diff --git a/Exercise sheet 9/exercise_sheet_09.ipynb b/Exercise sheet 9/exercise_sheet_09.ipynb index 33a5194..a96bc42 100644 --- a/Exercise sheet 9/exercise_sheet_09.ipynb +++ b/Exercise sheet 9/exercise_sheet_09.ipynb @@ -59,7 +59,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2e578009", "metadata": { @@ -388,20 +387,21 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "id": "e4aaf772", "metadata": {}, "outputs": [ { - "ename": "UFuncTypeError", - "evalue": "ufunc 'subtract' did not contain a loop with signature matching types (dtype('float64'), dtype(' None", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mUFuncTypeError\u001b[0m Traceback (most recent call last)", - "Input \u001b[0;32mIn [28]\u001b[0m, in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 28\u001b[0m kap \u001b[38;5;241m=\u001b[39m parameters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 29\u001b[0m \u001b[38;5;66;03m#print(filename, lam, kap)\u001b[39;00m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;66;03m#print(lambdas, lam)\u001b[39;00m\n\u001b[0;32m---> 31\u001b[0m idx_lam \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mwhere(np\u001b[38;5;241m.\u001b[39mabs(\u001b[43mlambdas\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mlam\u001b[49m) \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m.01\u001b[39m)\n\u001b[1;32m 32\u001b[0m \u001b[38;5;66;03m#idx_kap = np.argwhere(np.isclose(kappas, kap))\u001b[39;00m\n\u001b[1;32m 33\u001b[0m idx_kap \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mwhere(kappas \u001b[38;5;241m==\u001b[39m kap)\n", - "\u001b[0;31mUFuncTypeError\u001b[0m: ufunc 'subtract' did not contain a loop with signature matching types (dtype('float64'), dtype(' None" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEWCAYAAABi5jCmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABRDklEQVR4nO3dd3hUxfrA8e+kkZBCaCGVEkAITXpVQFFpCoiKHcGCXgugXgsXf4jXei1XUbEhongVRKWKFBVBAZFO6BBqCoEQSK+7O78/zgZSIcm2lPfzPHlIzp6dmbO7nHfPnJl3lNYaIYQQooCbqxsghBCiapHAIIQQoggJDEIIIYqQwCCEEKIICQxCCCGKkMAghBCiCAkMVZBS6kul1Ct2LnOcUmq9Pcu8TH2vKKXOKqUSlVJNlVIZSin3cjzvku1USq1VSj1o39bWPkqpL214rrdS6l9KqWE2lNFcKTW9HPtppVSrytZTSnmfKKX+z47lfWmvsqoSCQwuZD3JnVdK1XF1WwqzNYgopSKAp4F2WutgrfVJrbWf1tpsv1YKe1NKvamUilVKpSmlTiilppayjzvwHXAzME8pNeQS5d1nPbE7PJBbA41WSnkU2lbic6y1fkRr/bKj21PdSWBwEaVUc+BqQAMjXNsau2sGJGutz7i6IY5Q+ORTnSil3JRSM5RSccBdSqljSqkJhXaZDbTVWgcAfa37jC5WzGdAHaA/xud2jlKqZyl11QemAHuLbfdVSn0N/A08p5Q6qJS6yV7H6AzleB2rPQkMrjMW2AR8CdxXyuONlFK/KKXSlVLrlFLNAJThXaXUGaVUqlIqWinVwfpYPaXUXKVUkvUb3wtKqRLvcRnfrtYqpR5USkUBnwB9rN0/KdbH6yil3lZKnVRKnbZekvuUUvZ1wC9AqPX5Xxavz9rO2UqpU0qpeGu3U6ndTEqp65VSB6zH+iGgynpBlVI9lVJ/KaVSrGV/qJTysj72iVLq7WL7L1FKPWX9PVQp9aP1tTumlJpYaL/pSqkflFL/U0qlAeMuVZf1OTdYT3qpSqmPrO/hg4Uev18ptV8ZV4yrCt7fMo5rhFJqr7Wutdb3qOCx40qpf1o/B6lKqe+UUt5lFHU7MBzoBXyL8cUkuuBBrfVBrXVmof0twIVuHKXU60AjYKTWOltrvQ4YDXyrlGpTrK7XgfeBs8W2TwQigSHAm8CNwMmyjr3Y6zBcKbVDGVc0sapoV9Qf1n9TrJ+7PpT+OS7STauUGqmU2mkt84iyXgFd5jN6ydexRtBay48LfoAY4FGgG5APNCn02JdAOsa3sjrADGC99bHBwDYgEOMkGQWEWB+bCywB/IHmwCHgAetj4wqV0RzjSsWjUJ1rgQeL71vo8feApUADa/nLgNfLOLaBQFyhv4vUBywGPgV8gSBgM/BwKe1sBKQBtwKewJOAqaCdpdTbDegNeFjr3A9Mtj7WH4gFlPXv+kA2EIrxBWkbMA3wwjhxHQUGW/edbn2PRln39blMXQXtHm19fJL1+QWv7yiM9z/K+vgLwMYyjukKIBO43voaPGt9rpf18ePW1y/U+t7sBx4po6zJwC8Fn7Ey9nkeyLC+X0eB8Ep8tnsCW62v1drC75f1czTL+ppNL0dZGmhV6HPV0VpuJ+A0MOoSn+kLn6Vi/7deKdTOVOtr6waEYVwxwaU/o5d9Hav7j8sbUBt/gKusJ4pG1r8PAE8WevxLYH6hv/0AMxABXItxwu8NuBXaxx3IxejXL9j2MLDW+vuF/yRl/Ce68B+4+H8ojACUCbQstK0PcKyM4xtIGYEBaGJtp0+hx+8Efi+lnWOBTcXaEUcZgaGUdkwGFhV67kmgv/Xvh4A11t97ASeLPXcKMMf6+3TgjwrUNRb4q1i7Ywu9viuwBmzr325AFtCslHL/D1hQbN94YKD17+PAPYUefxP4pIw2hgLHgD+BLcA1ZeyngC7AS4B/BT/b7hhBoU/xz5X174IT+nrr69DjMuVdCAylPPYe8O4lPtNFPseF/m8VBIZPC55fbJ/LfUbL9TpW5x/pSnKN+4DVWuuCy+xvKdmdFFvwi9Y6AzgHhGqt1wAfAjOB00qpz5RSARjfUr2AE4XKOIHxLchWjYG6wDZrd0YKsNK6vaKaYXzzPVWorE8xvpUVF0rR10EX/rs4pdQVSqmflDESKg14DeN1KXjufIz/4AB3Ad8UalNoQXusbfoXxgmiQJF6L1VXGe2OK/YazChU1zmMk3Fp71Uohd5TrbXFWnbhfRML/Z6F8UWiBK11AsZVyhtAPYz7A/NL2U9rrXdgXFG9VFpZl/AoEK21/quMNkQDrYGvgBBguVLqjfIUrJTqpZT63drdlwo8wsXXvDIigCOlbL/kZ7S8r2N1JoHByaz98mOAAdaTSiJGF8mVSqkrC+0aUeg5fhjdBAkAWuv3tdbdgPYYXQ3PYPTl5mN8qAs0xfh2WVxBP3LdQtuCC/1ePOXuWYyTRHutdaD1p57WutQT0GXEYnwba1SorACtdftS9j1F0ddBFf67FB9jXH211sYN1H9R9J7EPOBWa39+L+DHQm06Vqg9gVprf6114eGYxV+TS9V1Cggv1u7wQs+NxeiWKFyfj9Z6YynHlECh97TQa1Da+3pZWuscrfVyYCPGVd/tSqmyTq4eQMsKVjEIuLnQZ7sv8I71/lBBG9Iw7kMtBkYCj5ez7G8xujMjtNb1MO4hFLzmpaWJvlzq6FhKP77LfkYr+DpWOxIYnG8URrdQO6Cz9ScK47J0bKH9himlrrLe0HwZ+FtrHauU6mH95uSJcYLPAczaGAq6AHhVKeVvPfk9BfyveAO01kkYJ5Z7lFLuSqn7Kfof5DQQXnAz1fotdRbwrlIqCEApFaaUGlzRg9danwJWY5wsApQxwqOlUmpAKbsvB9orpUYr48b1RIoGsOL8Mfr2M5RSbYF/FKt7B5AEfA6s0lqnWB/aDKQppZ5TSvlYX5MOSqkelaxrOdBRKTXK2u7HirX7E2CKUqo9XLjReVsZ9SwAhiulBlnf86cxTlqlBZFLUkpdq5RqV2hTR4wrjHTr+/CwUqq+MvS0tvu3ClYzDuPz3Nn6sxXjqmOqtQ0jlFJNi7XhdDnL9gfOaa1zrO27q9BjSRg3yyMLbSvyOS7FbGC89bV1s36m217uM3qp17Gcx1HlSWBwvvsw+q5Paq0TC34wuofuVhdHCn0LvIjRzdANuNu6PQDjJH0eo4shGSgYbfMERrA4itGH+y3wRRnteAjjSiMZ48qj8IlmDcYww0SlVEF313MYNz03WbtOfgWKj0Qpr7EY3V77rMfxA0a3QhHWrrbbMC7ZkzG6IDZcotx/Ypws0jFeo+9K2WcecB3Ga1NQjxm4CeNEdgzjCulzjG6CCtdVqN1vWtvdDuMEmWt9fBHwH2C+9bXcAwwtrRKt9UHgHuADa7tuAm7SWuddom1lcQe+UEqdwLhqnQncq7XOtT5+M0bXSjrGF4oPrD/lprVOKfa5zgPStNap1l18MQYurMcIck9gBJPyeBT4t1IqHWOgwIJC9WYBrwIbrN0/vSn9c1y4rZuB8cC7GDeh13Hx6uxSn9HLvY7VXsEIDSGEgyhjyHAccLfW+ndXtweMYZta63EurL85ME5rPd1VbbAHV7+OjiJXDEI4gFJqsFIqUBmz2gvuP2xycbOEKBe5YhDCAZQx+eoJLnZHTNRa/+3SRglRTk4LDEqpLzBmOZ7RWnco5XGFMZFrGMaNnHFa6+1OaZwQQogLnNmV9CXGNPiyDMW4udgamIAxHFAIIYSTOS0ZmNb6D+sNp7KMBOZaJwNtsvbPhliHjpWpUaNGunnzSxUrhBCiuG3btp3VWpc6SbUqZYkMo+js0jjrthKBQRmZDCcANG3alK1btzqlgUIIUVNYh9uWqiqNSiota2apN0C01p9prbtrrbs3blyZrAxCCCHKUpUCQxxF0x2EY00BIYQQwnmqUmBYCoy1TsfvDaRe7v6CEEII+3PaPQal1DyMdMyNlLHy0YsYGQzRWn8C/IwxVDUGY7jq+MrWlZ+fT1xcHDk5ObY2u8bx9vYmPDwcT09PVzdFCFFFOXNU0p2XeVxjJO2yWVxcHP7+/jRv3hxjeoQAY+2N5ORk4uLiaNGihaubI4SooqpSV5Ld5OTk0LBhQwkKxSilaNiwoVxJCSEuqUYGBkCCQhnkdRFCXE6NDQxCCCEqRwKDEEJUQ+NXjmf8ykqP0bmkqjTz2aVu/9RYova7h/u4uCVCCFEOibsdVrRcMTjQ7t27adasGR9/bFs+wPvvv5+goCA6dCiRlLaIlStX0qZNG1q1asUbb5RrfXUhRDWVmWciM8/kkLIlMACLd8Sz42QKfx87R7831rB4R6XWWS+hY8eOzJ8/n7lz59pUzrhx41i5cuUl9zGbzTz22GOsWLGCffv2MW/ePPbt22dTvUKI2qnWB4bFO+KZsnA3eWYLAPEp2UxZuNtuwSEoKIi9e/faVEb//v1p0KDBJffZvHkzrVq1IjIyEi8vL+644w6WLFliU71CiEtzZD+/K9X4ewwvLdvLvoS0Mh/fcTLlQlAokJ1v5tkfopm3+WSpz2kXGsCLN7UvV/3PP/88ubm5nDhxgmbNmhV57OqrryY9Pb3Ec95++22uu+66cpVfID4+noiIi6mmwsPD+ftvWTBMCFFxNT4wXE7xoHC57RWxcuVKMjMzGT58OHv37i0RGP7880+b6yhQ2kp8MmdBCFEZNT4wXO6bfb831hCfkl1ie1igj00jlHJycnj22WdZunQpc+bMYc+ePQwbNqzIPva8YggPDyc29uJyFnFxcYSGhlau8UKIWq3GB4bLeWZwG6Ys3E12vvnCNh9Pd54Z3Mamcl955RXGjh1L8+bN6dixI0uXLi2xjz2vGHr06MHhw4c5duwYYWFhzJ8/n2+//dZu5Qshqo7lR5dz2MuMCbjhhxuY1HUSwyOH2638Wn/zeVSXMF4f3REvd+OlCAv04fXRHRnVJazSZR48eJBffvmFyZMnA8bopD179lS6vDvvvJM+ffpw8OBBwsPDmT17NgDDhg0jIcFYssLDw4MPP/yQwYMHExUVxZgxY2jfvnz3QYQQlZS426HzCUqz/Ohypm+cjkkBCk5lnmL6xuksP7rcbnWo0vqmq5Pu3bvr4kt77t+/n6ioqAqVU5smuFXm9RFClDTms84ALJiw06H1nMs5R8z5GA6nHOb97e+TZcoqsU+Ibwirb11d7jKVUtu01t1Le6zWdyUVqA0BQYiaqmDI6Jwhc1zcEttk5GUQkxJz8ccaDM7lnLvscxMzE+3WDgkMQgjhZLnmXI6mHCUmxTjxx5w3AsGpzIuLVvp4+NA6sDUDIwbSKrAVrQJb0bp+a+5aNIpT+aklygz2DLBb+yQwCCFEJZTnBrDJYuJk+skLJ/6YlBgOnz/MyfSTWLQxJN7TzZMW9VrQJagLY+qPoXVga1rVb0WIbwhuquRt4EnJyUz3cyPH7eJj3hYLk86n2O3YJDAIIUQFFbkBjHED+MWNL7I/eT+B3oEXuoGOph4l35IPgJtyo6l/U1oFtmJIiyHGFUBgayICIvB0u8RSu1rDmX2wbynsX8rw5ATIqcuM+oEkergTbDIz6XwKwzNLDruvLAkMQghRQTO2zyDHXHQlxFxzLl/t+wowbgS3CmxF37C+xhVAYCta1GuBt4d3+SrQGhJ2wP6lRkA4dwRQ0KwveZ4BDM9MY3hm0RvQWT4h1LXHwSGBQQghyiUjL4MNCRv4I+6PIvcCitt450b8vfwrXoHFArF/G8Fg/zJIjQXlDi36Q9/Hoe2N4BfEyy9PY4r+mLoq78JTs7QXb+bfzvRKHFdpJDAIIao/B80liE2LZW3cWtbFrWNb4jZM2kS9OvXw8fAh21Sy6ybEN6RiQcFsghPrjauCAz9Bxmlw94KW18LAKdBmKNRtQHJGLj/vPsXSXRvZktmLVLd8nvVYQKhKJkE35E3TGJbl9pTAYHdzrDeNxttvkogQtUlNGDJqspjYeWYnf8T9wdq4tRxLPQZAy3otGdt+LAPCB9CpcSdWHV/F9I3Ti3Qnebt7M6nrpHJUkgtH18H+JXDgZ8g+B551ofX1EDUCWt8A3gFk5JpYvTeRpbti+PPwWcwWTesgPwK8PViacxVL864qUmxYoI/dXgcJDA60e/dubrzxRp5//nn+8Y9/VLqc+++/n59++omgoKBLzqBu3rw5/v7+uLu74+HhQfGJf0KIklJzU9kQv4F1cetYH7+etLw0PNw86NGkB7e3uZ3+4f2J8I8o8pyC0Ucv/PE8JiDEL+TSaSnysiDmV6OL6NBKyE2DOgFwxRBoNwJaDgKvuuSazKw9mMTSXTH8uu80uSYLYYE+PHR1JCM7h9I22J8lOxMcksanMAkMANELIG4LmHPh3Q4waBp0GmNzsQUL9Tz11FM2BYZx48bx+OOPM3bs2Mvu+/vvv9OoUaNK1yVEbXAs9ZhxVRC7lh1ndmDWZurXqc/AiIEMjBhIn5A++Hn5XbKM4ZHD+erXqQAsKG3GcU4aHF4N+5YYQSE/C3waGIEgaiREDgCPOpgtmk1Hk1my8zAr9iSSnmOiga8XY7pHMLJzKF2b1sfN7WKm5IJ0Pc/++Dt5pkDCAuvyzOA2NqXxKU4CQ/QCWDbRCApg3PBZNtH43Q7BwV4L9Rw/ftzmtghRW+Vb8tl+ejvr4tbxR9wfnEg7AcAV9a/g/g73MyBiAB0adsDdzb38hUYvYObpkzQ0my9+oWx1HRxcYdxAPrIGzHng1wQ63wVRN0Gzq8DdA601u+JSWbIzhp+iT5GUnouvlzuDOwQz4spQ+rVqhKd72ansRnUJo/WKTwBo//x6m16b0tT8wLDi+UvfmCq4UigsPxuWPA7bvir9OcEdYWj51lR21kI9YKy/cMMNN6CU4uGHH2bChAkVLkOI6mb50eVEk0seRSeapeSk8Gf8n6yLW8eG+A1k5Gfg6eZJz5Ce3BN1D/3D+xPqV8nU9NYvlI3N1u6c1FhY9LAxzBQN9SKgx0PG1UF4T7BORos5k86SnQks3ZXAieQsvNzduKZtY0ZcGcagqCC8PSsQmByo5geGyykeFC63vQKcuVAPwIYNGwgNDeXMmTNcf/31tG3blv79+9u1DiGqkoKJZnmFJpq9sP4FPt75MbEZsVi0hUY+jbih+Q0MCB9A75De1PW0w2j/X180vkAWpi1Qxx/GLoXQLmBdKCs+JZtluxJYujOBfafScFPQt2UjHhvYisEdgqnnc4nJbS5S8wPD5b7Zv9vBiPbF1YuwaYSSsxfqAS4szBMUFMTNN9/M5s2bJTCIGq20iWYmbSI+M54JnSYwIHwA7Rq2KzW1RIVlnTOGlO5ZCGkJpe+TmwFhXTmXmcfy3adYtjOBzceNBHidIwKZdmM7buwUQlBAOSe6uUjNDwyXM2iacU+hcPT39DG228DZC/VkZmZisVjw9/cnMzOT1atXM22abccgRFVltpjZkLChzIlmZouZxzo/ZntFOanGkNK9C+HI72DJh/otjCuD3JJf6rJ8gnlszmb+PHwWk0XTKsiPp6+/ghGdQ2nW0Nf29jiJBIaCG8xLHje6j+pF2DwqqWChng0bNgDG6KTXXnut0uXdeeedrF27lrNnzxIeHs5LL73EAw88wLBhw/j8888JDQ3l9OnT3HzzzQCYTCbuuusuhgwZUuk6haiKUnNTWXR4EfMPzic+Ix435XYhGV1hwb7Bla8kN8MYUrpnoTGaqOC80Psf0GE0hHRmy7LP6LDtBXyKzT5+PvVmDukMHrw6khFXhhIV4l8t116XwABGECi40WyHCW5t2rTh77//LvL39u3bK13evHnzSt3+888/X/g9MjKSXbt2VboOUXPUhIlmxe1L3se8A/NYcWwFueZcugZ1ZXK3yeSacnll0yuVm2hWWH62MbR0z0I4tApM2eAfAt3vhw63QHj3C/cMACbva023/AdLzD7eWPdaNj97TZHhpY7y74ZvAfCdA8qWwFBAZjwLUaXkmfNYfWI18w7MIzopGh8PH25qeRN3tLmDNg0uTubycPMo/0Szwky5EPOb0U10cAXkZYBvY+hyN7QfDU37XBhNVFhqVj7xKdnEU3L2scrIc0pQcDQJDEII+7BTvqLEzEQWHFzAj4d/5FzOOZoFNOO5Hs8xotUIArxKLkZz2YlmhZnz4eha48rgwHLITQWf+sZVQYfRF+YZlEZrzaId8by6fH+ZxYfaMS2FK0lgEEK4nNaazYmbmXdgHr/H/o7WmgHhA7iz7Z30Du1t26giswmO/2lcGexfBtnnoU49iLrRuDKIHADulx4yGnMmnRcW72HT0XN0aRrI+KuaM3PNEYempXAlpwYGpdQQYAbgDnyutX6j2OP1gP8BTa1te1trXXM6SoUQRWTkZbDs6DLmH5jP0dSjBNYJ5L729zHmijGE+4eXr5DSZiB3uAVO/mVcGexfCplJ4OUHbYYZVwYtrwWPOpctOjvPzAdrDjPrz6PU9fLgtZs7ckePCNzcFOGBdXl1wTrO6gBCHZCW4nIcuU690wKDUsodmAlcD8QBW5RSS7XW+wrt9hiwT2t9k1KqMXBQKfWN1jqvlCKFENXUkZQjzDswj2VHlpFlyqJ9w/a80u8VBjcfXP7FbKD0GciL/wHLnzYS1Xn4wBWDjWDQ+gZjKHo5rTlwmmlL9hJ3PptbuoYzZVhbGvldDCZGWoqPAMekpXAlZ14x9ARitNZHAZRS84GRQOHAoAF/ZYzv8gPOASYntlEI4SAmi4m1sWuZd2AemxM34+nmyZDmQ7iz7Z10bNyxcoX+9u+SM5AtJuNewi2zjeyldS6dDK+4hJRsXlq2l1V7T9MqyI/5E3rTO7Jh5dpXTTkzMIQBhacYxwG9iu3zIbAUSAD8gdu1LjlIWSk1AZgA0LRpU4c0VghhH2ezz/LjoR/5/tD3nM46TYivMXJodOvRNPBuYFvhqXGlbzflQMdbK1RUvtnCnA3HeO/Xw1i05tkhbXjwqki8POwwa7qacWZgKG0Mly7292BgJ3At0BL4RSn1p9Y6rciTtP4M+Ayge/fuxcuolJo49lsIZymeyG5il4mE+4cz78A8Vp9YjcliondIb6b0msKA8AF4uNl46slOgV+mUfIUYlWvnPcnrLYeP8cLi/dwIDGdQW2DmD6iPREN7LWCcvXjzFAYBxRe7SIc48qgsPHAQm2IAY4BbZ3UPrvbvXs3zZo14+OPP650GbGxsVxzzTVERUXRvn17ZsyYUea+K1eupE2bNrRq1Yo33ihf9lchbFUkkZ0yEtn9a/2/uHfFvayLW8eYK8awZNQSZt0wi0FNB9keFPYthZm9YMfXxn0Dj2L3DSqQ0uZ8Zh7P/RDNrZ/8RVp2Pp/e243P7+teq4MCODcwbAFaK6VaKKW8gDswuo0KOwkMAlBKNQHaAEcd3bDlR5cTnRTN1tNbueGHG1h+1D6T3QoW6pk7d26ly/Dw8OCdd95h//79bNq0iZkzZ7Jv374S+5nNZh577DFWrFjBvn37mDdvXqn7CWFvpSWy02jqedXjt9t+Y0qvKUTWi7S9orRTMP9uWHAv+DWGh9bA3d/DiPdJcnfHAkbqipvev2xKG4tFs2BLLNe+s5Yft8fxcP9IfnlqAIPbB1fLFBb25rSuJK21SSn1OLAKY7jqF1rrvUqpR6yPfwK8DHyplNqN0fX0nNb6rCPbdeHbjsUY+HQq8xTTN04HKN/sycuwdaGekJAQQkJCAPD39ycqKor4+HjatWtXZL/NmzfTqlUrIiON/4B33HEHS5YsKbGfEPZ0NvtsmYns0vLS8PW0Q+I4iwW2f2V0HZnz4Lrp0Ofxi3MPOo3hsU1GLrIFE3ZetrgDiWm8sGgPW0+cp0fz+rwyqiNtgv1tb2cN4tR5DFrrn4Gfi237pNDvCcAN9qzzP5v/w4FzB8p8PDop+kJQKJBjzmHahmn8cOiHUp/TtkFbnuv5XLnqt+dCPcePH2fHjh306lX8nj3Ex8cTEXGxpy48PLxIviYh7OlUxinm7J3DwsMLy9zHpkR2Bc4ehmWT4MQGaH413DQDGrasVFGZuSbe/+0wn68/RoC3B2/e0olbu4XblMLCkfmKXKnWz3wuHhQut70i7LlQT0ZGBrfccgvvvfceAQEl0wJoXfImnFwSC3s7mXaS2Xtms/TIUtBwU8ubiAyMZOaOmbYnsivMlAcbZ8C6t8DTG0Z8CF3uKZLIrrAXz5Y9JFVrzep9p3lp6V4SUnO4vXsEzw9tS31fr8q3r4ar8YHhct/sb/jhhlIvhUN8Q2waoWTPhXry8/O55ZZbuPvuuxk9enSp9YWHhxMbe3E0cFxc3IWFe4SwVcz5GGbtnsXK4yvxUB7c2vpWxncYf2FpzMY+jSuXyK40cdtg6RNwZi+0GwVD3wT/JpUqKvZcFtOX7uW3A2do08SfH+7sQvfmNg6RrQVqfGC4nEldJzF943T7ftvBfgv1aK154IEHiIqK4qmnnipzvx49enD48GGOHTtGWFgY8+fP59tvv7XpGITYm7yXWdGz+O3kb/h4+DC23VjGthtL47qNi+xXoUR2ZcnNgN9fhU0fg38w3PEttK1ccMkzWZj151E+WHMYN6X417C2jO/XAk/32jcnoTJqfWAo+FYzbcM08ix5Fybf2HLj2Z4L9WzYsIGvv/6ajh070rlzZwBee+01hg0bVmShHg8PDz788EMGDx6M2Wzm/vvvp3379pU+BlG7bT+9nc+iP2NDwgb8vfx55MpHuLvt3QR6BzqmwsO/wk9PQupJ6P4AXPcieNcr11MX74jn1fRHjZxFb6zh5i6hrNx7mpgzGQxu34QXb2pfY7KeOkutDwxgBIeCG832mOBmz4V6rrrqqlLvH0DRhXqAC8FC1HKVTH+tteavU38xK3oWW09vpX6d+kzqOok72tyBn1fF0kqUW2YyrJoC0d9Boytg/EpoVv7kcIt3xDNl4W6ytRFE4lOy+fD3I9Sv68ns+7ozKKpyXVC1nQQGK5nxLGorrTVrY9cya/csdp/dTZBPEM/2eJZbWt9CXU8HTfTSGnZ/Dyufh5w06P8sXP20caO5At5adbBI6usCPp7uTgkKjsxw6koSGISopcwWM7+c+IXPdn/G4fOHCfMLY1qfaYxsORIvdweO2Dl/wug2OvIbhHWHER9Ak8rNt0lIyS51+6nUnFK3i/KpsYFBay3DNUtRVreUqD3yLfksP7qc2btnczztOC3qteC1q15jaIuhtqeruBSLGf7+FNa8DChjtFGPB8HNvVLFmS0aHy93svJKXjHIPQXb1MjA4O3tTXJyMg0bNpTgUIjWmuTkZLy9K3a5LmqGXHMuiw8v5os9X5CQmUCb+m14Z8A7DGo6CPdKnpzLLXGPMQQ1YbuR32j4fyEw4vLPK0NOvpknv9tJVp4ZDzeFyXLxC09NWknNVWpkYAgPDycuLo6kpCRXN6XK8fb2Jjy8YpknRfWWlZ/F94e+56u9X5GUnUSnxp2Y2nsqV4dd7fgvTvk58MdbsOE9Y5TRLbON1dVsqDc9J5+H5m5l09FzvDA8ikZ+dVy6klpNVCMDg6enJy1atHB1M4RwusLpr6/7/jqubHwlmxM3k5KbQq/gXrx+9ev0DO7pnCvp4+uNdBbJMXDlnXDDq+Br24I3Sem5jJuzmYOJ6bx7+5Xc3MX4klNTV1JzlRoZGISojYqkvwZOZ51m9YnVtKnfhg+u/YDOQZ0dV3nhdZf/2w4aRMLxPyGwKdyzEFoNsrmKk8lZ3PvF35xJy2XWfd25pk3Qhcdqas4iV5HAIISDOHvxp9LSX4OR5dTRQaHIustp8cZPq+thzFfgZXuG1b0Jqdz3xRZMFgvfPNSLrk3r21ymKJsEBiFqiMTMxAptt5vS1l0GSDpgl6Dw15FkJszdip+3B/Mn9KFVkKTIdjRJHCJEDeFTfCUzK7ukv76UstZdLmt7Bazcc4r75mymST1vfvxHXwkKTiKBQYga4PtD35NlysJdFR12ao+EkJdksYBXGbOjK7jucnHzNp/k0W+20z40gO8f7iNzE5xIAoMQ1dzmU5t5bdNrXBV2FS/3fRkvDWgjdfz0vtPtshJhqcwmWPwI5GVC8YlxFVh3uTitNR/8dpgpC3fT/4rGfPNgL1k7wcnkHoMQ1VhsWixPrXuKpgFNebP/m/h7+bNw/UsAzKls+uvyMOXBjw/A/qVw7QsQ2Iy8hY/iST6qXoQRFC6z7nJpLBbNS8v28tVfJxjdJYz/3NpJUmW7gAQGIaqp9Lx0Hl/zOAAfXvsh/l5O6n/Pz4YFY+Hwahj8OvR5FIDDP70PQPsnKzeXIM9k4envd7FsVwIPXd2CKUOjbFp2U1SeBAYhqiGzxcyzfzzLybSTfHbDZ0QEVD69RIXkZsD8O+HYn3Dje9B9vF2Kzcg18cjX21gfc5YpQ9vy8IDKress7EMCgxDV0H+3/Zf18euZ1mcaPYJ7OKfSnFT45jaI2wI3fwpX3m6XYpMzchn/5Rb2JqTx1q2duK27k4KcKJMEBiGqmYWHFzJ331zuansXt11xm3MqzToHX98Mp/fArXOg/Si7FBt7LouxX2wmISWbT+/pxnXtZGGdqkACgxDVyNbErby86WX6hvblmR7POKfS9NPw9ShIPmKsw3zFYLsUeyAxjbGzN5OTb+abB3vRvXkDu5QrbCeBQYhqIi49jqfWPkW4XzhvDXjLsWsnFEiNg69GQPopuHsBRA60S7Fbjp/jgS+34OPlzveP9KVNsExcq0okMAhRDWTmZ/LEmicwaRMfXPsBAV4Bjq/03FH4aiTkpMC9i6Bpb7sU+8u+0zz+7XbCAn2Y+0BPwus7aPlQUWkSGISo4swWM8/98RzHUo/x8XUf07xec8dXmnQI5o4AUw7ctxRCu9il2AVbY5mycDcdQgP4YlwPGvrVsUu5wr4kMAhRxc3YMYN1ceuY2msqfUKdsPh84m6YOwqUG4xbDk3a21yk1ppP1h3lPysPcHXrRnxyTzd868jpp6qSd0aIKmxJzBLm7JnD7W1u5462dzi+wrht8L/RRlbUsUuhUSubi7RYNK/+vJ/Z648x4spQ3r7tSrw8ZDZzVSaBQYgqaueZnbz010v0CunFcz2fc3yFJzbCN2OgbgO4bxnUb2ZzkflmC8/+EM2iHfGM69ucaTe2c8hs5u8edsKVVC0igUGIKighI4FJv08ixDeEdwa8g6ebp2MrPLIG5t0FgREwdgkEhNpcZFaeiX/8bzvrDiXxzOA2PDqwpXOWFBU2k8AgRBWTlZ/FE2ueIN+czwdDPqBenXqOrfDAz/D9fdDoCrh3Mfg1trnI85l5jP9yC9FxKbwxuiN39GxqezuF00hgEKIKsWgLU/6cQkxKDB8P+pjIepGOrXDPj7BwAgR3gnt+NLqRKmHxjnheTX+UszqAoNd+RWtIyc7n43u6Mbi9gxcKEnYngUGIKuTDHR+yJnYNz/d8nr5hfR1b2Y5vYOnjENEL7loA3pWbG7F4RzxTFu4mWxtXNqfTcgF4/JqWEhSqKacODVBKDVFKHVRKxSilni9jn4FKqZ1Kqb1KqXXObJ+oecavHM/4lfbJAOpoPx39iVm7Z3FL61u4q+1djq1s8yxY8ii0GGBcKVQyKAC8teog2fnmEtsX7UiwpYXChZx2xaCUcgdmAtcDccAWpdRSrfW+QvsEAh8BQ7TWJ5VSQc5qnxCuFJ0UzYsbXqR7k+5M7TXVsTdpN7wPv/wfXDEUbvsSPL1tKi4hJbtC20XV58wrhp5AjNb6qNY6D5gPjCy2z13AQq31SQCt9Rkntk8Il0jMTGTimokE1Q3i3YHv4unuoBFIWsPaN4yg0P5muP1rm4MCUOZazLJGc/XlzMAQBsQW+jvOuq2wK4D6Sqm1SqltSqmxTmudEC6QlZ/FxDUTyTHn8MG1HxDoHeiYirSGX6bB2tfhyrvgltlgpwA0skvJoa0+nu48M7iNXcoXzufMm8+lXRvrYn97AN2AQYAP8JdSapPW+lCRgpSaAEwAaNpUhsGJ6smiLbyw4QUOnj/IB9d+QKv6ts8yBsjMMxWryAIrnoUts6D7AzDsbXCzz3fC1Kx8Fm2Pp7GfFzoziWQdQGhgXZ4Z3IZRXYp/7xPVhTMDQxxQeGmmcKD43ak44KzWOhPIVEr9AVwJFAkMWuvPgM8AunfvXjy4CFEtfLzrY3458Qv/7P5P+of3t1u5L571u/iHxQxLn4Cd30DfJ+D6l8FO9y+01vxr8W6S0nNZ+GhfXl2+n5bILOSawJldSVuA1kqpFkopL+AOYGmxfZYAVyulPJRSdYFewH4ntlEIp1h5bCWf7PqEUa1GMbadg3pMzfnw44NGUBjwvF2DAsCiHfEsjz7Fk9dfQafwQLuVK1zPaVcMWmuTUupxYBXgDnyhtd6rlHrE+vgnWuv9SqmVQDRgAT7XWu9xVhuFcIY9Z/fwwoYX6BrUlf/r/X/2HYEUvYDWeQfwJB9eDzfSZl//b+g3yX51YCzJOW3JXno2b8AjA1ratWzhek6d4Ka1/hn4udi2T4r9/RbwljPbJYRDJO4usel05mkmrplIQ++GvHvNu3i5e9mvvugFsGwiXuQbf5tywM0T/EPsVwdgMlt48rudKOC/t1+JuwOS4gnXkty3QjhJtimbSb9PIjM/kw8GfUADbzuvcfzbvyG/2NwBS76x3Y4+WXeErSfO8/KoDrL6Wg0lKTGEcAKtNdM2TGNf8j7ev/Z9rqh/hf0rSY2r2PZK2BWbwnu/HuamK0MZ2dn2DKyiapIrBiGc4JPoT1h5fCWTu01mYMRAx1TiW0ZW1Hrhdik+M9fE5O92EuRfh1dGdZAU2jWYXDEI4WCrj6/mo50fMaLlCMa3d1DepsxkMOVhTBcqNILb0wcGTbNLFa8s38fx5EzmPdSbej4OXh9CuJRcMQjhAMuPLieaXLaSy9PrnibCP4JpfaY55lu2xQKLHgZTFlz7Anl4GqGhXgTc9D50GmNzFav3JjJvcywP929J78iGNpcnqjYJDELY2fKjy5m+cTp5igvz/c9kneHXE786psKNMyDmFxj8GvT/J4e92rLPqyM8uccuQeFMeg7PL9xN+9AAnrreAfdGRJUjgUEIO5uxfQY55pwi23LNuczYPsP+lZ3cBL+9DO1GQo8H7V681ppnvo8mM9fEjDs64+Uhp4zaQN5lIewsMTOxQtsrLesc/HC/sU7ziA/sOqu5wFcbj7PuUBIvDI+iVZC/3csXVZPcfBbCjnae2YlCoUvkh4RgXzuuZqY1LP4HZJyBB1aDt/3XhT50Op3XVxzgmjaNuad3M7uXL6ouuWIQwk6WHVnG/avuJ7BOIHXc6xR5zNvdm0ld7ZiW4q8P4dBKuOEVCOtqv3Ktck1mJs3fiV8dD9689UoZmlrLSGAQwkYWbeH97e/zr/X/onNQZ5aMWsJLfV/CSwMaQnxDmN53OsMjh9unwtgt8Ot0aHsj9HrYPmUW887qQ+w/lcabt3aisX+dyz9B1CiX7UpSSpV3wYMUrXWaje0RolrJNmUzdf1UfjnxC7e0voWpvabi6e7J8Mjh/PDHiwDMuXW1HSs8b9xXCAiFkR865L7CxpizzPrzKHf3asqgqCZ2L19UfeW5x/AVxoyZS30CNfAlMNcObRKiWjiTdYYn1jzB/uT9/LP7Pxnbbqxju1y0hsWPQfopuH8V+NS3exWpWfk8tWAXLRr58sLwdnYvX1QPlw0MWutrnNEQIaqTfcn7eOK3J8jIz+D9a993XJqLwjZ9DAeXG/MVwrvZvfiChXfOZuSyaGw/fLzc7V6HqB4qdI9BKSXz4EWt9+uJXxm3chzubu7MHTrXOUEhfpuxZnObYdD7UYdUsXD7xYV3Oobbf5STqD7KPVxVKfU5MFoplYmxJGc0EK21/sBRjROiKtFaM3vPbGZsn0Gnxp2Ycc0MGvk0cnzF2Snw/TjwD4aRMx1yXyH2XBYvLt1Lzxay8I6o2DyGq4EmWut8pVQYxlrMnRzTLCGqljxzHi/99RJLjyxlaIuhvNzv5RJDUh1Ca1j6OKQlwPgVUNfOazhQbOGdMbLwjqhYYNgE1AfOaK3jgXiKrcYmRE10Lucck3+fzI4zO3i086M80ukR543r3zwL9i8zlueM6OmQKj5eayy8897tnWXhHQFULDB8BqxTSs0G/sboRkp1TLOEqBpizsfw+JrHOZt9lrcGvMWQ5kOcV3nCTlg9FVoPhj5POKSKnbEpvPfbYUZcGcqoLmEOqUNUPxUJDP/DGI7qATwKdFJKeWutpUNS1Ejr49fzzLpn8PbwZs7gOXRs3NF5leekGfcVfBvDzZ+Am/3nombmmpg8fwfBAd68PKqD3csX1VdFAkOc1vrFwhuUUjIlUtQ4Wmu+PfAtb255k9aBrflw0If2zXN0+QbAsomQchLG/+yQ+wpgLLxz4lyWLLwjSqjI15CdSqkiyV601rl2bo8QLpVvyefVv1/ljc1vMCB8AHOHznVuUADY+gXsXQTXvgBNezukilWy8I64hIpcMTQBrlNKPQdsB3YBO7XW3zukZUI4WVpeGk+vfZpNpzYxvsN4JnedjJtycjqxU9Gwcgq0ug76TXZIFWfScnj+x2g6hMnCO6J05Q4MWusxcKH7qD3QEegJSGAQ1d7JtJM8vuZxYtNj+Xfff3Nz65ud34jcdOO+Qt0GcPOnDrmvYLFo/vlDNNn5Zt67vYssvCNKVdkkemeB34HfCz0uSfREtbQlcQtPrn0SgFnXz6J7cHfnN0JrWDYZzh+D+34CX8dMnJv713H+OJTEy6M60CrIzyF1iOrP1iR6BdsliZ6olhYdXsS/N/2bCP8IZl47k4iACNc0ZPtXsOcH475C834OqeLQ6XReW3GAa9sGcU+v8iZNLr/vHu5j9zKFa0gSPVErmS1m3tv+Hl/u/ZI+IX14e+DbBHgFuKYxiXtgxXMQeQ1c9bRDqsg1mZk4bwf+dTz4zy2dZOEdcUmytKeodbLys3juz+dYG7uW29vczvM9n8fDzUX/FXIzjPsK3vVg9GcOua8A8PaqgxxITGf2fd1l4R1xWRIYRK2SmJnI4789zuGUw0zpOYW7ou5yXWO0huVPw7kjMHYJ+AU5pJoNMWeZ9ecx7uktC++I8pHAIGqN3Um7mfj7RHJMOcwcNJOrwq5ybYN2fgPR82HgFGjR3yFVpGTl8fSCXUQ29mXqMFl4R5SPBAZRYy0/upzopGjyLHlcPf9q0vPSCfYN5vMbPqdloIszuZzZD8v/aQSE/s84pAqtNVMX7ZGFd0SFySBmUSMtP7qc6Runk2fJAyAlNwWLtjC+w3jXB4W8TFhwH9Txh9Gfg5tjTtg/bo9n+e5TPHWDLLwjKkauGIRTjF85HoA5Q+Y4pb4Z22eQY84psk2jmb17Nre3ud0pbSjTz8/A2UMwdjH427fPf/GOeF5Nf5QkHYD6fheRjXx5uL/kuRQVI1cMokZKzEys0HZHyMwzkZlnKrpx5zzj3kL/ZyByoF3rW7wjnikLd5Ok6wEKDcSnZLNsV4Jd6xE1n1MDg1JqiFLqoFIqRin1/CX266GUMiulbnVm+0TNEVgnsNTtTk+IV1jSQVj+FDS7CgaW+fGvtLdWHSQ731xkW67JwlurDtq9LlGzOS0wKKXcgZnAUKAdcKdSqsQwCet+/wFWOattomaJToomLS8NVWyyvre7N5O6TirjWQ6Wl2XMV/CsC7c45r5CQkp2hbYLURZnXjH0BGK01ke11nnAfGBkKfs9AfwInHFi20QNEZ8RzxNrniDEN4SpvafipQENIb4hTO87neGRw13TsJXPwZl9MPpTCAhxSBX1fb1K3R4a6OOQ+kTN5cybz2FAbKG/44BehXdQSoUBNwPXAj3KKkgpNQGYANC0qf1zvojqKS0vjcd+fYx8Sz4zr5tJZL1IVv71FgBzbl3tuoZFfw/b58LVTxvptB1g87FzpGbloZQxb66Aj6c7zwxu45A6Rc3lzCuGspLwFfYe8JzW2lzKvhefpPVnWuvuWuvujRs3tlf7RDWWb8nnqbVPcSL9BDOumUFkvUhXNwmAEFMe/DQZmvaFgf9ySB37T6XxwFdbaNbIl5dHdqCxSkWhCQv04fXRHWUtZ1FhzrxiiAMKp64MB4oPl+gOzLcm+GoEDFNKmbTWi53SQlEtaa15+a+X+fvU37zS7xV6BJd5sek80QuYmXiSRhYzKDdoNwrc7f/fLfZcFvd9sRlfLw/m3t+T8Pp1WbYrgUgk26moPGcGhi1Aa6VUCyAeuAMokqhGa92i4Hel1JfATxIUxOXM3jObRTGLeLjTw4xsVdptKyeLXgDLJtLYYr3w1Rb47UWoWx86jbFbNWczchn7xWZy8s18/0hfwuvXtVvZonZzWleS1toEPI4x2mg/sEBrvVcp9YhS6hFntUPULCuPrWTG9hkMazGMxzo/5urmGH57CfKLjQTKz4bf/m23KjJyTYyfs4WElGy+GNeDNsH+ditbCKfOfNZa/wz8XGzbJ2XsO84ZbRLV184zO5m6fipdg7rycr+Xq8YaA6ZcSI0r/bGytldQrsnMI19vY9+pND67txvdmzewS7lCFJCZz6Jaik2LZeKaiYT4hTDjmhl4uZc+VNOpss/D16PLfrxeuM1VWCyapxfsYn3MWf5zSydJoy0cQgKDqHZSc1N59LdHsWBh5qCZBHoHurpJkHISvhgCsX9D9wfBs9jcAU8fGDTNpiq01ry0bC8/RZ9iytC23NrN9kAjRGkkiZ6oVvLN+Uz+fTLxGfHMumEWzQKaubpJcGoXfHMb5OfAvYugxdXQtBd5Cx/Fk3xUvQgjKNh44/mDNTF89dcJHrq6BQ8PkMR4wnEkMIhqQ2vN9L+ms/X0Vt64+g26Nenm6iZBzK9GCm3vQHhgCQRFGds7jeHwT+8D0P7J9TZX883fJ/jvL4cY3SWMKUOjbC5PiEuRwCCcI3G3zUV8Gv0pS48s5bHOj7kutUVh27+GZZMgqB3c/b3DUl2s3HOK/1u8h2vaNOY/t3bCza0K3GQXNZoEBlEt/HT0J2bunMmIliN4uNPD5X5eibTX9qA1rH0D1r0BLa+F274C7wD71wP8dSSZifN2cmVEIDPv7oqnu9wWFI4ngUFUeVsTtzJtwzR6BPdgep/prh2Was6HZZNh5/+g8z1w03vg7umQqvYmpDJh7laaNqzLF/f1oK6X/HcVziGfNFGlHU89zuS1kwnzC+Pdge/i6aCTcLnkpMGCsXD0dxg4BQY8Bw4KUieSM7nviy34eRupLsrKnCqEI0hgEFXW+ZzzPPbbY7jhxkeDPqJeHReuW5yWAN+MMVJnj/gQut7rsKrOpOcw9ovNmCwW5k/oI2mzhdNJYBBVUq45l0m/TyIxM5HZg2cTERBx+Sc5ypn98L9bIScF7l7gsNTZAGk5+Yz7Ygtn0nL55qFetAqSVBfC+SQwiCpHa83/bfg/dpzZwVsD3qJzUGfXNebYHzD/HmOC2vifIeRKh1WVk29mwtytHDqdzuf3dadr0/oOq0uIS5EhDrXI+JXjGb9yvKubcVkzd85kxbEVTOo6iSHNh7iuIdHfGykuAkLgwV8dGhTMFs3k+TvZdPQcb992JQPbBDmsLiEuRwKDqFKWxCzh0+hPGd16NA90eMA1jdAa/vwvLHwQInrB/Ssh0HFdWVpr/m/JHlbuTeSF4VGysI5wOelKElXG5lObmf7XdHqF9OKF3i+4Zliq2QQrnoGtX0CHW2HUR+BRx6FVvvvrYb79+ySPDGjJg1dXjZXnRO0mgUFUCUdTjjJ57WSa+TfjvwP/i6ebC4al5mXCD/fDoZXQbzIMehHcHHtR/fVfx3n/t8Pc1i2c54bI2syiapDAIFwuOTuZR397FE83T2ZeN5MAL8fMIr6kjDPw7e1waicMfwd6POjwKn+KTmDa0r1cFxXE66M7Vo31JIRAAoNwsRxTDhN/n8jZ7LPMGTyHMD8X9K+fjYH/jTaCw+3fQNthDq9y/eGzPPndTro1rc8Hd3bFQ1JdiCpEAoNwGYu2MHX9VHYn7eadge/QsXFH5zfi5N8w7w5QbjBuOYQ7PmNrdFwKD3+9lchGfsy+rwc+Xu4Or1OIipCvKcJl3t/+PqtPrOapbk9xfbPrnd+AfUtg7gjwqQ8P/uKUoHDsbCbj52whsK4XX93fk3p1XZjiQ4gySGAQLvHjoR+ZvWc2Y64Yw33t73N+A/76yFhHIbgTPPALNHD8aKDTaTncO/tvNPD1Az0Jruft8DqFqAzpShJOtzFhIy9vepl+Yf2Y0muKc2+6Wiyweips+giiboLRs0ouw+kAqdn53PfFZs5l5jHvod5ENvZzeJ1CVJYEhtrEDovl2CrmfAxPr32ayMBI3u7/Nh5uTvwI5ufAoglGF1Kvf8DgV8HN8f37OflmHvpqK0eSMvhiXA+ujAh0eJ1C2EICgwsUpKWYM2SOi1viHMuPLieaXPKAW5fdSl2Punw06CP8vBz8rTl6ATNPn6Sh2Qz/bQce3nDuCAx+Dfo85tCqF++I59X0RzmrA6jz0mpyTBbev7MLV7du7NB6hbAHuccgHGr50eVM3zidPAUoMGszuZZctp3e5tiKoxfAsok0NpuND3lavBEUek5wSlCYsnA3SboeGkWOyYKnu8Ji0Q6tVwh7kcAgHGrG9hnkmHOKbMsz5zFj+wzHVvzbvyE/u+T2gyscWy/w1qqDZOebi2zLN2veWnXQ4XULYQ/SlSQc5vD5w5zKPFXqY4mZiY6p1JwPx9ZBamzpj6fGOaZeIDvPzB+Hk4hPKSUgAQllbBeiqpHAIOxKa83W01uZs2cOf8b/iUKhKdmFEuwbbL9KLWY4+Rfs+dG4sZyVDCgopV7qhduvXozRRr8fOMPKPYmsPXSGnHwLShkJWouTldhEdSGBQdiF2WLm99jf+WLPF+w+u5sG3g14vPPj1Peuz1tb3irSneTt7s2krpNsq1BriN9mBIO9iyD9FHjWhTZDocMtkJ0CPz9dtDvJ0wcGTbOtXiApPZdf9p1m1d5ENh45S75Z0ySgDrd1i2BIh2ASU7N5YfHeIt1JPp7uPDNYkuSJ6kECgytUgWGj9pJrzmXpkaV8tfcrTqSdINwvnBd6vcDIViPx9jAmcPl6+vLCH89jAkL8QpjUdRLDI4dXvDKtjdduz4+wdyGknAT3OtD6eugwGq4YAl6+F/d39yRpySM0NJtxqxdhBIVOYyp1nHHns1i19zSr9iSy5cQ5tIZmDetyf78WDO4QTOfwQNzcLs7HcHdz49UF6zirAwgNrMszg9vIOgui2qi1gaG2DRm1t9TcVBYcXMA3+78hOSeZdg3b8faAt7mu6XW4F5sbMDxyOF/9OhWABbeurnhlSYeMYLDnR0g+DModWl4LA/9lJLzzrlf68zqN4bFNrxn1TthZ4WpjzqSzck8iq/aeZnd8KgBtg/2ZNKg1g9sH0zbYv8zJeaO6hNF6xUcAtH9+fYXrFsKVam1gEJWTmJnI3H1z+eHQD2SbsukX1o/7299Pj+Ae9p3BfP447Flo/JzeDShofpUx1DRqBPg2tF9dVlprdsensmpvIiv3JHIkKROALk0DmTK0LYPbB9O8ke9lShGi+pPAUItk5pkq/dzD5w/z5d4v+fnoz2g0Q1oMYXz78bRpYMd+87QE2LvYuDKI32psC+8JQ/4D7UYaay9X0ItnLz2JzmzRbD1+jpV7E1m99zTxKdm4uyl6RzZgXN/mXN8uWHIaiVpHAoMoU/ERRj4ePtzR9g7ubXcvoX6h9qkk86wxkmjPQjixAdBGYrvrXoL2N0P9ZpUuuvDs49A31lzo5881mdl4JJlVexL5Zd9pkjPz8PJwo3/rxjx5/RUMahtEfV8v+xyfC3z3cB9XN0FUcxIYRAlljTC6vc3tBHoHVrzAwqkp3u0AV/8T3D2NK4Oja0GbodEVMHCKcRO5UWubj6Fg9nG2Nu4/xKdk8+wPu5j713EOn84gPdeEXx0PrmkbxJD2wQxs0xjfOvLfQQhwcmBQSg0BZgDuwOda6zeKPX438Jz1zwzgH1rrXc5sY21WnhFGFVYoNQVgTDz7yTpUtX5z6DfJGF7apD3Y8R5FabOP88yanbEpF4aV9m3VkDoeskiOEMU5LTAopdyBmcD1QBywRSm1VGu9r9Bux4ABWuvzSqmhwGdAL4c0yIVDRm3p63eEiowwqpDsFFjxXOmpKfyCYOJOuwaDAvtPpZU5+1hr+M+tnexepxA1iTOvGHoCMVrrowBKqfnASOBCYNBabyy0/ybAvtNUa7HlR5dz2MuMCbjhhxuY1HUS3Zp0KzrCKLQf4zuMp2dwz8qPMMo4AweWw/5lRmoKSxlBMCPJrkEhNTufpbsSWLAl9sLQ0tLI7GMhLs+ZgSEMKJzAJo5LXw08AJSa8UwpNQGYANC0aVN7ta/GKshwarKeh09lnmLq+qlYtAU35Wb7CKOUk7D/JyMYnPwL0MaKaH0eg13zjGBRnB1SU2it2XT0HAu2xvLz7lPkmiy0DfbnxZva4eXuxivL98vsYyEqwZmBobSvh6XmIVZKXYMRGK4q7XGt9WcY3Ux0795dchlfRmkZTs3ajK+HLwtHLqzcCKOkQ7B/qREMTu00tjXpAAOfN1ZGC2pnXBE06QDLJto1NUViag4/bIvl+21xnEjOwr+OB7d2C+f2HhF0DKt34WrHt46HzD4WohKcGRjigIhCf4cDCcV3Ukp1Aj4Hhmqtkx3VmKrWz28vueZcDp8/zL7kfRd+yspwmmXKKn9Q0BpO7TICwf5lcNaaQjq8B1z/b2h7IzRsWfJ51hQUtqamyDNZWHPgNN9tiWXdoSQsGnpHNmDyda0Z0j4EH6+S90Jk9rEQlePMwLAFaK2UagHEA3cAdxXeQSnVFFgI3Ku1PuTEtlVL2aZsDp0/dCEA7E/ez5GUI5i0EfQCvAKIahiFr6cvmfmZJZ5/2QynFjPEbr4YDFJPGukomveDng9B2+EQUI7AYkNqipgz6Xy3JZaF2+NJzsyjSUAd/jGwJbd1i5BZyEI4iNMCg9bapJR6HFiFMVz1C631XqXUI9bHPwGmAQ2Bj6zdASatdXdntbEqy8rP4sC5A+w/t/9CIDiaehSLtgBQv0592jVsx9XhV9OuYTuiGkQR5heGUurCPYZyZTg158OxP4xAcGA5ZJ4Bdy9rbqLn4IqhDklHUVhGromfdiXw3dZYdpxMwcNNMSgqiNt7RNC/dWM83KvH+lL/bvgWAN+5uB1CVJRT5zForX8Gfi627ZNCvz8IPOjMNjlbaaODimcazcjLYP+5/exP3s++c0YQOJ56/MK6Bg29G9KuYTsGNR1EVMMo2jdsT5O6TcocSTQ8cjic3MR/j/xAkrs7wRaY1GzIxXrzsuDIGiMYHFoBOang6QtX3GDcL2h1PXgHOPJlQWvNthPn+W5LLMt3nyIrz0yrID+mDotiVJcwGvvXcWj9QoiLZKqnE5U2OujFjS8Scz6GgDoBFwLBibQTF54TVDeIdg3bMbT5UONKoGEUQXWDKlZx9AKGb5jF8MI3gBNmQUaWcUUQ8yvkZ4F3ILQZbgSDltcYN4kdLCk9l4Xb41iwNZYjSZn4erlzU6dQxvSIoGvTQPsm5hNClIsEBicxW8y8s/WdEqODcs25fL7ncwBCfUOJahjFiJYjiGoQRVTDKBr5NLK98tLWPzZlw9bPwa8JXHmnEQyaX2WkqrCzxTvi2Xnyn+SZAun3xhqevr41AT5eLNgay5oDZzBZNN2a1efNW1oyvFOIpKYQwsXkf6CdmS1m4jLiiEmJ4WjKUePf1KMcSz1Grjm3zOf9cfsf1Peub3sDTHlw7igk7Yekg3Bmf9nrH6PgqQPg5rg++4KcRXkm49jiU7J56vtoABr5eXH/VS0Y0z2cVkH+DmuDEKJiJDBUktliJjY9liOpRziScuRCIDiWeow8S96F/UJ9Q4kMjKR3SG8WxSwiNbfkrNwQ35CKBwVTHpw7Ypz4kw5eDATJMYVmGysjH5GHN5hySpZRL9zuQcFi0ZxJz+XkuSxiz2UxfdneEjmLABr4evHXlEF4VpMbyULUJrUyMJTnBnABk8VEbHrshW//BYHgeOrxEgGgZWBL+oT2oWVgS1rWa0lkYCS+nheHVLZt0Lb8o4MuNCDPONknHbj4c+aAERSKB4CgKGgzDBq3haC20LA1eNW9kMjOXpPM0nPyiT2XfeHkH3s+i5PnjJ+489nkmSyXLeN8Zp4EBSGqqFoXGEq7ATx943TMFjMdG3fkSMqRiz+pRziWeox8S/6F54f5hRFZL5J+of2IDIykVWArIutFUtez7mXrvuToIFMuJB8p2gWUdMDYpgu+cSto0AIaRxlzCIKioHEbI2X1pW4UdxrDluPnCd32OiGc54xqTGzHZ+hRxiSzfLOFUyk5RU74sdafk+eyOJ+VX2R//zoeNG1YlzZN/LkuqgkRDerStEFdIur7cM/nf5OQWvJqRXIWCVF11brAUFp6iBxzDlM3TC2yLcwvjJaBLekX2s+4AghsWe4AUKZd8xm+/jOGF+7WiZ0JWxdAZtLFAKDcoH4L48QfdZMRCBq3MdYpqMRIocU74pmypRnZ+TMvbPPe4sY/fA8R2cjvwon/pPXbf0JKDmbLxUwjHm6KsPo+NG1Ql6EdQ4iob5z4mzaoS0QDH+r5eJY5eujZIW2NdREkZ5EQ1UatCwyJmYllPvZKv1doFdiKFvVaVCwAmE3GiT0jEdIL/WQkQvppSD8FGdZ/i9NmY97AVU8W7QLyrNz6ByazhbMZeZxOy+FMei6n03L4z4oDJfr5c/ItvPvL4Qt/N/LzIrx+XbpE1GfklcZJP7yBEQyCA7wrPamsIDfRsz/+Tp4pkDDJWSRElVfrAkOwb3CpuYNCfEMY2Wpk0Y3mfCMz6IWTfGIpv5+2ftsvpV+9biPwDwH/JhDcAXb8r/RGmXJg0P9dst2FT/gFJ/0zhU7+p9NyOZOeS3JmLroCaQVXTr6aiPp1HTpEdFSXML7d8jZQ8ZQYQgjnq3WBYVKjXkxPX0SO28WuD2+LhUk57rDkMesJ/7Rx8s88S8kEsMpYZMavCfgHQ2hn8As2fvcPvvi7X1CJOQFZB36jbnbJoJThHcyR2JQKn/CVgkZ+dQjyr0NwPW86hdcjKMCbIP86NAnwpklAHYL8vRn98QYSUkr284cF+tA22LEzmoUQ1U+tCwzDdywCUzIz6geS6OFOsMnMpPMpDM+MA/9jxgm/XjiEdyt6wi846fs2BveiL5vWmpx8C+k5+aTl5JOaYiIt8Txp2fmk5ZhIy84nPcdEcuYtvKQ+o666OJopS3vxr7SbWTpzw4VtxU/4V0bUo7H/xRN9wb+N/LzK1cXz7GDp5xdClF+tCww6NY7haIZnZhXdjiLxwR2kZZtIy8k3TvLW39PiC07wSaTlJJBuPdmnXfg3n3zzpftvvNzdyDP3JdfNwrMeCwhVySTohrxpGsNSy1V8PrY7QQHGN/2GvuU74ZeX9PMLISqi1gWG0zQimKQS2+MtDbnq9TVlPs/b040Ab08CfDwJ8PYgsK4XTRv6EuDtYd3mSYCPB/7eniW2BXh74u3pTr831rA05SqW5hVdfygs0Ifr2jWx+7EWJv38QojyqnWB4fW823jd8/MS3Tlvmsbw+uiORU7mAT6e+Ht74O/tQR2PkgvBVNQzg9tIl44QosqrdYFha8D1PJ9Gie6cbQHX835Px64fLV06QojqoNYFBuNbe16R7hwfT3ded9K3dunSEUJUdbUuMMi3diGEuLRaFxhAvrULIcSl1MrAIGoPV667/N3DfVxQqxC2k8AgnOLFs36uboIQopwkIb4QQogiJDAIIYQoQrqSRI0m/fxCVJxcMQghhChCrhhqEVfeAHbl6CAhRMXIFYMQQogi5IrBBWTophCiKpPAUItId44QojwkMNQirhyhI6ODhKg+am1gUPpjVzdBCCGqJKWLrzBfzXTv3l1v3brV1c0QQohqRSm1TWvdvbTHZFSSEEKIIiQwCCGEKMKpgUEpNUQpdVApFaOUer6Ux5VS6n3r49FKqa7ObJ8QQggnBgallDswExgKtAPuVEq1K7bbUKC19WcCIHeIhRDCyZx5xdATiNFaH9Va5wHzgZHF9hkJzNWGTUCgUirEiW0UQohaz5mBIQyILfR3nHVbRfcRQgjhQM4MDKqUbcXHypZnH5RSE5RSW5VSW5OSkuzSOCGEEAZnBoY4IKLQ3+FAQiX2QWv9mda6u9a6e+PGje3eUCGEqM2cGRi2AK2VUi2UUl7AHcDSYvssBcZaRyf1BlK11qec2EYhhKj1nJYSQ2ttUko9DqwC3IEvtNZ7lVKPWB//BPgZGAbEAFnA+MuVu23btrNKqROVbFYj4Gwln1tdyTHXDnLMtYMtx9ysrAeqfUoMWyiltpY1JbymkmOuHeSYawdHHbPMfBZCCFGEBAYhhBBF1PbA8JmrG+ACcsy1gxxz7eCQY67V9xiEEEKUVNuvGIQQQhQjgUEIIUQRNTYw2JLiWyn1pFJqr1Jqj1JqnlLK27mtr5xyHHNbpdRfSqlcpdQ/K/Lcqqqyx6yUilBK/a6U2m99ryc5t+WVY8t7bH3cXSm1Qyn1k3NabDsbP9eBSqkflFIHrO91tVh83MZjtv38pbWucT8YE+iOAJGAF7ALaFdsn2HACoz8TL2Bv63bw4BjgI/17wXAOFcfk52OOQjoAbwK/LMiz62KPzYecwjQ1fq7P3Coqh+zLcdb6PGngG+Bn1x9PM44ZuAr4EHr715AoKuPyZHHbK/zV029YrA1xbcH4KOU8gDqUkq+pirossestT6jtd4C5Ff0uVVUpY9Za31Ka73d+ns6sJ+qn8nXlvcYpVQ4MBz43BmNtZNKH7NSKgDoD8y27pentU5xSqttY9P7jB3OXzU1MFQ6xbfWOh54GzgJnMLI17TagW21F1tSllfXdOd2abdSqjnQBfjbPs1yGFuP9z3gWcBixzY5mi3HHAkkAXOs3WefK6V87d1AB6j0Mdvr/FVTA0OlU3wrpepjROcWQCjgq5S6x87tc4RypSx3wHNdyeZ2K6X8gB+ByVrrNLu0ynEqfbxKqRuBM1rrbfZtksPZ8h57AF2Bj7XWXYBMoDrcP7PlfbbL+aumBgZbUnxfBxzTWidprfOBhUBfB7bVXsqVstwBz3Ulm9qtlPLECArfaK0X2rltjmDL8fYDRiiljmN0TVyrlPqffZvnELZ+ruO01gVXgj9gBIqqzpZjtsv5q6YGBltSfJ8Eeiul6iqlFDAIo/+5qivPMTviua5U6XZb39vZwH6t9X8d2EZ7qvTxaq2naK3DtdbNrc9bo7WuDlfCthxzIhCrlGpj3TQI2OeYZtqVLf8f7XP+cvUdeAfe2R+GMdLkCDDVuu0R4BHr7wqYaX18N9C90HNfAg4Ae4CvgTquPh47HXMwxreRNCDF+ntAWc+tDj+VPWbgKozL82hgp/VnmKuPx5HvcaEyBlJNRiXZesxAZ2Cr9X1eDNR39fE44ZhtPn9JSgwhhBBF1NSuJCGEEJUkgUEIIUQREhiEEEIUIYFBCCFEERIYhBBCFCGBQQghRBESGIQQQhQhgUEIB1BKzVFK3WhdD2CFUupmV7dJiPKSwCCEY3TEmJG6BHhZa73Itc0Rovxk5rMQdqaUcgPSgWRgptb6Py5ukhAVIlcMQthfa4xsmOOAR6xZXIWoNiQwCGF/HYFftNZrMBKZjXVxe4SoEAkMQthfR4yAAPAaMMW6zKIQ1YLcYxBCCFGEXDEIIYQoQgKDEEKIIiQwCCGEKEICgxBCiCIkMAghhChCAoMQQogiJDAIIYQo4v8BoxPXI1ja+I8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -417,10 +417,10 @@ " raw_params = result_file[len(prefix):].split('_')\n", " for i in raw_params:\n", " key = i[0]\n", - " value = i[1:]\n", " # The key will be 2 for the date part. Ignore this.\n", " if key == '2':\n", " continue\n", + " value = float(i[1:])\n", " params[key] = value\n", " files[result_file] = params\n", "\n", @@ -433,25 +433,31 @@ "for filename, parameters in files.items():\n", " lam = parameters[\"l\"]\n", " kap = parameters[\"k\"]\n", - " #print(filename, lam, kap)\n", - " #print(lambdas, lam)\n", - " idx_lam = np.where(lambdas - lam)\n", - " #idx_kap = np.argwhere(np.isclose(kappas, kap))\n", - " idx_kap = np.where(kappas == kap)\n", - " print(idx_lam, idx_kap)\n", + " idx_lam = np.argwhere(np.isclose(lambdas, lam))[0][0]\n", + " idx_kap = np.argwhere(np.isclose(kappas, kap))[0][0]\n", " with h5py.File(filename,'r') as f:\n", " handler = f[\"magnetizations\"]\n", - " magnetizations = np.array(handler)\n", + " magnetizations = np.abs(np.array(handler))\n", " results[idx_lam][idx_kap] = np.mean(magnetizations), np.std(magnetizations)\n", "\n", - "print(results)\n", + "#print(results)\n", "# for idx_lam, lam in enumerate(lambdas):\n", "# for idx_kap, kap in enumerate(kappas):\n", "# with h5py.File(file,'r') as f:\n", "# handler = f[\"magnetizations\"]\n", "# magnetizations = np.array(handler)\n", " \n", - "# results[idx_lam][idx_kap] = np.mean(magnetizations), np.std(magnetizations)" + "# results[idx_lam][idx_kap] = np.mean(magnetizations), np.std(magnetizations)\n", + "\n", + "# Plotterdeplotterdeplot\n", + "plt.figure()\n", + "for idx_lam in range(len(lambdas)):\n", + " plt.errorbar(kappas,results[idx_lam][:,0],yerr=results[idx_lam][:,1],fmt='-o', label=f\"$\\lambda = {lambdas[idx_lam]}$\")\n", + "plt.xlabel(r\"$\\kappa$\")\n", + "plt.ylabel(r\"$|m|$\")\n", + "plt.title(f\"Absolute field average on $3^4$ lattice$\")\n", + "plt.legend()\n", + "plt.show()" ] } ],