/OWpInbKKpeSRypTZuFjoJ1SjKTCHThue9L0zHCMSixMoMXu1ZvCwJr1TK+yFUjIZaw1Do6lwZo5tZM01p3HdebMBaOuOEInFk2olaMqb+iojQLMjFE1a3taT/D1TOd9ioZ9QjaZIjKwzInu3tocIx5Q2SVUQI+qMvFG5vKhLzSSl/fg0miIx0kwFsa0jRCSqTVKVxDn7j2Pzrh6+cESym/XH54zjgTc3AMbcll1g7FMCtWm0wNBoioRV62Ll5nai8XjRq6lpCofP6+Gbx+2Rtvy3n9iXV1ZtY0tbiNtf+jARyPfEt49kwrCaQjczDf2EajRFork2wPTRdSxe10okprTA0CAitLQb2Wq3tPUQihqT4JOH1yaVci0W+gnVaIpIfZWf7kiMcFRrGBoDa0K8LuijKxQrqRxjpdEKjaZCqfJ76AxFjTgMPYehAe695FAAHl+2iY5QtKRyjBVfx9FoKpitbSHe39oBpKeF0FQm00cbadVXt3SytT1UUjnG9BOq0RSRLW296au1wNCk0t4TpSZYOilj9BOq0ZQIfl9pmB00pYXWMDQaDZCc+qHUah9oisfnbOVhS2XCG7TA0GiKSiTWm2xOCwyNxeWn7JX43NIRKmJLktFPqEZTRKaMqE181qlBNBbVtrTn3/hYxorWBad0jGMaTQVy55cP5qL/e53lm9oSdZ41GhHhwa8dxtQRdTTW+IvdnARFGdKIyK9F5D0ReVtEHhSRJnP5ZBHpFpHF5t8fi9E+jaZQjGqo4p6vHsLFR03lE3MnFLs5mhJi/4nDSkpYQPFMUk8Ds5RSs4GVwBW2dauVUvuZf5cUp3kaTeGor/Jz5al764p7mpKnKAJDKfWUUspK/L4AGF+Mdmg0Go3GPaUwy/ZF4HHb9yki8paIvCAiR2baSUQuFpFFIrKopaVl8Fup0Wg0Fc6gTXqLyDxgN4dVP1JKPWxu8yMgCvzTXLcJmKiU2i4iBwAPichMpVRb6kGUUrcBtwHMnTtXpa7XaDQaTX4ZNIGhlDo+23oRuQg4HThOKaPyuVIqBITMz2+IyGpgOrBosNqp0Wg0GncUy0vqZOCHwJlKqS7b8pEi4jU/TwX2AD4oRhs1Go1Gk0yx4jBuBoLA02ba3gWmR9RRwC9EJArEgEuUUjuK1EaNRqPR2CiKwFBKOYYuKqXuB+4vcHM0Go1G44JS8JLSaDQazRBAzPnmIY2ItAAfDeAQI4BteWrOUKDSrhf0NVcK+pr7xiSl1Ei3G5eFwBgoIrJIKTW32O0oFJV2vaCvuVLQ1zy4aJOURqPRaFyhBYZGo9FoXKEFhsFtxW5Agam06wV9zZWCvuZBRM9haDQajcYVWsPQaDQajSu0wNBoNBqNKypaYIjIySKyQkRWicjlxW5PvhCRCSLynIgsF5F3ROS/zOXNIvK0iLxv/h9m2+cK8z6sEJGTitf6/iMiXjM1/qPm93K/3iYRuc+sXrlcRA6tgGv+jvlMLxORu0SkqtyuWUT+IiJbRWSZbVmfr1FEDhCRpea6G8XMwzQglFIV+Qd4gdXAVCAALAFmFLtdebq2McAc83M9RlXDGcB1wOXm8suBa83PM8zrDwJTzPviLfZ19OO6LwPuBB41v5f79d4BfNn8HACayvmagXHAh0C1+f0e4PPlds0YOfXmAMtsy/p8jcBrwKGAYNQcOmWgbatkDeMgYJVS6gOlVBi4GziryG3KC0qpTUqpN83P7cByjJftLIxOBvP/2ebns4C7lVIhpdSHwCqM+zNkEJHxwGnA/9oWl/P1NmB0LH8GUEqFlVKtlPE1m/iAahHxATXARsrsmpVSLwKpSVf7dI0iMgZoUEq9qgzp8TfbPv2mkgXGOGCd7ft6c1lZISKTgf2BhcBopdQmMIQKMMrcrBzuxQ3AD4C4bVk5X+9UoAX4P9MM978iUksZX7NSagPwG2AtRrG1XUqppyjja7bR12scZ35OXT4gKllgONnzysrHWETqMLL/fls5VC20b+qwbMjcCxE5HdiqlHrD7S4Oy4bM9Zr4MMwWtyql9gc6MUwVmRjy12za7c/CML2MBWpF5LPZdnFYNqSu2QWZrnFQrr2SBcZ6YILt+3gM9bYsEBE/hrD4p1LqAXPxFlNVxfy/1Vw+1O/F4cCZIrIGw7R4rIj8g/K9XjCuYb1SaqH5/T4MAVLO13w88KFSqkUpFQEeAA6jvK/Zoq/XuN78nLp8QFSywHgd2ENEpohIADgfeKTIbcoLpjfEn4HlSqnrbaseAS4yP18EPGxbfr6IBEVkCkalw9cK1d6BopS6Qik1Xik1GeN3fFYp9VnK9HoBlFKbgXUisqe56DjgXcr4mjFMUYeISI35jB+HMT9Xztds0adrNM1W7SJyiHmvPmfbp/8U2yOgmH/AqRgeRKuBHxW7PXm8riMw1M+3gcXm36nAcOAZ4H3zf7Ntnx+Z92EFefCmKOK1H0Ovl1RZXy+wH0a9+7eBh4BhFXDNPwfeA5YBf8fwDiqrawbuwpijiWBoCl/qzzUCc837tBqjyqkMtG06NYhGo9FoXFHJJimNRqPR9AEtMDQajUbjCi0wNBqNRuMKLTA0Go1G4wotMDQajUbjCi0wNBqNRuMKLTA0Go1G4wotMDSaAWDWpPhaHo93mIj8PF/H02jyiQ7c02gGgJkN+FGl1Kxit0WjGWy0hqHRuEREakXkMRFZYlZ8+xRwDTBNRBaLyK/N7T4rIq+Zy/5kVgKcbFbGu0NE3jYr5dU4nONeETmi0Nem0bhBCwyNxj0nAxuVUvuaGsUTGCnFVyul9lNKfV9E9gY+BRyulNoPiAGfMfffE7hNKTUbaAOcTFmzgKWDfB0aTb/QAkOjcc9S4HgRuVZEjlRK7XLY5jjgAOB1EVlsfp9qrlunlHrF/PwPjCSRCUSkCvBnOK5GU3R8xW6ARjNUUEqtFJEDMDL//kpEnsIofWlHgDuUUlckLTTmOlInDFO/z8RIUa7RlCRaw9BoXCIiY4EupdQ/MEqFzgHagXrbZs8A54nIKHOfZhGZZK6bKCKHmp8/Dbyccop9MFKVazQlidYwNBr37AP8WkTiGLUKLlVKbReRV0RkGfC4OY/xY+ApEfGY230d2IxR7OciEfkTRl2DWx2OvxCNpkTRbrUaTQHQ7reackCbpDQajUbjCq1haDQajcYVWsPQaDQajSu0wNBoNBqNK7TA0Gg0Go0rtMDQaDQajSu0wNBoNBqNK7TA0Gg0Go0rtMDQaDQajSv+H1ejyzj+sIyBAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -459,10 +431,9 @@ " assert \"random-walk\" in f\n", " \n", " N = len(f[\"random-walk\"])\n", - " print(f[\"random-walk\"])\n", " \n", " plt.figure()\n", - " plt.plot(np.arange(N), f[\"random-walk\"])\n", + " plt.plot(np.arange(N), np.array(f[\"random-walk\"]))\n", " plt.xlabel(\"step $i$\")\n", " plt.ylabel(\"position\")\n", " plt.title(\"Random walk from the origin with standard normal steps\")\n", diff --git a/Exercise sheet 5/test.hdf5 b/Exercise sheet 5/test.hdf5 index d87e07da7e468fa88685f24170f4d048ad852bcc..d583a3f6a916be7995c9ef8a969b7802fc10981b 100644 GIT binary patch literal 30152 zcmeFZdo+~&`#i(`u7g^-`jw{xA8px-Qni?>z|8D z_V3rl{~rJUdY-M#wryO*ng5Lc&-U-PajoY2@819U>i#+U@Am)i7BJhk+4`?J?)!V9 ztN-4X{OxCdKjm^iamoF!{lB)_7tdb4qi>E6 zfB(SEHSa(E``?GZJoLYw%+3AZ5e9kx``&-Hyu|Upj)*IROW;3;NL=fLxYlw0K5riJ z>R-osczFIZfWY75@pAutIu}Xlza#$h_)nz#^ZbABc8{giR&FjHF6F;3!`JeEeLerg zD{005`n-RS{%e7ME$}~YfslfitgxU`R5ZG+j9W2|$k!_?X2K`nAiiC>>sli^l-4hb zHts>l;8{>leyw}7u5UT*ovF>B4=?&1ALxC>!)(w)u91! zcXS+STHJ>M73-@4^*JzWmf70jo{HPN;)Zu`_QLl@d)qy(2e`P@Ug2JE8a%yU2pwBi zj!b?6k0myN42O4}CddbkC{W$MzL1uc-Pf2raaR*C&QM-?O` zdcbAUtG)fSGrS&$H2b@ZK_$OxV<5c+%I^-pO4N^rdaYSofbgF#Y^ou6AD=mlQSBKLRVrQ?FTw`|)m z^yq=E_nlENnhaF-_?4kjbs~2esSOu{9@ZE2wtzI^Jid;50QApZ&nOaIaF?^|jc?4w zaX!;+!#rh3I%j#7U$ql44MA584MuQ{eb8=OV-G$rQFGVt@592C-O1_S`azONAFW3$ zQm-AgPG8dv3Exo>P;=7=ARanS6WCACRQVe}7CLr)&=Eiz@ z7D9%<)&5?T09%v2dpul6v0v&K|0<~objq!c7_<6D~@ZL#6qVw?pI)uwFVCF=SW-uA!Hv z(_;Qua#!lHU}X;O&kt@EebS2`i36t$Cb}W}Lu(*F={IuJ4A0A-XnNaC%zucnRkW7d-{+yXcXyxw-B$* zDECv(jpD4(tdOb^;cqW?_|4yujF8XASHBB+hpmUxeZn8NKxX=ZRob>rJeqAdIh8q# zt7}Nq7eu^QJ`{X@EWZbKyE`()9ffw}Su=DEMdVC#Kp&4XX z;$mF-Vi}cTNR>X5Rje(>SKSf*?(N+$Nx!12*j04pb%<2UTADjW_yA2|QiR zIO9D=y;U`igFNZm+e<63CW|N9o7#g)UbV@{(O7IxJQWfbH3Z%M_W2pFT5(P-uXwLk zCyb?1uG;aBps}$`K zWH)}620q>Ntr3fh&Pab=IDs{PF3m6W=)<^Yw9nkO9_**>Wkd>&W2+eBjoHI4m_Ir? zNg?JdIqq$e7~YNAKVfH9?JdF4)hg}X(odl;?R;i$dkzuDWjkV`f5HCRNll5%b(r_U zb0kQr4-pl-1=3j;9S ze@-^#?ihhb`;KjKXh)K(Pt-A+A%qDUmFdM5LS@}{&$8Ej__1NE_IUCHNP)`+?@oNh z+B+t})-n@#>}y!Qt)>eV(c9jtum|vAg*IJ<7_axP-l46{#h7p}4x=pWh7aX%F`2N} zI*+)qYoXOBad^B?_P`G)QhTIQH}%6-i~EyNY%QGbho6nenm~m6ftONVU!cCC)GVD` z0>903{$FkDuyuu3fN}Ex9JC;i(}aJeh69>HkZ%(jN+i0?COL1 zqd5QW(x&OH?Xb2QGhIwchEDB?qYoeSV(HRRj_m0%6z%-j?zy=aK{wYZgnA63;QR)D z-heWA?s>Ig=u0iOhEHB#ZYx6N?3x4dksbI+uBdWhoVPa+zR+G%F*X~V3qf~=m)1hQoZ{Ex;`zH=5_HEj~+9x0t#2Zm|W*9GZ z-9*-{>qG4mFKd0iG7P32UtuVi0n63K)vKOY!fUPYslyrVh#q&DaG4B&u~>$VK5suL zUsd<<)wIH_^V{8A?QvAj-0cgE?S%(v?D)Lkb|~}VuUrQ$K1^aq#S_b5fPq@}*P0FMSLlo z2Jl1MtZt!FKYZ8rm8EYFM`hP@#fYmp&I|vk zU0ujI@qO-HRS4W2N)tJbzfn`0zV+kcPB?$;JaK$~1J)GqsohlUhMYm}yP3uYc(QkA z$6iT=>{TH-lb87z?LJ<3aCbd&%PMaV{py8!`inxgVFC2NowQKe-3*oREe@})kK?7? zMmzeZQJ92_>fa96XMJ$zc>U4j9>t)N*t-KAU3gZ0;%Y#} zC~TO&<_pemz|lw8I=epujS)+3uiRM)o69Dyt!LU`WFoM&jNAZq+tabsQ{C9cTO3fU zHUjcZuIlm?1+XhvX_HLp!&?y}0jH7y>?%LDb%DSb%rl=R4D^j)jbnPAH<9;j-tG15 zHmZh)@px}_(-5lNt%}FabYd`jpPJNc7R)}9H|x}V$BwB*X47)L;QeugKj>8->Qz2J zagOXoi^tZ8JNr68Th|w~OGhHe~&F>E3A!Ed-5Q(xEfbYJcR zl_ByxC#eb{JTqD}0#BvVnm#AbwW1`TS+MJEI~d!zZ?}|n!$`l6XIIQPmRD$LFm4Z` zJA21@lGQNC;e$Hb@;x9A{miv1?}cL3?S5I8M%@1PQ1ij=5vab8k$+a%4bMw$l6^dl z@cm%4Z9jhz9Q!A3sE!Qb!>2}G1^YoTW>25BW|ShOUat1HWiynI(_W}i3t>ZY$&l-B z#=2zRU(HcB z1HD)?Woa1P9aH1Vh3Y)n zhOeS6uqbVt9Ih(B#l;J?_>zBNZH?G)n?NTv^YZEytmwzj3ICH1#5%$Awq}(@Uo%Sf z*kv>i<-_UIO#$(RjWA;6RJOSM!39Q|Ysc6y0_@KS?eZ^x!pGf9g%^xqdX-f~kV!An zqxxGUKlj3pbdy^&w+Dab=H`Y4hVbSm+cZAA6tuwP(z)Rwm}k-M1s&*y$L8iJ*U2s{ zaIg)G&L2mFh--OTe=+J8oMC@_JcySkZ@DJ;68Zk3LqtJR1%7-!IctzV3gxN7%g=cq zqf$LFOZ#{;E?)JvxAy3Q-;|a=&7~5~>OMm&4)wuzTivr?yb-XRtyPt=Ao8c`?t$=S zpU|YSx9{A#VPu6qUS@D^5YbCH25)UM;Cp`aH5bchcuN?DS2&iyI7#TR%C%nHc*L;` zbQvOWe<6jvVdw;Fdbtz$Z}@&Tq*!1CbJ~s0VLl^B70-E| zXid~HA}Ri(<|B}~=%t?XdKiL%?z;zwyu@HyOcvd0!TC)*_oqMfVsJ1-iL73YTaLX; zx~E1E{5IIvdS@|OxymcY25S&g_Ei6JP$m4|C_MeMsscw#OdH~I+Cf!zbUfTxjMe#f zmlSs5^4^`>_@R z=_2b#ue5_C>vL{N_Zz55e8_edAB6I^7~T^m#c0r^3N%}28~(NcVk^)IkPi27&dzLYAX5$81BbZA$G;J|hDm(Jr}gdKY$W)#~2d(N;At$q}j_pK9a z3LQlC-j-hlE2<%DkiTsC=Xz}4a+XVYaT|_qDVujT@dciJ@Ae4KYk|A;=udlAJ=)jB z7*4(&#_z&6@~J!fFnvX?K2WX`UeH{VJVNjSi<3yr96?XH&h67i-QZh0He+tkho3Z)cVv0tUT?pBUoq%fLd$xUkyPk?f>NbI6jJJv>?w0kn#iJ(hkjBf^`@b439Hi#VtH7?TZ{Hq@1 zyXxI{JTV5h8&C4|&iCW=M44s3KvqC?>Eh(uyz?Yt4hC{1@e>k;QaKe|$U+aNrCm~rLGb)#hckYGQ73u`wQYrX#5 zhZQH9U6Y(gA$nGR!LRN{ME72=x;@j31K%Wn9}wt;aBJ+bkQ04mF%Xb&T)850N zD=!npStfobHx47joVw&fS}Qysb2xgzO)%@x)*^e2!6-mV>XTOoq=vW6%bm$Zpi8Q+ zOkN*eE+g|gFehLkZ69yWAaLhtm+u*_i|9zukh$JW)EP;$ohuf$<4=^G^e)9NbZkz{ zSF7ztS4M*6&9{BfDrq*f?r4GRB89fj9Vs}PCvqjHtr8DD_TBL!{C2O#@+gIkgW!5U zv*3(%IZk=KaGAI28^$l(ft_G0(j^Y*_MIhko4d@_J)cVvW%A^L%b6a`cUDZ;V%q~F zhYM*%L1SpU!fkhO$q-gg2;13JH(^`Sw#GwLLKpa9mJsCB4R=cIrbqs*Sk4eSR=2+z zmOpd^r(2q^NlUV*BX|&>&BFR#pZSDS$p`(9aJ8W)Gfv$1#xT4zc6P5MccEsX_B2eU{u*r%>rTo?z|v-yg-3pa|4@R3z-S8=cLscRKR-TR03;o@m2Yel-WcaZ`2L4+*klH`;+{| z1DDdQs0%8zpfLuztmf~ z(|TZqQ(Mk07{dcUozj)4#d5A~mt!59;cMD8=2p>zn;Y1TEYA_Fv-+{%5`73Uq}I;7 zw_|9ZmPsEwQHw^kH*>-_^I&^uIiG1w3lzG;Pb+`y#Lc_Y(a{5aSe@j4Q2bySgbo^} ztn%qcN6^#4{+|=*d#ES9^L0NKk)IAf^%%m7_Ek|XGZk1;;GO7ssvi=%7F+85YjEuz zkNND^ZY&-vctDQrM_rQk>bq4vxG1;o{Q=W2u*!0?cXI5(yYUN8O$i-=a;ULHY;6mU z&R$!0XG0Zy+fSaQ}=n|eHpF-F* z5WV<*`R1-hSob}!NsG!rz)EB%7s0bg&I(+%fAB4;nN7AT1pn8_3*_QT zgq^C9j2I*IsQvQtizn-Gg3fK$BsqXi)rA^1M^kXoKh)JK_#0aH)%k?QHz4eMh{)3; zHSpM{WN=)*7WPF|ixP>r*}W#~`d!`9_V_h5|-WVAnu140k!WUCtUuoR&yAe`^oQ_>V8L^XFu(k;bOKKwEZkd5{3B~%YkB>6a906*2kE^-k!^%-YqvL&m|wV$MCYC(g#QSe zD=dx}g>Q9knwak!I4ynieQePG&O zzE{5F#TmPTw3sjU9D$27+l)8AruCum@zV5jLcic1zdiHElRS9G?$D679fEAm3Ehyp zX<)^Fty)HILU{45FD$(Yw12s=NHn$!beZ3JVN06fNt+f5)GkKi(TBYKA6sB)eXrp} zNE<%938xRvA4WUlxQz{w-z+uC-n0p|!r@HB=JH2`p0JHS|I^PAC?_eu>W}ya^Wcw- zI_(YkuD$Toi2(v1x45;+*ELWm(;Sad&34X2=(SpzI%>hQLH8_22uUxX>IBw8x zNX*C$Lvh8hu1iJ_wya#NG-=)s*%}`g7x@NU@Knn=s4@V?+L9Ndf+;8wd1ch~?KcE_ zLsIL05_;|GD|_niv?KF$mR=`!H=G`rqzIjF17*<)&Gi>ru*yV3vA<*#MH7l#Vdt7r z5!-PnFtiJmFGP7-ZpUE@-ui9f8-!ZSrOI6d4&?qU`Mz7X3l5gW0$+a&;%L3gd* zD$sA=Y(-sLhcCG@qrRB~u)i0|CF4{Dg^Ho?dk=QQqG&|dNU;>$MfL0ZuMzqiJ^F>H zUp|;LL7F{*PbpI0oceYRLpk()WY@_GEcoWMI{W)Lyq9&%l#l<$YH6=A3AI?5F!E;a zKJ3K!9am~*DzUzyA!9h0)D7~x)Zd?!2Z+Vv;r)%Pe?efL)W&P)+wnq3M|rBP7{i0g z3oh@ggT9heiZL}4tb!{gb{pCtxBIMYmAj(?iEBJEUwV&1T0lOp%CZvD@)~#hJla7%c(k**JpsoTwiqti z&;><>uk12M!p_$Pdo|TZAbfIihr`|$ShehW)hyZvx7}9DR+9%|FJ0H2Ya!`!j7Q;1AGqBxf2GwZ*s{4Js=N9y`so*2hpQh8)Cc(N z_DtaAE1_=viW(ezFf0^S(u?+@hIgS_gV^NoG`Prf0NXzAn{K-`25tR3LI1DANZ8gW zbJMdC{#z4hj^8Sg@>4%Om0AsI@shE`u~O`7kW?n zRUdO}hI5xIXYbBxT(-JyI4ME+O~gmJ-_1?PX>aS__rVV-io0EcF7?9gk*xWu$WDab z?yoa?+X(8K5*_`jN<6CB-*r2v3sMgyDrRUEkg}~fF}AB52|jVE3MYC&daC#FNAWFG zTWqm)tZhSY`%Ti>Rl{iX3X4c+?~o)*<})c3O=i_}y;{-#`5jo*Pcm{m_nu1Bcek zzd44;tudR}XS>kJRo0&Uy#*WlUB${CjUnf9;|+7aQhcs{C7E9T6Iv5X-{@WL!Q#N< z^EwHgzFoPad`U?aUdnD=eJ`vB=Txoa7s*c`W0QCEo1$@?)#9klI`m7iAGa@EjjbLx^Y&-k7JZjJa10 zdxo1ttx+GuavrRjEM?p$ow<@mbDWsQ_iZr=( zf_yh=Df3nqE{t{-KlJH_iqzicZsP+`&t*~ zyp`Xy#hOT#W1~Dq-xB&_<&3ERs)a<{Jyp2x6j+A-O*GCh!58mZ$;pph8Gw87zT2V_ z#W+=5@jYv86D$rfPsHrW!HG<&q2lckwD%wROe-UFEGH$MyT%Gj~Nc;Xjs-3e;WR8Snd6}}@IE?mwUfada-mQyuEKL7ebPAtrfDjITrKU~c`phym0#<%FDCQHV<8dv^u6qVclS+<{?J4Ga9DpLtP`qloIG^S)vaqn48D zzf!&xV{VQ*Oob?th>Ha4K`=aMxsIz(MvsyOk8SSS0R>klHW`fqo@ z|F`>t{^vUw{{6&%E%2`e{ucarPRRnUmV!` zi<>bN=^#IRCTRVNiQf?!cC}10mc35by`ILv;vCg=7dNs|RzWYVW*__GLVp#pS$l zp<7*4(2diY4ob}6sdj8xPB0z&{P!9Z|6rq_eW*<`g#oEcHVFaCSUBl@gu^&ThV&7! zt}N;dd?zM8jRv!@k56M^t{eq#u5YI9+AxW{n*mYzBo;VXnUdT_WXL$xJu=DDrZ5ELlAXo$Kyfq8?Il?fRqRFB*t>=mr+v$fM)Vmv?5eYE)=( ze}1sw9urF`(#zHhk?~`P*}1&5Ih0&VHpcobGDOq&YQ*{U-14_tyDtSNp@TIkVEJ#qTvCOG)$(B`^0Ke z;cq&uXXnd?@l1oghCUh3en)CtdPaup%VL-QGc5ePc=Wi=&M7>ZsT$spF@su;;JnP-*F zm#UM|8{%ZcP55IG@Ah+d%~?2He`#IR6((Yz_AQybMfgMMgO=@0G=#e;$jU68!As$x zvNCBl{3os$mju(mU~e+5|2c&>{`co;ms1d$UUp9?fd=+$O?S_G7G$GVJSKmpz*?1A z)TB3u784H70xLSoB2_&@q$c67c5CD9EHWN7e0m_*!8ntS@_G@j8s#pNDMVP(bL1kyJ;^nQA< za!+w!(OF+&*fa&%!`#-!EG87y@BKOciohlNb!IgcYy@XaZysMUjjs}2J(|)CC`N7bt{(gicR+%%O9E{!rXnCN8FQ zpIE3vhj7n&p~kx$L=0rya>``kijg%qF-#<~G}#vOI8YJrws}*`fQ{(@} z+V5n773ntCCpd+?0MDQU2gxYTJ3Ce;PeJYBjXR{=r%>PC6u9*e5#N?sv~7Vb3>%To z@{lL7^WDv@4_qlw_3dA6-%Q5&E4MSfW*PXrcsuu)DFsT8hQ;a#JboOW;Hb887UA2^ zeN?MsBTu&L>%9~j4!GQZcKad?-)7G|zjJ36{I17d)6=F9AziijS^5m#BEX;V=e1>$ncjQT2BXn*c;I;D|A^e_7PFwRdxZp+f`@j)Dz z=S20#3^8!BGR8)HZU*&_rLR3A#$#8;1)0rI;Q9TSIdeV}xccdsCt28(v)X#P>BA$j{wJ&Sf?-1NR3ulG)(Pj&H-wBi(whTyd}fqOBM zo3<*A%^;j%l`%@8qayF2Ysi6Fh=g;Z$hB-ppL}nihdCrk2+Qg$nM3Q)!9SZGO@mhJ z6Sh=o5;DWOpG{3!2oa;-5dJcUp11ZFvXogU%83x&VaP_~SkY0g-BW0<9oXfiO+$(9 zoOX5z1@1R~OP}ta#_Ft8nwkPRH6@z_u1a0X?%b8<6YqvGL!-i%Dmv7L6-Ic>D+bGP`%ii-ziPR z>ukPT>24Mjtqu2c$4*1^(w*MGJuKuo>#TTmi~-Z2Pb|yb(@4?tIB0q<-d|7Ph?8F^X(1DLEXhO0bi&?BG(#^UPcOT$c}vM93NrQguh|<$ z!_gCidDIgu^o6HJ+_+1D==kCq(=a;3e=Ys^$C!gZ2`@Be6z8D!_C#Q-C4*RROwzfb zN`uXVm1ZaQPT@*K+eYOn7_AMDtqsl65I$VjY6C@#eibs2pFmzVr_nTvvC0 zFTX$s^OS76!Y=}+^DoCQdO<-+c%k9-Ph=e79_+tD;P?IYGBHkR9C&NpD|xNP#-%?g zj)RHQ=v7TwvZ$Q6pErICJmH!Hbzwlw#|Z|?`%{dzo}7d29OY(SE)CMmEw!(nOhRwD zsbiT06}C~1 zBHx;(cwL^Jz-hQ0a=>&?p-&-{1An*E28| zWM@)Efjxg)`!f=BXAeoHtal*h1uUFS&CC2bZw% ze%)0+CtiX-%+Fk2$)rJ*FE~4YBL%xsO8i2OQbFUsn|1T$6z-{6X}Ooup{lf`^T%5@ zszm>6$ox(PIoozJX5}2>7((eT=U7<%GioSLn}~}wIgic@%%PT4I;}5D9DkL#Fq4mp zbLU;O4Af_F)F~lC<}?Lj9`cE77c#X%uJnOVAEYo2k zQ0r%QS11d@uMaM+Q6hNc@<6-ImznTtk>j5H&cY_2{Ns5pKWp|({byG}9DesFqg1{WO{pS)B5l|#YmscD4L*r?w-dQ()B zjqD@$MFcU0#4r5oQy|0e}f)(%N`GU(W))tTaPk_L)=@sZu>RIF24Gw=6n z3KDcRGUs+PLAstJw;*u}TP3Snb`$wA%``l-?Gg(SS63*wXU;+B;$Ce{g1;SAx$$D? z<2177J8qAwW<&If`*N2~2F~-!zIxQeLhbgkNl8&MMsr=0Y7`jQXL_F0>O2W9WsSoA zJJWESl8MQ;px|Ki2b(NYD$167CGsg#u!Fnk%g1~=G%^eiZ+b?7PS4HT${tgA<|05l z&&NRYO>X&a$r*H9$y;kGz#w#Es?Z){URM(|_8MNNpz(~dNdYe%W=gVNhGSFE_ip|+ z;W3M<)8}5_3!&gaeZ1Hm|5>n~uK2xeDGRNZQ)3JEv7iy1!*#cliBmUj+_>z|M(tCM z0Byq*yb2qS-yrO(*3K#@)Mg@6d930ag8@Emjct{V9HcHyimYc-Fyg;{u6_p_gH1G)=3tf`*KK&O$A<8?VI)=Fhl zA1AROZFfdz;ZZW)`J4_FiX(96oW?BVF-k(Tp7n1_r(JjRL92TkR$~$(%(>n7G*KAqqB-*18+AsEDViS+=QA5t7zJ zVHOg6iczTAs%rffBJ#MLaj!oAG#QH(8raQ5y)?SfWc|3*9D29p2052bL+((H zAGMbTrCech`WzLr%b2AXc&1=`-j{8El7%wP$nh7lbO?Soe*54$8|DX23_cAf>Y9P; zTO$R?l>~?N0-3eivqu!h6z5Zb2&S7Clzbr7QJs-I)!od zrLJ}nH1uk=vyL`TL!fQ4)+dPYgFRQ52A?Lwdr$rq|LbHtKINE6?&je6bJkjm#Y7wp zIG#(qHjO^I?^fYuGwAGSy8R=R13$Aj-$#d-u&zSswB!QL5`Igqqw7xIqvB2lIbcB|4b@`uTwAsi`F^F$=VUiB z;*!2ay(QBTH81nilbdi$4+hF?tPO>tlky|4vOXCqAzz!^8Wa z!W{A_^Ug)>o`qM9g=+dACc5>X7ky5dLq@i_qx^;$G-px*rwBe6{zBxLn%6Yw=WI-y z#fiFJU{>_G4+{=y{j7Qy0{?3CMV}IQ?6JW9?6BV~28(}ui`+$=zw2{YfC?L#hgE%# ziZIdp%zfSzfeX)~kA+(|vJj>_roVUX9Qazc=cVY=p?>v5c#NaT^p6V$g&RGg|_F*un-hVG1~Tm8Oi*d{iVo$aDy-OA_l z95z#MIR8b`#smsZop>jylQoIshnME2E}6v}iA}}w+S6$7l9vN>2Tq-m?hCh+~Q_Bk;!F4{c_G9F_f^b8oK zw}|?`LL+GTLk7so^<5IDnZ$as-MgG>7KBphqP5d>*i==Cyi}b;#KnAtiyNpYu6Nt= zgYa9eMUN{U5cysCG8{z`rVv*gX;1c>1p9fH)f1j+9K5F!=|7<8P#F2FmqV7Zrd6rqKqzE zsV*hzp}D+$m%|CZ^C>8A)`Jek@C7{=wzIK4Mr+}r88RHSWV&QX(?ow#jX(}&vFVB0 zq!fYU!*>I;o)dLxut2tj1CeKSm7JJC8guxb#(VvPCI`Kb!Vc}B&!Cc`FIY<8=DM8E zuXT8tn5&(?Ryc1G##WpI3EtD-@Fm6cr!cY2y*p4_k&O`2_nND32>zUI<{1$^i)$x6 zcJAb-K;^6)QIX9+M;6&6x=C-zFQ)IAr9r<&Ms4F7*M(E7uK9khEKqj@y>1L4>Vu`Pl#5n!h(6GLlTq>n@8(+Nd#Q|$TDy1bY#IY8 z`radCWg0%0zqmVS?}L*-uEH{WJ|$SfF>rK_))ArOm28CgX|sYyW_5D%fY|LdOQk5I*2swUXf5 z{&kVLYm(`ZdpJ*Nl?oBxTSC2)UlI3-Ga*R3KttmXF6B|oz%q4n@yC1`R=m)kb(CWu z;e^yUS2GjwN@=gZ5{dR1v8#HH_?|)GxoeAQ$n>v$wbYsdyQd3stEhB{y6#*bV$VQM{x$1LLJul>@<7v% z(69KD6q;m+>mV2Ya=O&P0mW24=&kh(1Q|PNI|+QPoq4y6%Kg^o029F;PNt0AGdSHK9g#oC#JkOpzh5SFAoar=HIqLxVLP4vYZ;*@USC2VOyBcdY3@A*e&_n- z*=wj!Yo_u!&k(p?U$lLD7LC9kt~aCi2)k3FRpu?9gsJ-C>4JbsY_R{Lq&7^$TlwSp zeGOD7*54Iv;-^8gXHc-7h?{tsqkA47A^htFdG#$KU#vbbTD-rXhGrwr%34Bih`u#? zb7egX-)>kfZZ4fe{`_?=JFZV-&Cg^f2EpTAF4xX5ILyJG@H@`D<4m03O$pQ>F~Q#y z+QKALz_Y_G=%oe)X7e$7_B8{40&kBQXwTwlNOG3e4nl_;3|z1vZW7foB|7gN2|amo zyZODIS#%!Mk@Fz%obf4>+|xJ(cb|}&1VWc;FLX5vwPAzJvF}LLVBpSkHI9G=6B`tf z>s>?Wo6f6*>~69ksjxxUv7g|n?;i%QA?h~e@0+fAITQ7>Tb-RVF~7K1e2iK`#}(y& z`#{)Y4q>8kx4GVskt}A@Mi=DZ*RMyMWrYOaE2@pZa&a2*6AN;?qX{0Om=jaEl&Gup z3O1(*GLW%wHr_*qgVViB2Xm~6c#)d&+wq# zYM&D)BU;$6N{_(BIh9w@mBjX%ZtvG~j)Xtfok~x)A@ry!)kQ)HZ15ah&U=;65seeh zQ3br|_|=o^aQ!(46V2IzcdLjxZeFU0+Fd$6&G~Fj?xR4nvB&r72%YGI>At-9_%!To zc3z|M&O+ZfGAxYnv#>y2muUje>*buSFTI&YrOK_Yy&bdY7Nod5xHk!jW13%srfFyk zpP!a8Mdag>s6s_2Y(ZWl|=RnDv&voKC9RpPpI@?Ma z=yw-u)JY>F=9NwEQXV!Wsx}VB5jb%4$niGyNCvdu9ph^`%!YGR__K#egzmrOnbv65 zG*-#IWVR7;`S70P=H=fgux0-WuDH#F!%gP>y+qx~J++6eeSpv@+z-9zCF+9jPw0}f z7DQZh3VGzT&A>iJHRtv|Dntj|+cb%Kv&{3*o#JIv;5s%UH??UNMT%iHn=ewp_PXu$ zfxxHzf(Mf+%V)7wcl}!S?ZpXP&AP`t?%puDN_u2Cn4m zv)Y>2*!m<$!F?|g2Q~Zq_lC@XYx5={d1oSTaBr)4`FtAgx$}eZyl8nii~iQ%mpw+uQ(~YbU3% zywT^z8^S*Z&(!OO5`J*8d-~kdRb){6Z~dv*I0@-PX}PC16M9N{qhEA9QLiTLf8gh3wO26{ai#CL%e9z18@q38jh zzSSK3G@eIU6gG?e{obMVb#%m!#aW%Z%R)x{J8@Z0HqD!cv^|Ymr zPG6VRA@tBy6=PaIsF;h0jry`_3R)xQHr;3@{7GnMYZBoPqYpAS?kZq_85vEDctMAQ zXDg>JluGD=KchSsFks~Tfj^btQ$I7ylkL?Ao$+COTH!`wo@T;tpIR_*{PorKRx9ba zE}SA{xsHmGp+s^Xfpguv^R8yMPrWG_#{ zZGxoyRc01vHo9E-> zS!~x-bDDMF-)(D$S^mi&nk zp<;MP)K@z~x9ajLGhJLuLxQ@A-`f=&6zy?do^x^rx3a%~_?lV(OmO6?xhZ&GeKzn^3>BK*8yB2@$->sv z6PJ8HOd}@A_r_bIz7omjzuezWLs9tLs48g=ZPi&3&PT`)deD34>_!G|49bO~WD@!w z5KZ4iFx~{U9&w!)H^Tk zE75HTebKAqCb=(n3iOoN-4=u{KJ}7ygGTVhf))4g(=%rF<9`&$3=9Sr||;=dO7*8=}q;9m>;Yk~iL7T7;6=(@pZ6lWB(8tyBOz^ZWN=FK!d zlBoHtdTt6ANhiQbf9Dr&(z2)57p@DPA@o6uo>%(?NP4{~uJi1jddc)yg9!^iX|5d^XB-Isy24C@Z{uFk4Ap3;K?~07NdW7F)cf~bGfGQ;osR6 zC!PD8Gdi=sCEvdmv}*{q^C}*GQ?7^Emj@|dyhpMRUul_iH)3aNu&vbvln1g!H>d`Y z|MXB-->LL=)+lUzHSQ(Pn>kEPx=gE*HE>x12c!-k(YW(kLCyS7z-WuOEnGz+br;(Pe zqVtgs8L8~q;L5-m1&Ov_gq~z`G~e1nj+Z3)Vd(xfDK3)y%((*@(u+tLZ>{sC_DYhH z_oRo<7D|&Uyh?8!XpkU@LS*~2y$Fd%SHwV;SDd79_ZT<3Ly}};W}8WwTtrfFd?H`7 zNQ#uB`rK_$crob?-<)LEPI=P0$xE(<4e}&8s7t)&TTGfSz_TO8L7H@Ev6s2km=tO9 zgVGafstl>tGIX9ak2J}tL!xCtw*-kdx8T#t_0lATy@ta-10_iUrk7S|ODrb&pFVy< zbD20v=k2xho2lX?etTo`wd*3JC`Gf0?7MHS;iJ@2w#xn;i_tD6T!-E3)j&7AUu=(`QanemG;me_nPuAH@>SGP~|3*^k>?a>udpUti+s21y(n$4E3P!l%L zo6YWuxqH#SRRVa~~o zu4yqQLOIrAna2VyF3kBB7XJD94$&MwuXz3cqk=0BgsT0*vWM*J7|WP3Gxk|5mF;FJ z5+(IX6p5k*eQlB!DYV#Ilos__vXrGo3iCvkNTsBRNF<>oS+f1+_t*X7o_p_m-}k)d zoacGZIcw@Z&rm$rM)-3RS6G^k0h3RC}7Xx5b1}# zVhB1FIMGxpftL**j`uhSGb;`=aY#7eV=n>8r+fGKf6tFTL196y&UgQz>Lg%yGJ3Iz-50Jnq*Hrl}IbZclF5 zM^nX9nZu2;uSoc)oHgs0O2*iv!-nJ^WRx4dns80iM%)wSqf3`l(8Zu4?Q;&3-u=27*@`o4%odx3Ou<_-!o=6ek$|=F5Bh>$Y*b zFb#q=Jil*0HE?drWwDGHZG?{)wy~XbP|*I!baSK*s2qoYRxc{P+;%^j`j?8*-E$eQ z?dUL8ud>Qv&>{CJN!Z;;7lYq^WmjI*MT3FB>rz1mp1B_7t+>O4qH~t$9vMBH)O=L8 zn@-2@UUH(LD-G29SxOmJRJiSY_ctPyj;_)(-WgU5bXt*leQiw8{kB^LXX&AG{nb>@ z5`A4?*xpimV@y0KT{zKVf+i!+$S!3T5}nS+o_lJHw%u`x1wtmc(Kuwt z;Tgjx`|Qc|?QG~DAsL4maB$q#r_uE@3;qG}BAT5nEZsE|B;m?}=v&vQ!V5+)QQPKp zrqU4k{lfIaSM@O~E_X1kNgwNlR2xpy^uQJOEN@rU15-)#%h_@M)#`}d)7|>mo9g-K zPrE*z6+CX_jTqvCQu^UessSQSjwWxfHNgjNp^t%=mV1PoK;7i-N1{kD}qJ{JHkR21U zW@EG-guk>1|D$P)*#9J%ecdJ)Z#dE1w}OQ#ndFk_CoIU9yC#f9vv9iPmrvtoLxf-K z(byrug7Qr^?W!FM(>@Ov+rAkiSg|wus<{z9zoJVNlo-J5fVNtvw;}eu=)7F}(gZGT z8(bV?jB!63FWj#f<9Oe;#ro+iq`A-isHU*7L2RAbg%CDSqdIgZh=uZtS{8~t7S4pV z982HA!T>LR^p!0Kt*`r^O|0c2cSX(B)=@Tw%J#qGHnVXr>1se?5(l2+pCgqXu^|xX z>aIdF!Iig{&vbYi!Sd{xE49^n=t)l54Q0L_t^NI>{ge)dWxlUy7oy>6S(#M8eF|KM z8cu%SsR_b!`_5mV`TIr1+I!6aQBO0>3Z5|Puz z-Gl6hsVX`U+|(BR={yZzWuqI;ETKZ=XVB7NE(Ml9QkE{EXdv1y>8nD4CZ<=5-YTk4 z$J#GO(QT_W(EY+YvY=80`^2wtTFvEQd-u8jhAer|9k;Rj?n^*$<48uD@E=}L@6_|W z2c7)9(U(@)ZG*M~9hTW&+!J}x&IO+#{vXeOfT_`=(`;K7d2LlHc)8u06-d&ScnSN*mn>NPGp z+x%y{VojG?($e3yuD7{DA~|!mysOW5%KVtORrgEMmsz}kcq!QU@k6T|v0>h7(c{M| zg!%@RrioS+;^|KRhqK8lL}I7!xiFd<@yt5L?whd|abA>HUnr+ZNXf-_4o#7WFSMR5 z3Vy0Y^#0i?7DJU_%3K$5OHn4mxU&ZoQ{)LBQM%7Yb zhJSdLXGcNjgo(R^83^5O5XOD99U;- z>PrnM|06TgT({ENH878TPCAzkZ}c~ze1 z_bHNm-5^W6?NZ3=fzio9NdP4Cv0=E zicwT4NTlw4rX}tzMwmBh-gVX$C3bH*vFl*I0D-_8M=amX*-Dqib}q~Bv#ktI{Af+VAVR; zU%Vi@u?N)tdS1^0ah2HE_q=Jx*4J0xbn`Cmm#WXLo#Zh`e)W0|_VCF4^s2|Y{k+x# z)$M=#I(V{&iVK=%nr#16-uKF_>Epeu(Tc5gndD`=w@4<>&htDZhKpk%fb-{`{K)4n zfJnyGPn#{qczXh}FDS0+=eZ`g-~7QA#SWjmmaLdj-iIY0jjjdH^5m@x7tt3Az}_%+ zZ1bW8$a=NCI&gRaCPzJJ?;Mn|*JR9s7bc65+e((Z7b>FTy*Sf&iv+IRsZtkhmxO(! z%(X>Q;yCXdv*yN08OW!LZcyB;3^IF%T77RH{&r zmaxbDYl|lKzo8r|B=h6P;$zFbHj)rMxYg;Pt_F4G?ObDM|VNQFkhZe0;!`nNU zuyawoB-%~KGrGT1_)-Qo7;LqCYh(ZcX4i4wN+Wp8oEM7-H^gS0aLvyrO|anjt2Z=$ z9O8N{`DxLRAp~!Dr|-yRA&yj>*Gl6cTuph4{T42SxV3`rr^D3@_Zt}LDWWp@a=mz$jokjy~Uf2qKDl7hAi30h`QTz)snhmBngHI^$ynxW36RqVX4DU!C>MSbfqLtubBBbRFiRVT_V zn-Wv_diE!Z1(~A$9raaFrx_~0Ui;qKX$tXbvqNIDW)R<1`0`nzIef&4v=^o3`29QD zUD9|l2Ay+m#JXBw_1E?H^7dQcTlIJ_>68Vy&tuA#`Y*=F=7CjIo(0Ct7nz3q%YV-j z!LP0VnBs);NTa|XF8cnRoH-lM#pYFgw}f}F;a#?5yUlAa&{E=9k|MAuIK~IewV|6l7BVSv_Qc+dua??-MtG z>(i)!>>+)KCw>hrUi(8sek<6X6YG z`lxBRqp`J#0Zkvt)cgrue7Jbx+1Wq3Xy=d*+*PJw?AyKN)0s5Ps3mQC<4i$BpWPF= z`|3FNR{EQ6ED3Mh3FC=h8kkIbQn9dJ8~N>n#Q_Br$U5g;j}z5Kh{Ss?S4|toHZ316 zaG|1gqVU;mh#wBtdamM&gAD>kZ@(81t=_({@2Z9Ln(`m0wY8EcZI|DDSs;r9C- zr+ybwuyyOU!aHXv5Ue}#XfR#_#+QAkoMtH?PygQVvVwwvsnM;Z$6DyWyV@n`3K`#C zuoE34)zRbj&}ZK|6}Xuj2X=U=qkjG>XI@?hF^^vyDB4FwTUZ!yX}Cqjiu z#3CiRl21`1x)T-cklcwF#5oMfSy}PJBNDjj@+l@uv$>FVCli`Sq z6mAUZDamb8gr7v&>C!zausN^E%e<=z>6nh|J;hpZ`k)vwW=4UbV#}JDlN8iM&;4t( zTL%v-#ntv4(S}CmlKG=SWW4$u>=3ovVkWhV3FzZTh(JZ`HQ-DF(2+tlT%1qXz|H$$MqJdg$VM z8eO_&0HeO;9kdq)*pq8A+UaWm^S%e^RuP8q3hy#{QNe^ukVc27A`SiTqwKz*#v(Od6&g4~H_&ge%U52&iEGcrGTARIt(Sc*kg`0-lf++PVak&=bfN zU$sLEnoq0rWva=@aBVzybh`?Au6Ahh~u2{`^#RRIqmO{I_ePTrzx4Sc*U2jmz`Cj_IN<+hf+!Ul(4t zdTJFUskrr)h_b#!hT4-8Qtm3+sEj+dH=tVwiBlUt$=%Y%@Mz%60~1s{^Su^uqnwUE z0-D!KyLt}UI`z{qRi#;-Pod+nA*-#jnt^rU z!RHn`F_GT1%F^z$KGbg=c=Y>-9#VEZ-!h@Ai{0g;MqkaSkgnK8k}uGOz{Zy4Mc0_H z?AiCa(OMS{Vz0cK!uj^4E{8Hys)M{u+S54#R9wx}i5xvZ!<#Sr{&P&=kMB#3jVxb3 zc>|=*;@}-(i#r!_6jT4<@xC zcQ3a$Kaql|Z<>R#J=!?EVkEwjiF-4!*bA0)SH z;ANX#z_BVaF7?0A>MbT?6;Yovyk7^ja(d_*Iu$13XHi* zOM1u&wJU$?uZMqx8`lYi8lc`la#^IL9@-nQv;UwzR?Kh7vgGqCv75-H=HpBp{7Mbt zM(P5b$`?&4x`_8<1g@3RhJ48K!5K|0oZN$O_J0)QX*}Kj_NXSh(+|_u+*ZRA*^h3? z)|!a(-gBn@k~UP`*wIVOH1RFNmbAJHJ~5{(1Gcqt^x^$F8m|Cx4!G6Vd9R!>yk5cxVJ{kdGcuJ7%U4; znx|n;V8O+Lhq~A=;?!-vfsQ51ytL~sFmXp#_Pwd30eXFMSS1^nkP`}xi}U8s-`GuM z$8J5WxuS0|Y^#sKo{;6uZG66qnLIK*Zh)juH~Mm>nV3)?B7U~$K~1>)375ZrT0#zm zgj{Ff_{V^lUwnJ1?%-ec=>i?>7-xaMvsBcHWnZ%1M8l6Ydk3bk>7r$JI!kvq4Qt(2 zH}w=zp&GPuU;$sQdXVyXQ@E=s5AD?WvR*4Hb`5 zZdu-?A>CKT&Rvy?`>9^TQ^#~svahS6`m8Rd+3t)De7{VBe)jhYDpD3%g&$d}3zMeb zZ>oj(<1F4(C*#V1qlJw7{-1PMKQAyg6Qbj*O)TZVVqGXLK40rW(m|l_RAt3BDvqSC zbMimL05|p{x5tHn%oow`?kh78+#E%E^;H+=9F(oMZDqpfi@^K6S#)S0AZRv54D3}o zI>y?_1gEul-pWrOr&X5NM_L;pbcN#1^=^jHCn?X3$Q#2$*{?!C%>=FqYi1g%jgWfk z-GEz$34T?^oHg!aA+z@V=kzZoi1Lc;Z9L6Jkg8I&X9)*s8`n+Ui(}*G4yQq(iyWl< zT=rZo))ZQvM*H5AOcA^ENn!1JQ(W%#x{0G)d{SC6GWU&x&W9y(wtQYrLWec~@i!YY z{XgqItz+Z4_@m2-b!^<&9eCeelY=**=YHp|W+UmLyt_aF3&*^>7QbA~w=f$fsmKv-$RW#wI$H zg9QtP4EuuE;1~>AiP&*5;J$*qDun}6*DH7K^>9EtBD7Mfm5pH&rv}%JYz*G13rbex zfGflfxx|m-1+sjzyOi0u6#8f~n#6{Z)>#MJy)4wdKWr75&w__RFePj=8xt3MOU^5q zpe;$iC*-p+L7-N316+hk`oLyni%7W+Pg=3br zEYMqpRfc_8u(B#vh~wj!EROmDV$2w2hu<`4Rhhs)WT*JlZ4+GGKKo(WePb;Bxhk3+ zV1m3{@oD356L=h((xT59;o*Y3yjfub^c-e;98l87sSg!iLQ;kp_y0nA`^yl|ruyx7 zC>mqirZ?e@8hU(uDC+tsn1P$FS!oo$AM)mUS8X|K1RvRY-Bwc*Y}z1IBe8%57pd=E zxiu!pzxH9i_Ob!O+{s2HmJu`^IcAx?92X)N6(X-!aIpDQl}h`+LdM^ABqkIk}r=S{J-=bTg47IQ?{XAE=w&0*`7;uZYS43ATuP}>qrAr#>> zdR@Q*3EfJ$E(v_OGDvoKSzwu7Xy?O93q)Np-M!t$0*tgrgHQApBhz^T+*u2#xuo5R z`)YyF;JN)>q{TQY8?+(4g^%m}D(fFSFh{L}MNx9GDRl1&HV@~Sp?4RzmTArJX}=^7`!M`4}N5|=&L?^(~fS?gSTpS{m@_I_XQ;q`i5*FN_Qb@dm_ z6Q9TT*PpO3pAg^T|7`yA!u$KL#OuHB{ImbhafiP*`2TM2{@o@B{C9(&@2`J8KC!>w zU-EbV|JU;@&Gq#7h%^7`|DX2nkMXGr{depCe0BdE{kQ%9y9EsO_L%*3k2ZhbsOsNs z$=`nV_b%VX;}~Y5Hg7P`{-i^MwKx2) z&-?f2zZUq{0{`Q9b7W03@TR`^NRmK3^^#7RdK9C9>h3>HYjv6e! z9Hi}N9D~K5*uNipX2WQipm2yqC33fsPDlz4!)I7Y_uf@9NG%Imf9nr|Z{k$<)uSbd zwVamBUr~pv;`<~FHj@!2_W1$tN+%o|wL{wnA0uMcqGuj$nK*oAQ6J~vFc#jJ&+#m7 z0r}(8?!LXhL1GoRZMM4$GgA@uVXrt0cz%l*mB@zGiJT#ijBa>0J~P~C+YcsLHR_Z$ z8D<*4=l*PtL&Ej6Lu-@zP;v3X+ZnG>^o2gCNg{Vb(I+%j;(I?H)QMFcSTzFD1TB9< zTr$|D!)Eh>#&PZ3)0)>~!|2_TtZaF61pE(I)kS~l0lmF6@VtEwJ{D`Pf2moA_{ujk zGeiBbZ55elk8MX;TEDkNZ7tHzZ_A>_)Pqtz9hcD4i$Lb@JB-O842^$2g+~13B-C{N9b?k?>>Q55F;_>i9>gX%&F<@X;UJ*h>7`5&Y7)vI~mi zOZ@4Fx-dz#uHQgh&$Vqyg4^5bpsk=H;ii~~nvQ@SD)L>BwXqmr>r~>0b>Wlb6+=i+ zBPr#`{K4zh{#&$mb|W)X{8^D|Cs@mQLG;2tRPLAc2|kt%^YYA}!be-ceAfHxTm2s> zc`Rs5aO{J5n|xg7Nx~1>7A~$?Ru2+I;}xqq9emz)t2dLf;TdpPPT*A)K9;6iHjY%{ z?UCpGlW!|g)Ridy0)1$!nT%NdydUIU&yL!=mm@qu_IwIo6}W3On;vlMFGc=*BR%nZ5zO@kQjfouMJVZ1I zBbY0s91-`u6EeO1`&P(x;%!o<{9r^6^aQQ1?)@>23ioRc8<&&e`NjFR?Uy=GZmm8z zR5bv<0rffu=TYp`8f1JCC*o$m>8^?Qr6}9+tm92p6&~_!ak_EE8I|-wcE%5m{C*t<|F_f8E z9_^mp3B!Fe*%q@a!6NaS$w>~v*JZUvd{hV2xLdiNZB^j^%^lzFGLGJ+J?1M8lF^VT z(PHJ%3#Ti&?>x^9LbR&y=xXhHL>#f)<=S5e{lXi$XCxX?ogZ@6s=p13#Pa?O84QB_ zYk%}si#+7miJ!Jk7{CqDg}Pn~M&QOYo4h;p1(#2&9dg;+4WWghwY6G(P&W&f^mqA< zy~a^rM)L>oQy^GeyDTIelNc&^~v1(R{l*&$i&IAvzh`JsFSLW8tLVW!=9YFlyg z!Tb@(_H}>jJUb4lp>X9x$8s@r`cL%ejVcJdS@+FlpcSOl=Qq2CGND%)7isdm6TXV} z6O+jWFg(#U(@$^3$iDfH7AEzeGHc28hX(mj)sq%>cF6#l+Pj@DOW5hE*?XUdFV?wwJjJ}N#oE4md*%(WJFF`f7l zHU7!kasacpg)WwVR0%1`)hg@VbFl2#qGHXi5wwaei*?QUf$WUdJWfq5^7aIooFVeu z8H>%-x|nIr}il?ftks7eie7$$n z>pmQPk-Owc^)SZgZcd8(GK2`()Dh3x0knR~(>`d}0_~8pBY}!_2rr&$y|%R#CfDV3 z--VEIc&@u~*OOj^$_e(b&&r3+?5imW>Ydp1?X--@*&(D46hL#qARb8 zy>iEku0;m*V~FqTutDs-jz``WLs+h`!&bzg1V+*4pFR504_5y3r`_-C&~3h*mKjCZ z`KuiHc}6EDv%TATCPz_Or8?{R$xq<_MqMsAw+lso0#%+)G$Wx%^R`1zHiTN{JTS&@ zyxf%jsO0z%g2!$K+3S_TZL?3T$hrcAj98Qo_f+9(z%@=?$vC=>oY|ya){84PjTNTd zgHV}S&*%Sn6e~UzJofVF#@3j}(MA`>;IMYL#IWaA%_=qtGv~aLRzzPmGc+$NgxQ(JOK&|M2j7wJDr3vrP{L5hH>Z`-(|nr zVVLl}_1vp8hDR^naVj45U{jglD(U5&2-|HjShTGdm-nnVcXVMfS``;A&;C#Y`^~QY5S*kpbc7xpyCqj$ri(({I(v-3S-< z<7L(ob=YG(Hi*bW$>pyqRdog-S?D>kcX$+R5t$9CYAw*n45l?)s>90h_ob_NBk*4< zG)G^v7}P(!NRN(ch@AgE%)}^^m+SPUNsq#6db(j=^AIA3mvkweQM3U2-3{Q5pfP`YA^V{wv2zV`vm!u{I}W#dSP>8+_bu@4nI5X4NIhm`nu)pq9ZrEP%X(~Ds)nYP@5<}Sz;vjxuS5_w^5%bAwj!yvt_taV%Q z8X8U8Jk{3KVPO9vAJ^7Fh?&eEd}CD&k2Mvd3B>y)U)Lo2UuZ-lUCq=}r2|_N9+k$G z4xuOb@Hh7Zy)eGB?3LK}2CQg}G?w%p!q#2R<@UBiun+8P+r((cg!c&<&rN^uY`MFJ zCE-^A;cKS$3H2iB`2C{GL%lfQeg2Dj^$0ff#Y~$QcR}gISSYQ!6vA>Rv>sj@2f5{J z{efp6K-SEve2_eb{0-l~8xTB$ynRgU*nj1xuqTFGImvdNa(_eyN`EQsEokUA!R{}Ssh~Rl~(^I z?#rPrgWW~cU+4V~MLW-oAlr3oYZI#xYr79`HBK9VbofQVHUf`)---oKPZNGIb|O1+ z&3EjO-k8$(`ZL1JAC9lfsz>kK-_vJ|2N0iGmgY$vhsNfJ!KkrzR72r1zhi=6k zuCwXF<=S^|UNvMP(t>(u-L5`3I=Wr3RV72iX0?I8Z6B7+9ZI=N;90(BQ)l;7<-jdH z!y$`K@S5ex1H7RDuo7FtZ97_U-#+mt>&^fiFaOeJnRjCG&Y_aq-c3ZFAlGi`8v^)M zMFTTCp^hyzD)UQGqN4X zQ|8-ejpC`t6UnTcc339IoNJ6ILhr$Z8-qIC@JJRtV-sEgz8n2wha#@vqpe-G*@gjV z+9&T_CPVmJbD7Wf-V&Hy`MJ;{stb(`KQ0%otA~?_;^ZVzr{ywsw~U!pK}p=S=Xg>n z#D7kFSrgZakEhN)oQSVR`}D&MB7s0#0QMaHTQDiVZFD%O2XS_}l4CWM(EgHmx`sZ0 zqH48DTak7|uPPV3-P4LKyQoWepGF{jeppbnEE~63S6gQh`HJ>lV(;zxZb;3%?*DY7 z6S=E@E8dvwz^9g&b&l7&L9V!Gb?s6*qEl-(zv8un6v2+&-k${Z4Yqn?5lu*UwwJRd zc%BKzQOShhAGR$)2kzrLT3;qVl3Y}bhm+O=r`3mHXSn$plfZ#H()bN7m9`<(wcICOv0>?V5tkmmlht!DPKCg@#%%YxDz82GsO0%~-wdAijwzo9z zfK(6syDhaY9Z$wjEsgkqnqk;Tuft!E zI<}&8ukAZb9I~<6T#<*xg-+YoJS#?z{Layng>6XMJNH_^gDPYwy^j)q)rTE4#n&XK zQjlh{>yDl1!PAxLb2^i1p_))}zUxE=3ODF^ycGWl+qN^eFWl&ZgQj1R%IREOb&xC- z%WQyCy=&YMYYc{kS6%cz^rAMBDQ&QJ7}7_EO-^bIz&$~yZpy3)x!n;8`$y{_6{mAH zgZdSugY%V5T3W!jphs{^h%eR$P2A869z)=^MYd1(v}4WQJCfhTNf-_|+f+8I4`DZS zb-s2FfCB!TY8vy#w`%g>x?wc`feN zMb8zoHK=`4O-WL1heK=Ru1`jJc%~^(ro9XQf!kzN2R`;~?1AiX!Ir?>dekursA{ofkRA9$%0pT(S7$|x*RFnu zsY~A9oz@7AlG>|F2%hg_8^`!E-UWH1w^62ge~>^g@1NaJ0?&Q#BD<>z94Vc`RO}yv z*817mYn#ZpY@Tn&EGFKWM9D zB#h_tB6mqtV0icHq%$6a@HnwSeT7URgwIJ&g+!;q46L!%a)SrB~x+_UsEk3I7!G zUL|>B?Ff=M#+RObYCveHZnSb&1x}ZW3LhFGc-Zz-{>>N2XbgOvF#B0OKE}*@9OTrC z*ej7yS5A^Kt5PcZvu8Kv-K;eKaK8g%)?X>tbjKmH+-%B1`w<(a1h zFOuJ^_h(wJ0iridjz16{LaPNSH*|9c!Y+g)rS2l?gIPsi`^HY}e8d=)9T`MWVaDr+ zg#S?29kjCFH-K!3*e1{8)tELs5HGNL1XkCMjp~K=Vdaae-ZDaO`Siow&4|{GFQtW( zTjTo?eMuxrcHJ;!RRYcDIkbVi=PC1k(;L{H+&Xvp%UXOfp;i~kb-<=_PTD8ELF8pM zl<5@pLRIEls^QBqj9EP9&pO?X!|L4kVw=a|@qUrz!KU}Ht=Q__C{~4#-Z>kdZ)?Eb zuKU8@RLDqZIPE*^(}xoYPM?+>7)Q~q*2rLHD}Jq_y&s`u&*xDs7u_h1wg&)zkJv}Z$Vy@gmHtqMYqmTnGtPgUk#;Na`3nDdiXv!u&caTf>SK|^#^$b z4qd$I-8{k{vtb=?*Sw|31WcQ?SV)uTU&(}@nd(XI;3F6>a24N&*{ z26EcCfvUq}=r_|py_T*;b>6lDg~PQlb?)|EJJ^kMY34P-FHOik*~wpENASnfGG51P zvT--{!k*^*M%)i{lbP@zz}=H(Q*RR*P*5&j5iCUTpaZQj+N0yR?68RWtbZaock404{db$PH6kd@jWjNL+Opn z_BMhexLg!AJ&V^3tH&QiWC`5pFE+m^M>-saNB?MYKXxEOP;xed(66$G_-DLztKplS zXE;Xi+sRtpd512xBH=W1c4|@)Qc1pRXzCRx4+(p8$+!>SvZnSdtnDZC4g~zvuOo2U z>vtQP+EKYXVpjY64+uA&Qy%-O6>hQtLQO{+z{h`HF?uQ=+#~A=Lf(M1AIbqT;$uj1 z?)m*yxe$g|thYzBm0)6i7w0k>2Ra_{%oWLpGtL5}l zYR0kLkfcQWM22?=H%p8+h7V!9wx!YI7@$pxOU2}X&m`!{Ue8+ypC|b&^HUl86Pe=6 z>_#E>I=t!*q2KITtadf+Qa2X*r9Y(;y7L>g9S3Gfc0q63-Ps{MgJ|Z+9FbW)4!MsE zE4?|raM8{+b*ldfb-9ySo}a(NvM9Ul&2$lVjM5C+I0T<-&Ix56BJ@WQZ;I=VU$AAx z2U$0cple7$!`_L|y*VCgx3+b{#*BM?R$Uh4C7z!7{F{t{sO*Q9o*mfHESofZs0hv5_-Ym|~Yf<*nO(yr=GoOfJ*ec;a!uC!C*odbH% zyzXAeOBo_xog8_oT1m$G?X0_(Vu-lfZ(g9?n}!j?Nm&KLUl)Cq@6KK|gvNcXsso>D zQNGY7Xyujx>@YZQs^8IrIr+@W?6P6p-!Zw5f6g#895?N{yT27u*DaqME_nnEle-wOq*Jgk1KL;CWubpR~rbD&4>_gwIe%#P3c~@f(v+&8`iFO9JYyU^$yO?=*}ougdS1Z!j%EnR9CUxUry28RIkxGhRKj*M z+YbU&NItb{-vI(&2c0`upzG5Eo5F9;Yl3@FV>UePOXyMZjpz2vURMa4B?Vh7whv-O z%e5bK$_ZXDea%jg7$3(YYiH+64dQm_{`op{D-k4jGGry_!V&(lD7f~y`lKk!nC@J1Wz=-r}jqM0izGh>(mH6 z)x_Pxb!c`KLOV=#8-5ND_%F%em|HER@>LvVi{c@?Y;d*figIwzeG8@j>41NPS9-u7 zFRYJtc_*}f3@L{~GD3*FUgg=C?BX?mr|;Ib2zL&mdKG={7D@xcqxdaS>N^oEuP-1H z*$e4~28QAtooLzxY(D)8zRo+8!U>&{xr{Rz zBlQ#OCs$r??iohWx9HU|_nP2;qI=m3mpnp`-59g2fv6kZrdOi(#zQAC@6l=@Vjj=_ zg-i{l9K~TtMP5ohnC;s`Ii^;RXnFCYHVfMDq|oidlGYx)4CeFey4;HgoZ=lH90%aN zb#5v9U<>?RXYH|5%EP_IVQ0O_1Bf+O&~E-x507KZwM0M0;OL^Vz-!^7*uxgDws_Kw zXDXFP))6@D=IyYlA5V$-oS4piI`xFkwmo?Ddf5>KQ79XhxmJQK+*LiRFBbXYyesY! zM7;Ul%AHXn;kvNcWyP)iFt7SU*C6-`AQnq!pc z)d#%spjga|!K29HwXH}sMn}qDjTsFganAPZI)B$VU4ICR#wtY;k`tqU+y-V)f6Xg64x@Qr22uB6wV9MkD2D*D#iiHfj5^hY_-K{KL7=z3^zt zdZOmq3Ubt)rTxZ4KW3#Tvk2UEX_dzUkm(ef&Y06nDh3SMd>qfG4h7{sqa(R#UHl+n-3eV zRCaBR5Cx%SnLXnSDo7SW^PF!^U`hG7=EismstfsUb}y&Gel>Z^!y6prd5OmA?q-5K zI@|rk8#egt&)S}wKLzw9I0^2#8gDv*BNHBT8y--g zls;#Qo4|oCStq}hLPu+zXRB|?6zC6goU>IYaMda1aLVTis5IPfYJW|^htGCinJv@U zHM0Nh@{cp{^@upIRf>t~^Ct53=@Y0$)B8nMGjPq`S8+0?AXM@ z$Y#@f8%$}i9H`>>(Ppr6yI^ic0t0CyS#8U=(%>F_KxKCV4VMRfEi5Nl(DCj6;d6z9 z@pn4qKJ`@W@YOGW_i_fAANP;w$xR|A_m)IgG85VAne}{iY%Crdku0z$u76Uf=xZw% z`i~QP4-8FWp849xsoSP;BXv&e42KG8n|XI$H5Z0~rMylp9;}2tEQ$;!G2z^^<(WJc zu50v7<=m$6lp(A=qcDvtEXCnv#P!517$zOKM1%SHLG7cZ6Brubvu5S;Y0Rx(u93f( ziY~>jvif-(9GV?*+`4B9l?zC#UPVvC*6_i8=LjbJg0AcNIL+XjZdx((I0dz8?wbqh z>ENa1W;L*;AeuS*Os(n+65W^AOnhNOJ43LL8c4&Ml&Qo`XDM)K__{wvNShR;Y_i7@O$kH#!gC8s7;0T98>Q% z`7~T{wU}1A&O(pLb)%05d8iD(ardM7G=fKJoGbmPup2nrx}t#wTqyQ&F=xQ!1pmgc zhtrUIxUQ?yl?$PpqQ*63CLT>ry`A@%33Dsk@QcPQ#NJT+_PUb?*X>AMK97ktqY=_8 z&(gpwcpy)6V?*m=aJxu_q5rD1EcY2KS)^w& ziG zy@z->F8@CHd;oD>)p=v#{8adn`Q(>9WMgg9?cala3_I;bhmQFT`s5Ekh; zK_lX|J-6`imR<_lRUUj*v?RuD{+!tC*+hISTK_P?go50y&lS=lrXeuL@YE?{d}aq# z35HfoK_>1%GyNDFPT!kW2Kck^Oj-H-r~n67|2XXtJUxkKol>V}u)_HEPAi{8w`EwpkNMbNqEVT!(`dZhz7e?$C(& zx0jDz5b^oi&nU$|l!0whrY|SA(1`UhPmEV+O`|p^`iApI2C+UMaiZ=x7dNS_Ii>N_ z*ss#}rDzrxOQ$I96X`s}nlzcyep0|{-g3gnfyjpghMQJtFd!1OQT}5H1u||H2jVN3 z@c233KJU;Zs-H8tS-TmazrAHR$BKm)t0|1jR0=GX-&EE2roe+Wx!Pwb2VW(_-#^Tv z!pSiry!q@TPK#d?Ki$p4ZJAm}WkDX)c!&JeTxcj!)d&sz!Nr*#iZ%ZR21MBp6ICji zX#T}$R8(N&<^owEBUvJTKXsaSrBe`;a>rTnJmII#I<;pmO=3(r;~Y<&h7Kvc4cmx3 z*J3H+_mxaTy|LHDYDoqrho`&4YIwLQcB`nCOTansEoNRsyL0hvv|kVe<^38^!fzo}$4sG3sjTFT&18mQ7T& zFmc5$$K7+93yB35q0dDr@VCDjbVFzwlUrWjU!P0IsS0Od{f|W6oQZifSUiP4D_abE z)HtZNGpqVwI0a=_({M-KNyyGvPHJ4C;@h5l?x`Lg&MT*{6z^q0Q|U}!JcW&CoTYrE zCN6?(I!iS&ry*Xs&*a@s9_UpypH!?V2t2271brOvmpKScZy@s6(w}q7tR}E$+kO)T z?()sm|?f*<+g~KPZ zyE_A)E%ooQ?@YkiU2R_TyeWK;idC~-$%dMML%fqR7c12xer%?&AS?W(mdl*PT%X-< z^PW=>vZVg5mmn8E)!Me2icBGN$;OQz>baoKT3x@(ep{jZxg;(P|Ab9RqFj+dJMSus|?Q%A>zuYN7CAK2EEEU zzH?6T(6Gxf@~hY+Tvb{ddx<=AFmSYSK`M(_|7L&J@jYUp7>91*AAfRM!QUx6gRh&6AI~sy7)%65l=VBs&OuE}Y3C>i$Tx$juw=>CJ z>{ncf&Xc~-6w1X1Hv9Cfvm6}Q*w*+(ZyKSwfvHz7Q(;tk`GvdzVLwVyn8#rvo|j9k zPaS2Wv!I{bM<(Jar7TdC@TW|fc_z|Cy}jn`FE5`wiPj|f%Tb+NSUP#kIw~-OA%2>W zog)W36qIdNX|jlU;^bvN1*gzntZuw^5fuvS-ik|!(s6a6&w%Vj4!Xz|Cfm~(sM~eF zSW|Nf-CKM4_hoW0(tecHLEr)>(QgdzcPzY@4mqA;#l)@AbG=?k#5i&d%+`BOpv(H= zy^Wm=C{GL>knteu@yza>=EFqZ{hc1}%i}^o zvP(|cNr%kW!{6r3A@I=&tq#pN3Vtt+3Zn{4W7J4-?wO-ZDAA|Shnn3Ho_+~qY8My3Rw&Fx13uZYSla>_}gn#kZId_8v zEAq_aFPCZP^4KKn5=zw9=jn5l_e|r<96qm?kqjif*}8a%Di!W&$Gm!96Zx9d97@ij zLrPxi@$9qHDBGM*T78hn3lGnxpZ&ps+^snM4|gYElKvpN!jJ~)yF0tLjInXMMu(N~ zgo-tDKF=B=-uF~CP$aLRBmG;&BUJACOzL zi-X7)pN?-*;SlR#E;Gu%G0;9{tUJ~_1>!DcKPHpk5IlojB+>oh z(G>9|!nU|NAQG*%CY>^l^ zWH}A>!cs}sm0YZ7JpE&vB@HyECXYPgzHDg9`I$uhO?zi>-(wpW9}h3Ml&(e8K}wRi z++l(T7-ioWBk%}0^409}uPkET#@PDtx=Ab#n+%fBpx|w7_l)638YYGMeYeT6VQG8( z@J<#FCL*q^xEuxsLze#emd?d{otmUmO4Bg3(_meBLBX$$toM&3h`O!%Wv2?k$0U*- ztkYJRL68v5T9?4H9y>ckmw%%ma#Y#oBQcK0gRH36z1X;>uzh_4gAVNYr;f+astX*%@QKaWX=S4CglqG0=_xe5bMyL6XSB>ehg z-OUB}%_s4n<#VehVEs|WE@2rP53PqQ1Mf0mfAq?D+?pvQ-w8DmG5k1An8cUI(8xzyXyg2QPi2BL^22K=B`b+O*5Q_;|cX>8kEY8q!cunw{ zy?(pL1c-cfwJt<@?=X>HIh9k5BqqjhPZ`Cq8E8CP`6xAi8o#66dM}-zV1trZMSng6 zMLjFO?d+exuesKbcDd3q7V&Iu1HtnwuZ!JZM(~d_M?amUY#{RO=dIPRoQtG_||!$OZ$%r%%kj@Fq)afCDMZ0PtIJFMwIIv%p~x>&q4FH zQ7QyjUqn$kjRktFO*Ka-NPX?nA-9-?HSv>Kio+9dTKl5rJAv1>h2&dV9HL<7oCEeZ z?YQ7m)HC=>sHMJjGR93l6b<^l`d!0t>;a!EIleT*O%|Ognpvz%fCr&lBZ@e+B%W z(|ex|iSZA;I+k3d-j;m#+lvWC-3C&41Ra@IhoQ2PfFi*j1N!Bn(Mr-duMr=uupY$PIz2gY8vdk4vrNTs@JD`;{tV_GnGWFG_9v_EQO zDllNZ*i)Az#6sZjj|X!I-s7EODB1OX0>^G0U-4svf}1uYx4S1NvD3)JNBlek!)7-- z9GnSUELwNq0f8studQEhqcjDwU)xa178d$$jqcf@NJBu`nhn|MO>**~PUVc2tI_*x2tt0&J06X-}Lk<=vd&R3uu(9U7 z8BNoYj`1CFW#&FKI4RV6?>|QHiCUfeHFP@uvwUvN1eWSCNizC8y#6Kl>^Q-DTm~xN zSPM>q{yqInFHxsUwPjv6pJ#*l%75Q_J`QGbST>y_Y!qGXnZvFku7hDWefSa&xhQet0xyWXc1rq%?W|HNXbBfJ6^Z;&4~?yp8l?FCcK+Qn8EHQ_EQ>&7KgEP9bo)kK@%<2btI* z#`hzwn+~DZ^D47n5P1JVvC~5(!hc*&eY;EWd@Yq4pXN)`(7ShWDsf;6b=Rg_$>LMU zdTajc{7D{yL#^3QF7WVbsbJf~GfZf1?9lPaVIr4vI8c2L4J(@*m-Bv7;T99{@l59w zJ}%z9cRYoHHy8FVyP`4$!wt#TuJlt;C+2W)D-pj_#cqBrSD5H&EfhMtiMT$48#KFL zYy_X1U+^}Tzz@m_^_SfyaH{jzh4=tM=X$xoYFj27VXbrZa`Y3O)H85?nOS02A`odl&*%4FU>D(1eeL)(eIX7Q%T+hIR4`Dw)4;0n1sD6}T`!D>GZ9@f z(q{&sBQzH9e(eU+qgu<+%m*UvVBA1VGI>!r?M zZsoM2C{cg69rl!{CvdKo{A{TwSJ{vol9@erg^su%I*vMR47km88#w%xj>;7pERn}V zeUxaGRI+DcXvTN)W;Vf3-Y4oNoTWp99P7=$Vuo11S5UTlFAJBOAG*#lC-kt}0Zqm2 zgnt4xfZ>s5&E2gYbv>tzT$F zJ-(%+zV_rJCc^w~EsnM(`1aR&A!92dFU&-R*@#R+F1Na+PK&rNyV4zPUQ-Bq`^#`5 zn7}_G21+j{XCO8edPieB2le%gdTpW}@0XEeWUM6oc;!YL>mmjeWg~2#+VG&tbo@En zfd_T@bLE3|6yo_S-)|14T$ofJ{xCq)+bc8iDl*yA;M@N-UdQJzee}DE^#uyt_J01^ z6i-Krt>nSDGh8eQbWuB!I{~VOsC3rTp>NMPi^E&v5acTQ9!PluWjXXJX z>urR+Wkzg6>BRTy>!>fetWD@~;VC4m+95pGJIM^scg24jxatzY&clbdgIpZTUoa zKvid?@gM`1Lzm*Eo-yEg+W6!bpw2NcV%ptNjXhnGrl$cD;zD3W4KfuPl8+`0L#x;pf{#IPhM&UF50~4X$&P ze%@cjM)aG^4R6j7xbK*+n_Vvl`fH}&`Uh}e(pbK*YbgWlgNIzDiTNtV2G@O!XD47E z_cTdBf(GqK1I7^&7sn9LJhf;7qUO(PTu&1G@NDm)shcy<_K#cloajIN0B2_wfj7%o zZ$D^BVY_%MOyt3~Khvu2b_90=TyB;5HtF^b?-XY)G)dWkye zoBxrY7$4Q-MFGb`+1OjMzWT5i4`I$mrYckd7x0$)YB>=4x`MuE%sv(wC?z}rx_;uRRfL`z-V**idk+;Q z;~Qd!o!A8a8?IU@PQ$d<+;yAtCg3RJ_an(^3VgPkWI0m|{Ac;x3IeB^q?zAb%0r_< z@zG);uenc}d6Vh;I6Fz` zADjATyE)Nud7D<%zCH^6JX>xSb(+8f*UP%s5Oq^pr=w)SO*RTYSh#3hn}W+et8NWZ z76jH_VLuC|VM9=nsMTHujGVsI3A?jks_(CLK9_|eu5)yqDjW6(bkwfb(&1*cxb|lk z1-ine=^7qvB!tfk-Ih$uAH`05^0+mDk8_Uepo|NtYYPSw%Lx5rrCahN0*CF{TRQDX z@TVPam%~E0(!p9?^kC^y;{JTurGcxcFj)LdMfKSP93JpAGZxO^Zc6B-SFf&Am(5uGm$tinqn!x zGJpzidavoF^&Hd&M8RVr8udPVv$v#m} z67N#5amU`0Qv@#)JJ*pFFU7;rg3x0&gwA&@j)XnB#C^18w;YKf@M6QXLT=b3WUjGJ zr@i7KMPQ~OX*UC|Uj>d`kzgWlf&C5MJsy%u7POxx^x$g`wCrY#sSw|OXtoT&OI#wG z==_OnNb$~l6%#ye;^+udnZiL3{fv|rmxJPHMqNe|3%1_w?}CYWDBmfwuINMpKUsPn zaVKzB?p)OmHwhf85oxu%^wt!NY!0MF1k(Q>*Ut_9{kvKJwEypaU(4U>zpDcb|3Cfv zTL1Ga82HKdJ6bHaR6?F{xPkXx08ROGqoL-pjo>xPsJUw*QUi&6T7&QRT-y`Kw6Y=I1r7 z9HmKnm~Q>oZ%dHII=McSq%|b*xf}Hc%OpteZ50nMSCb(XD^!P)C1psjcmL^MQ6@_Y z($^Fd*(ggAd0ZM>m$;t9x7FzS?*uuLwd09rzaDKM&AI)II_e}(TJ~u2+T%M)q@N8Y z#g&ItNIF!HxerdMkkYSc^DXir+6y9q-Wl?w#^VKlq|eBcgsM(%y!Ueh>ClzLFTAM@ zq$P}(bJD|QNewC#zo&UJq|MBRb{D>Nq}}YKNT#k7Y0ODY^zN&*q$48now04wByoMy zd%uKaNNoF+EY4{u($-+d@RyGzNpD_!wpL4(B3-$)G;r=CNs@>0`=o8_rAX}NoY}XU zWk_d>4n_8~5&gaR{I=9*Eh&8wt@pImTGE;Oxu*|DN|0*K zzH8-ocX86DPdo2ue_u`dBwprKUc8!=y6B7l%0g+0JD`Bzef2q2aWFM7q8IYC3xZ>D>NQ zqtWn(!OE1NDya{1Azyvjn3#8LkyTT&)Ry1&Fa zx-WSnY0)n}Cu3r~UyFV}=~f{}5`0k6T`yg^YtNiB#Q4J!B|HD)$fA-b>ui<(JdX zzFl2UD*E=iRk~w6sbpP+kBWp6X*FeP>fTO8(%AVMRepOEN#|B&FZxp_PdaBjf7vxj zWm00%h@a!QGO1kclHnR#B~oX{1v~a4Wzthp)zz!N6-h=pT2&IF3M8G%c)Qn26iH`Q z16=L=%^QrY@Sljx6d;|W-aN)w*l#d;I*WU27QNhk4cga zE)KFh)3Juc;D67aGxz^!;JV|ndZV}^tCShCNA?P@z214>*IOtmMUw~_nH5oK8Wjza zj4~?Oiux5_p`w9OlpP77qD}eTzn;&1KF>VgbI$ji=RWt!VE_5X29}RF&K;8;taTK} z6&_xfg$knh?%l|ploNwfs+Ch+?-Jx~;r930|E~Ks?m{R#&D1G>*p zESAEtH*d2Zs>s6q%7VXl^`-IVxQ_Pg2su<9qxqJUe&8}@80P{x9c>vE2t<)L-& zwk0E60c%$%95qr1se*NfRz-bnS3!^wpJPF_I%f7KC%v~@3GLB0165_3m{m;9NI0pD^vyfeZm4QQ z$f_O+HA&Gy$BD4OyM0jHA>P(ArAys2R&P9Oiamr3eH@s_1E zDJjZ0SJ-VA=1ls5`**&FL`gyD+V7{FbP=o*-=BHYRT#9R)}5=4@xrcFvh%&cVvN5o z;B|f^hI+wqjeI+C+}8_vEnuvGg8g4bG--;skfb^CB32pq=KU8FzgFN>&D-GQ(+Y@O zeduoCQF%yd9#ExU#@|gO}g5VI+{4;6cnf9riGvan!_Dq9ptFqvwl^m z1(ltLpFF>$1s}ugwyEdZFn>JZkRhf6Esdm;y>;3+YI(3YGe--Ie}0NthFW;X_&aR@K8dzUp>Mz%u?rA4Yx%XoGn zx<(!w&58=$SPFP~B+CELrWH^z-r_jVQ9{Oer3H6p1uERypGLoxMZ_{K-~Z}mNj}h6 zcw0#Z;{HcA2oMt3yK|GNDZd2fV}At|NUXq(!rkePCnTXdE^lS|PaJ23WLFfaNFkA@ z$fskyJSuM*sm;a6pkO{)vqDiBGrfVM&c9Vr9U`G0{f^|1vcWFf(<%roOL5(KLK!Kd zks^bumC?K_ev`eJI^HCEaDOVO!rg_VepyZh`RcyT>4S>M>{;=Bv57LwwGZphbSOeY zeJi7zwEL{J4WD?lm2fmPW?St^RjlWx_uO2q zigWz?mtJA3qs<}Sr@DD1)(tNATHvmR8!fGJjV|h-abL;%tXT;P-yp9_o)(tRUPyFS z*MZ%>$^N;g+DIyn{&aP%4pM%cb<6J5LAKhC-QFI$_&D#Ga!EiBrwc#5oz2z5oA*x) z)FTX0TM&*M2Sa3kyXVyMpAkx{ZmzspV}Ms{zqM!&86b(;I~P=CfX9^IOLZCyQBE!T za^ydK?0=;jT54qkO|4CPT{;X$_&Q<84C)M7qe7PYGMO24ql5vKu{-vt+m8;;X zG87|7S%o9Q2~B|w#^^2`coCwt3Q>gTjKI7xw0ZasHQzRcdTCeBLU#(R#!i2EtVluB zi0+yBObW!zbCdPPDQH&n&!1=@>jj=jEA2GHJt`|9jY~n02W@%4X;U1JUZ}0tNrC6* z&uc}xDbN%x8K{t?AazZgVu+_HX-`K7TAV5HGNY_*Gd9EVtWOJSzfhp-?ZfkdFvs29 zQ_eyI$3{1==zf-p?*ILla{pX46Ru3Z2u>D(o>s zM*S1<&kbfU?Ml6{WZo1W*^`6!s!bukj{knFsu{NKdA9K35(>mygYK=!F@fjPq%J)b zQ^+iG3r}u0f%p*<;a)Eaifq_{na!r4-~1Q8A({fIJ1?$KDk-Rslv0#!ry#i6S!^wd zS4W{IOa#o4x?1G#&_*+q#Xd_>=P|=XXW2FtXH!_!T5f%Cx(J;MGLp8_o)e!F7p&l~1AP#p8|jIbr1FM7-w?YBhLmpHM@I@Y-AVe__$ zVhPQX|B7_z7Raedo^m3PdPTz3d3VE;$KTGvGB#WJWhxu{H#?j z*`Bn-r}_Y}6fAK$b$0T|j3v@m2gmi0(?c}L_Gr_~x+&)>(n|bVNzJ+7eF#WG|nIw7}?rlfDDP=I~a^^_3DdLu&o| zhur~YsOS4OnRDD6y0y-mJ;cl*a`&I%%5~;2W<+j^BK6_Mfx9P*gUn!;%m3|wJOy7n z|7~5XVg~h-?;_^ANxfY7{lbzbrtoPNEqn2fg5(e}fzc6Dlt)}$&6{S5Rz^2Hn`HvA zx?OTDTPRShiIJ$%Hp6B1${4p7W{9Z~P~|Bwho|REtiQ53>R()MxXy2Z#%IHBGJclO zQKAJ~OIl%Nng7FKC2I_ZKin-iYKb8MYo0ge=I9wMT^JZ(j&sY+r_FlEb=t;#%=9$J zjq&)6XXVV%&{aF^mSYZ=$j2@nv*vjEsIOAA#1c7gsm>6$gsrQ79ea-jOy(S@g>&Y( zt{o$`+rt8V>lIR)^sMlEYp7pjgB3z^{>d4JTjAFS<*&KRtg!A!%wpNoR!}Upb;|U! zLFbcd1N2*imlE=*K+gsX0H3|Jytj)y7lXlXe%6hpw``QvPh-aT|FXi!_UMGH|18iWyNr6g z!U78V68j#I`^>r4x3lTE1>Omzo(KxEgvJdC=5rq_2*n*O9r$U9@MVg`(5y9j8f#Tl zj@Tmnx82ev6Fc;rxs)iYXAew=YgrW7K__tY&fp|_3_nzxVR|_r@l96o(~}M)pKh;P zUGD&+tJD4>84k$HemwF+mx|_S!+1kG2aL!bEgFAp4;LBj>K+~k~QIjYVC)1dni7a zKHOMf4=EA%#!PQJ=)U%lD&w~WeeT!3zrD7o%ad%ipxGhnQ+kBtv@J#}zi;~$?0~lZ zz}qX&IDlIA+F7~90U3`xwE2Chm`ks`r0!3J;-i|#%T-j|fO+bJIV$d5=}~(iPsh>p zQ0e~HG-N(2+9kuKL6Z|&l(3fyiP#0X!Jnu&&9{x|nL~r`ZM|&TaT@AL_;=-x4W%oZ*;r;B+Zwp}>>aHZW6A@In7f@85`8AV+F?m=$9bzC_7Hs7{623#d5!#K+Qq<4_E>RbO!zr^xoBqM6Z`S1RrZXb?L-ieCa)aSn zI^Y1kHE*xq>vKR|v6muYM#Z&gP2>L#QsGy(>7v1L2W$#+sok-`0cYGL)(y2ez!~p^ zr%5^8?D|$x_n3-smk2SxJQ~*BT+y34Nke$jXO$~~H01A2P>~%cadg(SN%W=RyPWBN z`g9sJn)av4-Ju~>bl5DegNB6@D(gS0(6A@g#_s_^$DqDWbK@r(Cag02YZ~b|#ix7G zYb^t|AHSK_3o_7AN{e6jkPfHNp?=;@I?A>NTw2U!!0_0!FWN>-7~VTubLKS@DaI4u zdo7sQCBF9}tBZ-LHR-=IPcaeIA1$?2g9U5;$nUOmOr)x3mA3z8B0rMh^}~+^uF84~ z;Sv^FB&Z_FH7vMJTzyq=l!e30#XGhO5Rh7wA-2Ji08u`hFy~KTO*GekV;TWLI~T25 zeKxk1_autPvytx7J^7%Rjbme-DPcNn^y>1e_U#~WW<0aWwv9mJ^b7XIPi*8~R~1ci zW<#XvEwy5R!2EC$`Bs|1;+&Qc*Gd9qj9^MbAAz2zfv?h5Y=|ZAs*l~yhCyqva5#mH zeYzj6^O>_@BTrp@zlDJMpma@%41ooF4jesW0=bha_J_O(ye(Ot;vY)jYLkWX%LW2% zjgrpCz7r_inY;B`7aPU;Us*a-HnuR^h=-I@t1%RRj4mWfDM5siByOxWf#* z3x7;sB~Wpvs7gVYjbD;!2ImCXIC3X9m+v4OO_b2@H8pHht6#ccs>8vV&M}=|l+_A3MHGzY5lpOt( zK@LJj668;R<{D%5p-eF_=b~QO8UN(3m%;q)} z6VULbsqfDqu%jVayG56c{@9+zRhLM7aqHptU2GgEUDnWK!$F$2&tIuDHdgeP_ltM4 zvGdR3S3O)divH->2>)Xv=JJu%&q%%UuPkj%`pgC^*D!cP1siQKCNrkkd zq`VS-ewzEq!q1oWFGCM7VHW(LQ$CV~@u-cW3*uQg`}3})pbG(4a}#OS2n)9J^PU5C zEDX=Q4HNHUV)oR#ls+)#$po% z4E&j9H`G37AXv$)xcn#+UlvuXE2=SZVhR5gUn>KCLDX)q&kP(Y=KD1t&BWuu1tEPu znfNV9oIhR0#O}<^Z$x-m*t?I*E3d$ULioV74MR*QD(HzW9AH6ipdi`v1Pg5j#@Bk& zScueI>{<4dg$s>5dmfSc^<1bXt9lQCqjn|60oDWpo~O@jR3gw9w|8iDHi7$lnc|6T zHu}V*YkNum=20@R$6AIBe(PA}`a-h4|HR>u^K1zAXH)f+IS5Md=CLs1phTpdHLuG7 zgQuUF@r#4YUQ@M0n>i3>@7BL|z!4^&@@`f3av<|J``OkuN4W7H-Z)J-BJPQkCpE

80Bvm@F)8baGIa`7~Web<1W3-lc-E_BkSWC!MATj<5+Rl!~o%L@xh66`5)d z)|~h(sj!~|g(&00Cmq>1e);0&I(0U_=IdBZhLiTxrqIF(Jks!nA6L}-N3iR&zsR7h*q*bqn% zYiYji&B7w1b`Onk0%;-dI{YIDyt-~1lu|~J=iTb5lQS&rz7y^{5=X!@-r~KSgPmq2uxO`u{^>PB|BA!JL-(n&8dm??M7Yp{vJHDn?kUZ-4;rpf~1k|`* zOAK}quo&`pHzRr8NA*ylsvv>$*{|y?C$wuQ=r({UCwXB=5(gO9||Ymq|}12*~Ah=ZrZK_K5?fs-&y1!VS zk72_4Rqt$r4;k+)`(Y@q#6+^Q)%(;*Cb(ZZ*c(VcaOyyZ#ob5b{%8M5`sOl0Q@XWE z>I4&FxBHIw%CayYdN2Ly025BueS;g#R! zk2CP_KV5y{ZA>f^YZOl-;{?vY&VOAiSa=wI#kjhOiIa;3eM25Fk&{)bQ^Lc9-rY?7 zE^*S2F=$RUjtso7blSottzPlOyK~&JT$N6d*Q=zfQYj#Bz6%++(bB_-dg(os0 z+e}5&zw3JswoqaFWZF(Lk&JV14n9bJ?0^LM^S_REP_dv!3GHN@`%@#IJEcX#P{+qC z?O_@McJpSRI6()Y&^NVjD;+LpC+yO7>A05C*3nZ*!D|U8dzjK30?aeg2a*YZf zyhA6?^-8=vNM6{o?}X*jN;>Ewr_R+y(6Q=F8%LW;;t-!#&B&%>`XZM)M&=D9&8&ibH9!vlxL`PptN0=v(@y+7mt;}5ab$`7b03A|Edwtz$0EvVS(aygSR zK*g&3`#(1BBlEP