From 1ba93b9cd313e09dafbf5f7a1dd4b245550fc483 Mon Sep 17 00:00:00 2001 From: Kees van Kempen Date: Thu, 8 Sep 2022 11:53:56 +0200 Subject: [PATCH] 01: Fit and plot the stdev convergence for the pebbling --- Exercise sheet 1/exercise_sheet_01.ipynb | 31 ++++++++++++------------ 1 file changed, 16 insertions(+), 15 deletions(-) diff --git a/Exercise sheet 1/exercise_sheet_01.ipynb b/Exercise sheet 1/exercise_sheet_01.ipynb index 60d64e8..a7ef35f 100644 --- a/Exercise sheet 1/exercise_sheet_01.ipynb +++ b/Exercise sheet 1/exercise_sheet_01.ipynb @@ -199,14 +199,14 @@ { "data": { "text/plain": [ - "array([[1.60000000e+01, 4.14095400e-01],\n", - " [3.20000000e+01, 2.99924470e-01],\n", - " [6.40000000e+01, 2.19101280e-01],\n", - " [1.28000000e+02, 1.49149198e-01],\n", - " [2.56000000e+02, 9.15196946e-02],\n", - " [5.12000000e+02, 7.09785726e-02],\n", - " [1.02400000e+03, 5.33523935e-02],\n", - " [2.04800000e+03, 3.70486705e-02]])" + "array([[1.60000000e+01, 4.10028581e-01],\n", + " [3.20000000e+01, 3.00020182e-01],\n", + " [6.40000000e+01, 1.96900792e-01],\n", + " [1.28000000e+02, 1.47571487e-01],\n", + " [2.56000000e+02, 1.03273922e-01],\n", + " [5.12000000e+02, 6.88982665e-02],\n", + " [1.02400000e+03, 4.86827171e-02],\n", + " [2.04800000e+03, 3.75673313e-02]])" ] }, "execution_count": 3, @@ -290,6 +290,7 @@ "outputs": [], "source": [ "import scipy.optimize\n", + "\n", "def fit_power_law(stddev_data):\n", " \"\"\"Compute the best fit parameters a and p.\"\"\"\n", " \n", @@ -367,7 +368,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEbCAYAAAAMKCkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAr4ElEQVR4nO3dd3RU5d7F8e8vBUINvQhIVQRBinSkCgpKU1EQEEQEqYqKioqda8VGF0RBRUBB6dJFeAFpYqGINJGASpMiPeR5/5hwjbkJJCSTM5Psz1pZlzlzyp6Jd3ZOmeeYcw4RERF/CvE6gIiIpH8qGxER8TuVjYiI+J3KRkRE/E5lIyIifqeyERERv1PZiIiI36lsRIKQmZU1sw1mdtzMHoydtsnMGvpr/cHAzDaa2czY7I97nUf+YfpSpwQKM/sVKAhEA+eBzcBHwBjnXEwSl7/fObfIjzEDgpmNA4455x5O5PlfScF7can1ByIzywVsAioBx4A1zrnKXmaSf2jPRgJNS+dcDqA48CrwBDDO20hJZ2ZhabSp4vg+WIN1/f5QEZjknDvonDsLHPI6kPxDZSMByTl31Dk3E2gHdDGzCgBmNtDMdsQe3tlsZrfFTv8YuBKYZWZ/XziEktj88cXONzXetHfNbGjsv68ws2lmdsDMdsU9tGRmv5rZE2b2I3DCzMJiH++N3e5WM7sxzvzOzMrEeTzezAbH/jvR5eLMvwRoBAyPfa1Xx8nRJLH3It46ypnZUjM7Env4rdWl1h9v+XAz+0/sNs/FviZnZj8k9P4mlZkViD0M9qeZHTOzWWaWM/a5nmY2x8xGmNlBM9tnZk3jLF4RyBw7bwdgSUqySCpzzulHPwHxA/wKNElg+m9Ar9h/3wlcge8PpXbACaBwYstfbP548xUHTgI5Yx+HAr8DtWKXXQ88C2QCSgE7gZvjbPd7oBiQBSgL7AGuiH2+BFA6zrYcUCbO4/HA4EstFy/vUnyHyRJ8/xJ7L2OfCwe2A0/Fvp7GwHGg7MXWH28drwHfxr7mbMAi4AugVLz5ZgNHEvmZncB6ywBN8ZVGHmAV8FjscyOBw8DNsb+T54BFcZYdBQwFFgMTgcxe/zetn39+tGcjwWAfvg8enHOfO+f2OedinHNTgG1AjcQWTOr8zrndwHdAm9hJjYGTzrlvgepAfufci865s865ncBYoH2cVQx1zu1xzp3Cd74pM1DezMKdc78653Yk4XVe7nLJVQvIDrwa+3qW4CuFu5OysJnlAB4E7ol9zSeAaUCe2Pfmv5xzLZxzuRL5aRF/3c657c65hc65M865w8BCIHfs09fFZp7vfOfwNsdbvAzQ3zl3o3Ouo3PuTJLfEfE7lY0EgyL4/qLFzDqb2fexh3+OABWAfIktmMz5P+WfD9wOsY/Bt9dzxYV1xK7nKXwXM1yw58I/nHPbgf7A88B+M5tsZldc6kVe7nKX4Qpgj/v3RRe78b3PSVEf2Omc2xZnWm7gj5QGM7M7zWyFme2PfZ8HAr/EPl0RmBVn9gr8u3AyuSRcSCLeUNlIQDOz6vg+BP/PzIrj26PoC+R1zuUCNgIWO7uLt+yl5o/vc6ChmRUFbuOfstkD7Ir3V3kO59wtcZb917adc586527AV1QO32GnC04CWeM8LpTE5ZLjYpeZ7gOKmVnc//9fCexN4rrzA39deGBmhu/9mh1/RjP7Kva8T0I/X8WbtzG+19sfXyHmA/YD35tZSSAM2BpnkSr4Dl8C4JxrkMT84gGVjQQkM8tpZi2AycAnzrmf8J0bcMCB2Hm64vvr9oI/8Z1PueBS8/+Lc+4AvnMVH+Irly2xT60BjsWevM9iZqFmViG2CBPKXtbMGptZZuA0cOHQ2gXfAx1i19MMaJDE5ZIj/nsR12p8564ejz3R3xBoie+9ToqNQFUzq2xmWYBX8L3PU+LP6Jxr7pzLnshP83izV8JX7D/j21P6ACiAb+/lOuCneHsuVYAUXZAgaUdlI4Fmlpkdx/eh8zTwFtAVwDm3GXgT30njP/EdVlkRZ9lXgEGxh7oGJGH+hHwKNOGfvRqcc+fxfRhXBnYBB4H3gchE1pEZ32XbB/EdWiqA77DbBQ/Fru8I0BGYnsTlkuNf70XcJ5zvsuBWQPPYbY0EOjvnfk7Kip1z64D/AHPxXShRCLjFOXfuMrNeMBHfxQt/4NtL2gZsjs17HXH2Yswsb+x2N6Zwm5JG9KVOERHxO+3ZiIiI36lsRETE71Q2IiLidyobERHxO5WNiIj4XVqNUBt08uXL50qUKOF1DBGRoLJ+/fqDzrn88aerbBJRokQJ1q1b53UMEZGgYma7E5quw2giIuJ3KhsREfE7lY2IiPidztmIiKSic+fOERUVxenTp72O4lcREREULVqU8PDwJM2vshERSUVRUVHkyJGDEiVK4Lv7QvrjnOPQoUNERUVRsmTJJC2jw2giIqno9OnT5M2bN90WDYCZkTdv3mTtvalsUtuuZXB456XnE5F0Kz0XzQXJfY0qm9QUcx5m9YeRdWDlcN9jERGPPf/88wwZMiTR56dPn87mzZsTfT41qGxSU0godJkFpRrAgqdhXFP407+/QBGRlFLZBKPIInD3ZLhjHPz1K7xXH5a+CtFnvU4mIhnIf/7zH8qWLUuTJk3YunUrAGPHjqV69epUqlSJO+64g5MnT7Jy5UpmzpzJY489RuXKldmxY0eC86WU7tSZiGrVqrkUD1dz4iDMGwg/fQ4FykPr4VDk+tQJKCIBacuWLZQrVw6AF2ZtYvO+Y6m6/vJX5OS5ltdedJ7169dz7733snr1aqKjo6latSo9e/aka9eu5M2bF4BBgwZRsGBB+vXrx7333kuLFi1o27YtAIcOHUpwvvjivtYLzGy9c65a/Hm1Z+NP2fLBHe/D3VPg1BF4vwnMfxrOpvyvBBGRxCxfvpzbbruNrFmzkjNnTlq1agXAxo0bqVevHhUrVmTixIls2rQpweWTOl9y6Hs2aaFsMyheGxY+B6uGw8+zodUwKFnf62Qi4keX2gPxp4SuFrv33nuZPn06lSpVYvz48SxdujTBZZM6X3JozyatRERCy3egy2zAYEJLmPUQnD7qdTIRSWfq16/Pl19+yalTpzh+/DizZs0C4Pjx4xQuXJhz584xceLE/86fI0cOjh8//t/Hic2XEiqbtFayHvRaCXX6wXcfwYiasPUrr1OJSDpStWpV2rVrR+XKlbnjjjuoV68eAC+99BI1a9akadOmXHPNNf+dv3379rzxxhtUqVKFHTt2JDpfSugCgUSkygUCl7J3PczoB/s3QYW20Pw133keEQlaCZ00T690gUCwKHI99FgKDZ+CzTNgeHX48XPQHwAiks6obLwWlgkaPgE9l0OeUvDF/fBpOzga5XUyEZFUo7IJFAXKQbcFcPMr8OtyGFEL1n0AMTFeJxMRSTGVTSAJCYXavX0XEBSpCrMf9l21dmiH18lERFJEZROI8pSEzjN838X54ycYVQdWvAvno71OJiJyWVQ2gcoMqnaGPquh9I2w8FkY1wT+2Oh1MhGRZFPZBLqchaH9RGj7IRzZA2MawJL/QPQZr5OJSIAaOnQo5cqVI3fu3Lz66qtA2ozsfDEqm2BgBhVuh75rfd/HWfa6bzTpPWu9TiYiAWjkyJHMnTuXv/76i4EDBwIqG0mOrHng9veg41Q487fvfjnznoSzJ7xOJiIBomfPnuzcuZNWrVrx9ttv07dv3wRvI5DWNBBnMLqqKfReBYtfgG9Hws9zoOW7ULqR18lEJK6vBvou8klNhSpC81cTfXr06NHMmzePr7/+mtmzZwNQp04dWrVq9a/bCKQ17dkEq4iccOubcO9cCAmDj9vAjD6+WxmIiAQY7dkEuxJ1odcK391AVw6DbYt8JVSuhdfJROQieyAZjfZs0oPwLND0Bei+GLLlhykd4bMu8Pd+r5OJSICIfxuBtKaySU+uqAI9vobGg2DrXBhRA36YrIE9ReR/biOQ1nSLgUSkyS0G/OnAVpjRF6LWQJkm0OIdyFXM61Qi6Z5uMaBbDGQs+cvCffOg+euwexWMrAVrxmpgTxHxhMomPQsJhZoP+C6TLlod5g6A8bfAwW1eJxORDEZlkxHkLg73fAmtR8L+zTCqLix/SwN7ikiaUdlkFGZQpSP0WQNX3+T7Quj7jeH3H71OJpLuZIRz4cl9jSqbjCZHIWj3Cdz1ERz7HcY0hMUvwrnTXicTSRciIiI4dOhQui4c5xyHDh0iIiIiycvoS50ZVfnWUKIezH8alr8JW2ZBq+FwZU2vk4kEtaJFixIVFcWBAwe8juJXERERFC1aNMnz69LnRAT9pc/JsX0RzOoPR6OgRg+48VnInN3rVCIShHTpsySuTBPfFWs1usOaMTCyNmxf7HUqEUlHVDbikzkH3PIGdP0KwjLDJ7fD9N5w8rDXyUQkHVDZyL8Vrw09/w/qPeob6mZETdg8w+tUIhLkVDbyv8IjfOdteiz1Xb32WWeYcg8c/9PrZCISpFQ2krjC10H3JXDjc/DLfN/AnhsmamBPEUk2lY1cXGg41HvEd8+cAuVgRm/f+Zy/dnudTESCiMpGkibfVb67gt4yBPas8V2xtvq9/w7sGROjvR0RSZzKRpIuJMR3eXTvVXBlLfjqcfiwORz4hbcX/cJDkzdw7PQ5r1OKSABS2Ujy5boSOk2DNqPh4FYYXZe6+yYw78c9NH9nOWt26XJpEfk3lY1cHjOofLdvYM+yt1Dr1xFsKPQK5dhJ+zGrGDJ/K+fO6945IuKjspGUyV4A7poA7T4h69lDjD3zOO8XmcPYrzfTdtRKdh084XVCEQkAKhtJHeVaQp/VWOW7aXxwIuvzPU/ug+u5dehypqz9LV2PgCsil6aykdSTJTe0HgH3TCd7WAzjeZZ3cnzCi9PW0POT9fx14qzXCUXEIyobSX2lG0GvVVCrN01PzObbyKc5t3UBzd5dxv9tO+h1OhHxgMpG/CNzdmj2CtZtATlyRPJB2Gu85IbTd9wiXpq9mdPnznudUETSkMpG/KtYDei5HOo/TtPzy/m/7AP5feUk2gz/P37587jX6UQkjahsxP/CMkPjp7EeS8mevzgjMw3liWOD6TpsFuNX7NLFAyIZgMpG0k6hinD/Ymj6Ig1Df2Rh+AA2zR3JvR+sYf/x016nExE/UtlI2goNg7oPYT1XkOXKSrwRPoYeux/lvrensmizbmEgkl6pbMQb+cpgXebArW9RK/MupsY8woqJLzHoi+85dVYXD4ikNyob8U5ICFTvRmjf1YSXrsdz4R9z+/fd6P3ORDbuPep1OhFJRSob8V5kUUI7TYXbx1IxyyHeO/kwi0Y/ypivf+a8bl0gki6obCQwmMF1dxHeby1c05L+oZ9T7+s7eWbkR+w7csrrdCKSQiobCSzZ85Op/Xhc+08pkeU0Lx14iPnv9GDuhp1eJxORFFDZSECya24lS/+1nKzQga7MpNyXzRjx4QSO6+ZsIkFJZSOBK0suctw5kuhOM8idNYw+ux9k8ZCObNi22+tkIpJMKhsJeGFlGpLrkbX8cW03WkYvpOAnDZk+5QOidXM2kaChspHgkCkbhe58i9OdvyIkIidttjzMitdvZ0/Ub14nE5EkUNlIUMlWqhaFHlvD1mv6UOfMMrKNrcO3M97DxWgvRySQqWwk+IRlpmz7lzncaRGHMxWm1obH+enNWzn6p87liAQqlY0ErYJlqlLyiVWsLP0wV/29jtBRtdg+bzhoFGmRgKOykaAWGhZGnXue57e7FrEttBRlvn2aX9+6kbP7d3gdTUTiUNlIulD22kqUffxrphd9jDzHNhMzsjYHF7wJMRrUUyQQqGwk3ciaORNt7h/E9y3ns4YK5Fv5IgffrY/7c5PX0UQyPJWNpDv1q1XimkfmMDLvk9iR3ZwfVZ8TCwZD9Fmvo4lkWCobSZcK5MxCzz5PML/hDL6KqUG2lW/w97C6ELXe62giGZLKRtKtkBCjQ6Prubr3Zzyb7RmOHzlIzPtNiP7qKTh70ut4IhmKykbSvbKFcvBU/4f5uMoUJkU3Imz1CM4Oqwm7lnkdTSTDUNlIhhARHsrjbWpQrPN79Ax9gd+PnYEJLXEzH4TTuiuoiL+pbCRDqX91fl5+pDdvlPyA96JvxX33MeeH1YCtX3kdTSRdU9lIhpMnWyaGdalLZKtXaXf+JXacyAST2sPU++DEQa/jiaRLKhvJkMyM9jWu5LUH72Vg3qG8ea4t0Ztm4IZXhx8/15A3IqlMZSMZWqn82ZnSuwGu/uPccuZltpzJB1/cD5+2g6NRXscTSTdUNpLhhYeGMODmsgzuficPhL/MS9H3cG7HN7gRtWDtONDtC0RSTGUjEqtGyTzM7t+QgxW60fjUK/xEaZjzCExoCYc0sKdISqhsROKIzBLOu+2r8OhdN9PxzJM843pybu8PMKoOrHgXzkd7HVEkKKlsRBLQpkoR5j5Un58Lt6bu36/yY8T1sPBZGNcE/tjodTyRoKOyEUlEsTxZmdyjNp1vqslth/swKHwA5w7/BmMawJL/QPQZryOKBA2VjchFhIYYfRtfxbRedfm/TDdQ4+jLbMzTFJa9DqPrwZ41XkcUCQoqG5EkqFwsF3MerMdN15enRdQ9PJ/jBc6dPg7jboKvBsLZE15HFAloKhuRJMqWOYzX2l7H6E5VmX6iPLWOvswvxdvB6lEwshbs+NrriCIBS2UjkkzNKhRm3kP1KVf8Cm7a2orXC7/NeQuDj9vAjD5w6ojXEUUCjspG5DIUiozgo/tqMOjWcrz/W2EaHB/Mb+UfgO8nwYiasGW21xFFAorKRuQyhYQY99crxfQ+dcmaLTv1v2vAmGvGEZMtP0zpCJ91gb/3ex1TJCCobERSqPwVOZnZ9wburVOClzdkouXpFzlQ43HYOheGV/ft7WhgT8ngVDYiqSAiPJTnW13Lh12r8+eJGOqurMq0GlNw+crC9J4wsS0c2eN1TBHPqGxEUlGjsgWY178e9a/Kx6Nfn+Jee5HjjV6G3at8V6ytGauBPSVDUtmIpLJ82TMztnM1BrepwOpf/6LBsqtZ1nQWFKsBcwfA+Fvg4DavY4qkKZWNiB+YGZ1qFWd2v3oUjoyg8xd/8FS2FzjTYjjs3wKj6sLyt+D8Oa+jiqQJlY2IH5UpkJ0ve9flgQalmLR2D82XFmPL7Yvg6pth8QswtjH8/oPXMUX8TmUj4meZwkJ4snk5Jt5fk1PnztNy/DZGFnyO83dOgON/wJhGsPhFOHfa66gifqOyEUkjdUrnY95D9bn52kK8Pm8rd/9fQfbd8w1Uag/L34TRN8Bv33odU8QvVDYiaSgyazjDO1RhyJ2V2LT3KDeP/omZJQdBpy98tyz4oBnMfRzO/O11VJFUpbIRSWNmRtvrizL3oXpcVSA7D07awCPr83K82zKo+QCsGQMja8P2xV5HFUk1KhsRjxTPm43PHqhN/yZXMeOHfTQftYF15Z6A++ZBeAR8cjtM7w0nD3sdVSTFVDYiHgoLDaF/k6v57IHahJhx13ureOvn3Jzr/g3UGwA/TPYN7Ll5htdRRVLkkmVjZs+lRRCRjOz64rmZ+1A9bq9alKFLtnPn+xv4tdIj0GMp5CgEn3WGKZ18V6+JBKGk7Nk8Z2avmdlYM+tlZrn9nkokA8qeOYwhd1ZiRIeq7DzwN7cMXc5ne3Pjui+BJs/DLwtgRA3YMFEDe0rQSUrZOOA0MB8oBqw0s0p+TSWSgd16XWHm9a/PdUUjeXzqj/Se9CNHqvaBXiugQHmY0Rs+vg3+2u11VJEkM3eJv5DMbJNz7to4j68GRjvnGvs7nJeqVavm1q1b53UMycBiYhxjl+9kyIKt5M2WmbfuqkSdUnlg3ThY9Lxv76bJc1C9O4To9KsEBjNb75yrFn96Uv4LPWhm11944Jz7BcifmuFE5H+FhBgPNCjNl73rkjVzKB3eX83L87Zypup90HsVFK8NXz0OHzaDA1u9jityUUkpmweBT8zsEzN7wswmArv8nEtEYlUoEsmcfvXoVOtKxizbyW0jVrL9bG7oOBVuew8O/uIbfWDZEA3sKQHrkofRAMwsM9AEqAAcAiY55074OZundBhNAtGizX/yxLQf+ftMNP2bXM19N5Qg8+lDvj2cTV9CwYrQejhcUdnrqJJBJXYYLUllkxGpbCRQ7T9+mkFfbmTB5j8pmS8bz7YsT6OyBWDLbJjzCJw4CHX6QcOBEJ7F67iSwaTknI2IBJACOSIY07ka47tWx4CuH67l/glr2V2gEfRZDZU7wIp3fIfWdq/0Oq4IoLIRCVoNyxZgXv/6PNn8GlbtOETTt5cxZNl+TjZ/B+6ZDufPwofNYc6jcOa413Elg1PZiASxTGEhPNCgNEsGNOTWioUZ/vV2mrz5DbNPlMX1WgW1esPacTCiFmxb6HVcycBUNiLpQMGcEbzdrjJTe9YmV9ZM9P10Ax0mbGRr5aeg2wLIlA0mtoUvHtDAnuIJlY1IOlKtRB5m9buBwW0qsOWPY9wydDnPb8jG0S5LoP7jsHEqDK8OG7/QkDeSplQ2IulMaIjRqVZxvn60IXfXKMZHq36l8TurmJLjHmK6L4XIojC1q29gz2O/ex1XMgiVjUg6lTtbJga3qcjMvjdQMl82npj2E7dNO8r3zaZB0xdh+yLf7Qu++0h7OeJ3KhuRdK5CkUg+71mbd9pV5vejp2kzajWP7WvI4c5LoVAFmNkPPmoNhzUwiPiPykYkAzAz2lQpwpIBDXmgQSmmf7+XBuN+Y1yZYZy/5U3Y+x2MqgOrRkLMea/jSjqkshHJQLJnDuPJ5uWY178+VYvn5qU5P9N8xVWsu3UulLgB5j8J426C/Vu8jirpjMpGJAMqnT8747tWZ2znapw6d562k/bQ2z3B4WYj4PBOGF0Pvnkdos96HVXSCZWNSAZlZjQtX5CFDzfg0aZXs2TrAerMycv7103m/DUt4ev/wJiGsHe911ElHVDZiGRwEeGh9LvxKhY/2pAbrynI4G8O0ujXznxfdxTu1GF4vwkseAbOnvQ6qgQxlY2IAFAkVxZGdKzKp/fXJCI8hDaLI+kVOYpj5e6GlUNhdF3YtdzrmBKkVDYi8i91yuRjzoP1eLZFeVbsOcv1P7Tg02uGExMTAxNawKz+cPqo1zElyKhsROR/hIeGcN8NJVkyoCFtKhfhqe/z0ODvl9leugvuuwm+gT1/me91TAkiKhsRSVT+HJl5485KfNm7DnlyRdJk0808lftNTodlh0/vgmn3+27WJnIJKhsRuaQqV+bmy951ee2Oiiw4WoxKfwxiScGuuE3TYUQN+GmqhryRi1LZiEiShIQY7apfyZIBDbm7dhm677mJO90rHAwvDNO6waT2cHSv1zElQKlsRCRZIrOE83yra5nz4A2EFa5AjT8HMjZLN87vWAoja8G6DyEmxuuYEmBUNiJyWa4plJNJ3WsxtMP1fBBzK41OvsK20NIwuz981AoO7fA6ogSQDFE2ZpbNzCaY2Vgz6+h1HpH0wsxocd0VLH60Aa0a1uXWo4/zXEwPzuzZgBtVF1YO08CeAgRx2ZjZB2a238w2xpvezMy2mtl2MxsYO/l2YKpzrjvQKs3DiqRzWTOFMeDmsix8pAF7S99F/ROvsspVgAWDfCMQ/LnJ64jisaAtG2A80CzuBDMLBUYAzYHywN1mVh4oCuyJnU1/Zon4SfG82Xi/S3Ve7XozT0c8Tb+zfTn+xw7ce/Xh65ch+ozXEcUjQVs2zrllwOF4k2sA251zO51zZ4HJQGsgCl/hQBC/ZpFg0ahsAeY9XJ/yN93HzdFDmBldC755jZjR9SFqndfxxAPp7YO3CP/swYCvZIoAXwB3mNkoYFZiC5tZDzNbZ2brDhw44N+kIulc5rBQejUszRePtmJJ+cF0PfsYBw4ewL3fBDfvSTh7wuuIkobSW9lYAtOcc+6Ec66rc66Xc25iYgs758Y456o556rlz5/fjzFFMo5CkRG8274Kvbr3pneuUUyMbox9O5Kzw2vDzm+8jidpJL2VTRRQLM7josA+j7KISBw1SuZhSr+muFvf4j6eZ9/RM/BRK85+2QdOHfE6nvhZeiubtcBVZlbSzDIB7YGZHmcSkVhhoSHcU7sEQx7rw4fXfcJ70S0I/eFTTr5TnZgtc7yOJ34UtGVjZpOAVUBZM4sys27OuWigLzAf2AJ85pzTNZciASZPtky8cEd16vYayZN53mb3qcyETOnAXxM6wd86X5oemdPgeQmqVq2aW7dOV82I+Jtzjunrd/HH3Ne57/znRIdlI+bmV8hRvQNYQqdhJZCZ2XrnXLX404N2z0ZE0gcz47Zqpej0+DAmXPcxv5wrQI65vdkzoiXRh3/zOp6kEpWNiASEHBHh9LjjFnL0XszHuXqR98Aazgytwc6vhmpgz3RAZSMiAaVMoUg6PfQK626dw+aQqym1+hm2vdGAP3fp9GswU9mISMAxM+rXqE7FgUtYWOYZCp7cTuT4BqyYMIjTZzTkTTBS2YhIwIrIFEbTTgM43m0FP2evQd1dw/j1tdqsXrnU62iSTCobEQl4Ra4sReUBc9hywzAKuoNUnX87M9/uza4/4w+PKIFKZSMiwcGMck06k/2R79hVuDmtjk7k/Mgb+PjzzzlxJtrrdHIJKhsRCSrhOfJxdc+JHLl9EnkyRdNxY3dmvdaZ2eu2oe8NBi6VjYgEpVzX3UKeAes5WO4e2sfModLM5gweNpLN+455HU0SoLIRkeCVOQcF2g/jfJe5RObIxjOHn2LjqHt4edoqjpw863U6iUNlIyJBL7RkXXL2X83pmg9xR+hyuv3YnhfeeJ1PV//G+RgdWgsEKhsRSR/CI4ho/iKhPZYQma8Ib7s3yDn7froMm8X63X95nS7DU9mISPpyRWUien+Da/wMzcO/Y8RfvZj43qs8MmUD+4+f9jpdhqWyEZH0JzQcqz+A0F4ryV6kPG9lGk2bTQ/RYcg0xi7bybnzGmstralsRCT9yn81od3mQ/M3uCHzNmaHPMpv89+l+dtLWb5N981JS7qfTSJ0PxuRdOav3TC7P+xYwo8h5eh/qhtXla/CoFvLUyxPVq/TpRu6n42IZGy5i0OnL6DNKCpm+p0FEU9x9bb3afbWYt5e+Aunz533OmG6prIRkYzDDCp3wPqsIeyaZjwaMol52V5g0ZKF3PjmN8zb+LtGIfATlY2IZDw5CkK7j+GujygWdpTZEc/Q133KQ598yz3j1rB9/3GvE6Y7GapszKyUmY0zs6leZxGRAFC+NfRZjVVqz91nPmdNnucJifqWZu8sZ/DszRw/fc7rhOmGX8vGzB4ys41mtsnM+qdgPR+Y2X4z25jAc83MbKuZbTezgRdbj3Nup3Ou2+XmEJF0KGseaDMSOn1BZHgME3iOjwpPZdKKLTQa8g1T10cRo1EIUsxvZWNmFYDuQA2gEtDCzK6KN08BM8sRb1qZBFY3HmiWwDZCgRFAc6A8cLeZlTezimY2O95PgVR5YSKSPpW5EXqvwmo+QJ1DX7Ah77O0zLaZAZ//QNvRK9l35JTXCYOaP/dsygHfOudOOueigW+A2+LN0wCYYWYRAGbWHRgaf0XOuWVAQndJqgFsj91jOQtMBlo7535yzrWI97M/KaHNrKWZjTl69GiSX6iIpBOZs0Pz1+C+eWSKyMpzR59haZkp5HR/kydbJq/TBTV/ls1GoL6Z5TWzrMAtQLG4MzjnPgfmAZPNrCNwH3BXMrZRBNgT53FU7LQExWYZDVQxsycTmsc5N8s51yMyMjIZMUQkXbmyFjywHOo9Som9s/nwZF8its32OlVQ81vZOOe2AK8BC/EVyg/A/9xOzzn3OnAaGAW0cs79nYzNWEKbvkimQ865ns650s65V5KxHRHJaMIj4MZnocdSLEch+KwzTOkEx//wOllQ8usFAs65cc65qs65+vgOg22LP4+Z1QMqAF8CzyVzE1H8e2+pKLDvMuOKiPyvwtdB96+hyfPwywIYUQM2TAR9HydZ/H01WoHY/70SuB2YFO/5KsBYoDXQFchjZoOTsYm1wFVmVtLMMgHtgZmpkV1E5L9Cw+CGh6HXCihwLczoDR/f5hsCR5LE39+zmWZmm4FZQB/nXPybSmQF7nTO7XDOxQBdgP/57ZnZJGAVUNbMosysG0DshQd9gfnAFuAz59wm/70cEcnQ8l0F986BW4ZA1FoYWRu+HQ0xGurmUjQQZyI0EKeIXNSRPb6BPbcvgmI1odUwyF/W61Se00CcIiKpKVcx6DgVbnsPDv4Co2+AZW/AeY06kBCVjYjI5TKDSu2hzxq45lZYMhjGNIJ933udLOCobEREUip7AbhzPLSbCCcOwNjGsPA5OKdRBy5Q2YiIpJZyLaDPaqjcAVa8A6Pqwq8rvE4VEFQ2IiKpKUsuaD0cOs+AmGgYfwvMeRROH/M6madUNiIi/lCqIfReBbV6w9pxvsukty30OpVnVDYiIv6SKRs0ewW6LfQN8jmxLXzRA04c8jpZmlPZiIj4W7Hq8MAyaPAEbJzmG/Jm4xcZasgblY2ISFoIywyNnoIe3/i+ozO1K0zuCMd+9zpZmlDZiIikpUIVoNsiaPoS7FgMI2rCdx+l+70clY2ISFoLDYO6D0KvlVCoIszsBx+1hsO7vE7mNyobERGv5C0NXWZBi3dg73cwqg6sGpEuB/ZU2YiIeCkkBKp19X0ZtEQ9mP8UjLsJ9m/xOlmqUtmIiASCyCLQYQrcMQ7+2gWj68HS1yD6rNfJUoXKRkQkUJhBxba+gT3Lt4alL8OYhrB3vdfJUkxlIyISaLLlg7bj4O7JcOoveL8JLBgEZ096neyyqWxERAJV2ebQ51uo2gVWDoPRdWHXcq9TXRaVjYhIIIuIhJbv+K5acw4mtIBZ/eH0Ua+TJYvKRkQkGJSs7/teTp1+8N0EGFELts7zOlWSqWxERIJFpqxw02DfCARZcsGkdjC1G5w46HWyS1LZiIgEm6LX+8ZYa/gUbJ7hG9jzp6kBPeRNhiobMytlZuPMbKrXWUREUiQsEzR8wjeadO4SMK0bTGoPR/d6nSxBfi0bM3vYzDaZ2UYzm2RmEZe5ng/MbL+ZbUzguWZmttXMtpvZwIutxzm30znX7XIyiIgEpILlfffLufll2PkNjKwF6z6EmBivk/2L38rGzIoADwLVnHMVgFCgfbx5CphZjnjTyiSwuvFAswS2EQqMAJoD5YG7zay8mVU0s9nxfgqkygsTEQk0IaFQu4/vzqBXVIbZ/eGjVnBoh9fJ/svfh9HCgCxmFgZkBfbFe74BMOPCHo+ZdQeGxl+Jc24ZcDiB9dcAtsfusZwFJgOtnXM/OedaxPvZn4qvS0Qk8OQpCZ1nQsuh8PsPvoE9VwyF89FeJ/Nf2Tjn9gJDgN+A34GjzrkF8eb5HJgHTDazjsB9wF3J2EwRYE+cx1Gx0xJkZnnNbDRQxcyeTGSelmY25ujR4LqGXUQE8A15c30X38CepRvDwmdgXFP4c5Onsfx5GC030BooCVwBZDOzTvHnc869DpwGRgGtnHN/J2czCUxL9HIM59wh51xP51xp59wricwzyznXIzIyMhkxREQCTM4roP2n0PYDOPIbvFcfvn4Zos94Esefh9GaALuccwecc+eAL4A68Wcys3pABeBL4LlkbiMKKBbncVH+91CdiEjGZAYV7vAN7FnhDvjmNXivAUStS/Mo/iyb34BaZpbVzAy4EfjXDRrMrAowFt8eUFcgj5kNTsY21gJXmVlJM8uE7wKEmamSXkQkvciWF24fAx0+hzPHfAN7znsKzp5Iswj+PGezGpgKfAf8FLutMfFmywrc6Zzb4ZyLAboAu+Ovy8wmAauAsmYWZWbdYrcRDfQF5uMrss+cc94emBQRCVRX3wS9v4Vq98G3I3wXEOz8Jk02bS6Av3HqpWrVqrl169J+V1NEJE38ugJm9oPDO6BqZ2j6km8InBQys/XOuWrxp2eoEQRERCRWibrQawXUfQg2fAIjasLPc/y2OZWNiEhGFZ4Fmr4I9y/23bBtcgf4vCucTOhrjSmjshERyeiKVIUeS6HRIN8tqC31qyEs1dcoIiLBJzQcGjwGdR+EsMypvnrt2YiIyD/8UDSgshERkTSgshEREb9T2YiIiN+pbERExO9UNiIi4ncqGxER8TuVjYiI+J0G4kyEmR0AjgCXc8vOfMDBVA0kFxPJ5f2eAlmgviavcvl7u6m9/tRaX0rWc7nLpvTzq7hzLn/8iSqbizCzMc65Hpex3LqERj0V/7jc31MgC9TX5FUuf283tdefWutLyXoC7fNLh9EubpbXASRJ0uPvKVBfk1e5/L3d1F5/aq0vJesJqP+GtGfjB9qzEZFgpT2b4BL/jqQiIsHCL59f2rMRERG/056NiIj4ncpGRET8TmUjIiJ+p7JJA2ZWyszGmdlUr7OIiCSHmbUxs7FmNsPMbrrc9ahsLpOZfWBm+81sY7zpzcxsq5ltN7OBAM65nc65bt4kFRH5t2R+fk13znUH7gXaXe42VTaXbzzQLO4EMwsFRgDNgfLA3WZWPu2jiYhc1HiS//k1KPb5y6KyuUzOuWXA4XiTawDbY/dkzgKTgdZpHk5E5CKS8/llPq8BXznnvrvcbapsUlcRYE+cx1FAETPLa2ajgSpm9qQ30URELirBzy+gH9AEaGtmPS935WEpyybxWALTnHPuEHDZvyQRkTSQ2OfXUGBoSleuPZvUFQUUi/O4KLDPoywiIsnh188vlU3qWgtcZWYlzSwT0B6Y6XEmEZGk8Ovnl8rmMpnZJGAVUNbMosysm3MuGugLzAe2AJ855zZ5mVNEJD4vPr80EKeIiPid9mxERMTvVDYiIuJ3KhsREfE7lY2IiPidykZERPxOZSMiIn6nshEREb9T2YiIiN+pbESChJl9aWaDzWy5mf1hZk28ziSSVCobkeBRATjinKsH9AY6epxHJMlUNiJBwMyyApHA27GTwoAjngUSSSaVjUhwuBZY75w7H/v4OmDjReYXCSgqG5HgUAH4Ps7j64AfvYkiknwqG5HgUJF/l00FtGcjQUS3GBAREb/Tno2IiPidykZERPxOZSMiIn6nshEREb9T2YiIiN+pbERExO9UNiIi4ncqGxER8bv/B1sxP6O9OtSXAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAEcCAYAAACYg/MAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8DElEQVR4nO3dd3gU1f7H8fdJI3SkWQDp0iH0mgAKCkgHBUQRBZGmohex/LwXG+JVREVEBRFUUEFUFCleadKkKiCCIKBcQJDeA2nn98cG7hJ2k90lyWySz+t59nkyOzNnv3POmdlvzszOGGstIiIiIhKcQpwOQERERES8U7ImIiIiEsSUrImIiIgEMSVrIiIiIkFMyZqIiIhIEFOyJiIiIhLElKyJiIiIBDElayIiIiJBTMlaEDHGVDLG/GyMOW2MedjpeC4yxkw1xrzoRHnp9dnGmF+NMS2cWj/Az/SrP6SsKydiDibGmD+NMa0CXDdd+7wEh6vpEyLu/Dm+pke/8zlZM8bcZYxZb4w5Y4w5YIyZb4xpdjUfLlcYASy11ua31o7zdSUdgNJmra1mrV3qy7Ke6tOf9dNRQP3hooyKWf1NsgL10+zDGJPLGDPZGLMn+Z/Xn40xbVMsU9gY85Ux5mzycnf5Ms/L56XZdzL7O8GnZM0Y8xjwBvAScC1wIzAB6JRhkfnBGBPmdAzppDTwq9NBpJds1C5OyZD+oHaRYOd0H3X68+UKYcBeoDlQEPgnMNMYU8ZtmbeBOFw5Sm/gHWNMNR/m+c2R/mGtTfWFq2LOAHekskwVYClwAteXS0e3eX8Cw4HNwElgBhCZPO9JYFaKst4ExiX/fQPwBXAY+AN4OEW5TySXewFXY9YBfgZOA58nf9aLbuukVZ7HOJPnlwK+TF73KDA+rTL9qStgMZAInE+u75s8rPsEsD95+7YDtwAfA0lAbPJ6I9zqdlfysluBLn5sa23gp+R1ZwCfpajHtMpO2S6plpdiG9P6bI/1Tdp96U+gVVrbkEp9XlrfWxv6Urfp3B/Sqiv3mD21S6p9Fw993lv9+NJX0+o7bnE+nhznWWAyrgPs/OR1FgLXuC37VHI5x4EpXN6P3bc/rW31qY8CuYBTyW1zJvl1sZ1aeVg+rWOSBSq4TU+9ON+HmL3Vsbf3AyrPjz4b8PHcWx9NMX8gMBfXF+8R4C+gtZcYU9uPvX0fXfH5qWzrfcAct8/bCcx0m94LRPlZr+m5b3g9RvlQD6n2WQ9x9we+A97BtR/uAKoCjwD/TW6rrt7WD/SVHHu35L/z4krGbnKb/zHwcmrzAug77v1jHz58p3g4FvnUH66Iy4cKaQMkkGLHcZsfntxRnwYigJuTg6jkFuRaXDtqYWAbMDB5XmngHFAgeToUOAA0wjXqtwH4V3K55YDdwG1u5W7E9YWSO3mZPckdJBzomtxAFw98vpTnLc5QYBPwenLDRwLN0iozgLpaCvT3sm4lXAeAG5KnywDlU3YEt+XvSN6WEKAHrp37eh+29WI9Ppocb3cgnsu/YNIq21O7eC3PrdxUl02tvkmlL3mqIx+2IWV9/gm08qENvdZtOvcHX9rp0nZ4aJe09gePfd5b/fjRV73Wu1vZq3F9CZUADuFKomrjSpQWAyPdlt2SvE2FgZWett+HbfW5jyYvfx/wH7fpHUBMKm3k8ZiUvIzHZM2HmD3WcSrvB1SeP32Wqziee+qjHj57AnAM1/4eAowEFqbSD//E837s7dh32eensa3lcCVCIcD1ye28P7mccriSlhBf6zU9943U4k6rHvChz3qIexyuf+ZuSW7zL1KU8Qjwk4f1vk2uQ0+vb719XvK61+L6B6ly8nRtIDbFMsOBOanNC6DvuPePy5ZJrf3437HI5/5wRUxpLuAaMjyYyvxo4CAQ4vbep8CzbkHe7TbvFeBdt+kVQJ/kv1sDu5L/bgj8N8VnPQVMcSv3frd5MbiyVZOi7Bf9KM9jnEBjXP8NpvxPL9UyA6irpXj/cq6Aa+dsBYSn1bE8rL8R6OTDtsbg+o/VvR5XkfrOmrLslO3iU3lpLetDG3rsS77UkYdt8JasXVV/T8f+kGa9cmWy5t4uadWlxz7vY1167aup1btb2b3dpr8A3nGbfgiY7bbsQLd57Ty1uQ/b6lefB8YCryX/nRfXyFphL23k9ZiUPO0tWUsrZo91nMr7AZUXQJ8N6HjuqY96+OwVuI3k4vpyDCRZ83bsu+zzfdjWvbhGoXoCE3ElP5VxJfPf+LsvpNe+kVbcqdUDPvRZD3H+AAx3m34Bt2QLVxK32Z9tT6NewnGNIr6Xsq1SLPcArmOo13kB9J37U1vGW/vxv2NRwP3Bl2vWjgJFUzlHewOw11qb5PbeHlyZ/0UH3f4+B+Rzm/4E6JX8913J0+D6L+0GY8yJiy9c/ylc67bu3hRx7LfJNeNhvi/leYuzFLDHWpvA5Xwp050vdeWRtXYnMAx4FjhkjPnMGHODt+WNMX2MMRvd4qoOFHVbxNu2eqrHPX6WnVa7XFaeH8umVd/e+tIVfNgGb662v/tbVmpx+FqvF/mzP3jr81cwxvRO/uHRGWPM/NT6qo/1/rfb37Eept3r032b9uCql5TS2lZ/67IG8Ivb3westcc8LJfWMSk1qcbsrY5TqfuAyvOyTan12as5nqdVPzVwjZRcVB3X6SZ/pbZ/pjx2pbatPwAtcCU4P+BKDJonv34A/47b6bhv+Hpc8VQPgfTZmrhGyS6q6mH6tzTK8IkxJgTXaco4YKjbrDNAgRSLF8A1opjaPH95rQtf2s/f73F3viRrP+IabuzsZf5fQKnkSrzoRlzZuS8+B1oYY0oCXfjfzr0X+MNaW8jtld9a285tXfcOdQAoYYwxbu+Vcvvbl/K82Qvc6CFh9bfMq6ora+0n1tpmuA58Fvj3xVnuyxljSgOTcHXmItbaQrhOF7nXjTee6vFGP8tOq11uxLO0lk2rvr31pcv4sA3W03rJrra/p1dZ/tTrRSkPwKnVpbc+n7IcrLXTrbX5kl9tk9+7oq9eZb/0xn0fvxFXnaaU1rb6W5fuyVott79TSuuYBK4vyTxu09f5GLPX44GX9wMuL4W0+uzVHM/By75njCmL6xqy7W5v18Y1euFNavuxL+ukta0Xk7Xo5L9/IEWyBr7VazrvG+l9XEnZZy9JjjsC16UAF0VxebvUxEM7GdcdJc54ec33sLzhf9fpdbPWxrvN3gGEGWMqur1XC9f1eqnN88Zb3/HWP31uPx/3syukmaxZa0/ius7gbWNMZ2NMHmNMuDGmrTHmFWANrnOzI5LfbwF0wHWBbpqstYdx/UcyBdfOvC151lrglDHmCWNMbmNMqDGmujGmvpeifsR1OmKoMSbMGNMJaOA239/y3K3F1YlfNsbkNcZEGmOaBlBmwHVlXPfcutkYkwtX8hybvL3g+u+qnNvieXF1gsPJ696HK8v3xY+4rlF8OLkeu3J5Pfpbdlrl+bNsqvWdSl9KKa1tSFmf7q6qv6djWf7Uqydp9V1vfR5Sr5/U+urV9EtvhhhjShpjCuMaqZkRwLb6XJfGmKJAMf43olOZy7+o3KV1TALXl9hdyTG1wfVFn2bM3uo4lboPqDwP25Rqn03H43lKNYFfUowW1cZ1XaU3qfZTH6S1f/4AtMR1fd0+YDmua7yL4LpA3596Tc9942qPK2n1WXe1cGsXY0wBXEnI5hTLXNFO1tq2bv/kpXy1Tbk8rh8wVAE6WGtjU5R1FtePoZ5PPl41xXW3io9Tm5fKdvnbd3xqPz/6wxV8unWHtXYs8BjwTHIwe3FlkLOttXFAR6Atrl99TMB1zYI/w56f4DqHe2kkxFqbiKuDReH65dAR4H1cv071FGMcrosh++G6QPFuXEOxFwIpL0XZF9etgOvXLfuAHgHGGGhd5cL1y5YjuIavi+P6cgIYDTxjXMOvw621W4HXcO14f+MaCVjpw2e412NfXBfJ9sDV0S/O96vstMrz87N9qe8r+pKHz0lrGy6rTw8xXm1/v+qy/KlXL+unWpfe+nzy6l7rJ5nHvno1/TIVnwD/wXWx+m5c13v5u63+1GVNXNdhXfyy2A/caYxp6OFzUz0mJXskObYTuK4Pnu1LzHg/Hnir+0DL87RNafXZqz6ee3DZ6IwxpgiuUcgtqayTVj9NVVrbaq3dgesU2/Lk6VO4+uDK5O0F3+s13faNdDqupNZn3dXiylG0ndbac3DptGV1Uh8BTZNxjVw9iKv/HDT/G4Hr7bbYYFwX/h/CdY3eIGvtrz7M88SvvuNH+/nUHzwx9rJT09mLMWYNrotHpzgdi4ikL2PMn7h+gLHQ6Vh8pWOSZDXqs8EhWz1uyhjT3BhzXfLw7b24svwFTsclIjmTjkmS1ajPBqfsdpfmSsBMXL9q2QV0t9YecDYkEcnBdEySrEZ9Nghl69OgIiIiIlldtjoNKiIiIpLdKFkTERERCWLZ7Zo1ySRFixa1ZcqUcToMEZEsZcOGDUestcWcjkOyFiVr4hdjTAegQ4UKFVi/fr3T4YiIZCnGmLQeCydyBZ0GFb9Ya+dYawcULOjrvSxFRETkaihZExEREQliStZEREREgpiuWRORHCE+Pp59+/Zx/vx5p0ORHCAyMpKSJUsSHh7udCiSDShZE5EcYd++feTPn58yZcpgjHE6HMnGrLUcPXqUffv2UbZsWafDkWxAp0FFJEc4f/48RYoUUaImGc4YQ5EiRTSKK+lGyZpkrrhzsPlz0GPOxAFK1CSzqK9JelKyJpnr52nwZX/4uDMc/9PpaEQc9eyzzzJmzBiv82fPns3WrVszMSIRCUZK1iRz1e8Pt78G+9bDhMaw+l1ISnQ6KpGgpGRNREDJmmS2kBBXwjZ4NZRuCguegA/awOHtTkcmkilGjRpFpUqVaNWqFdu3u/r9pEmTqF+/PrVq1aJbt26cO3eOVatW8c033/D4448TFRXFrl27PC4nItmfsbp2SPzg9ripB37//ferK8xa2DzTlbDFnYXmI6DpMAjVT90l/W3bto0qVaoA8NycX9n616l0Lb/qDQUY2aFaqsts2LCBvn37smbNGhISEqhTpw4DBw7kvvvuo0iRIgA888wzXHvttTz00EP07duX9u3b0717dwCOHj3qcTkJTu597iJjzAZrbT2HQpIsSiNr4pd0fdyUMVCrBwxZB5Xbw+IXYWIL+Ovnqy9bJAgtX76cLl26kCdPHgoUKEDHjh0B2LJlC9HR0dSoUYPp06fz66+/elzf1+VEJHvRfdbEefmKwR1ToEZ3+PYxmHQLNBkKLZ6C8NxORyfZUFojYBnJ068E+/bty+zZs6lVqxZTp05l6dKlHtf1dTkRyV40sibBo/LtMGQN1O4NK9+Ed5rCnyudjkok3cTExPDVV18RGxvL6dOnmTNnDgCnT5/m+uuvJz4+nunTp19aPn/+/Jw+ffrStLflRCR7U7ImwSV3Iej4FvT5GpISYGo712jb+fS9vkjECXXq1KFHjx5ERUXRrVs3oqOjAXjhhRdo2LAhrVu3pnLlypeW79mzJ6+++iq1a9dm165dXpcTkexNPzCQgNSrV8+uX78+Yz8k7iwsHgWrJ0CBEtD+dbjp1oz9TMm2PF3sLZKR9AMDSS8aWZPgFZEX2rwE/b6HXPngkzvgywFw9qjTkYmIiGQaJWsS/ErVhweXQfMnYMsX8HYD2PKlHlklIiI5gpI1yRrCckHLp11JW6FSMOs++Kw3nDrgdGQiIiIZSsmaZC3XVoN+C+HWF2HXIni7IWz4UKNsIiKSbSlZk6wnNAyaPASDVsF1NWDOw/wx9hZOHbjKJyqIiIgEISVrknUVKQ/3zmFemScpemor4e81YcNnL5KYkOB0ZCIiIulGyZr4xRjTwRgz8eTJk06H4hISQru+T7H/rqVszRVF3d9e5ffRTfjlp9VORyYiIpIulKyJX9L12aDpqHKlytR54js21BvDtYkHqPR1O+a+NYy/jgZJUikiIhIgJWuSbZiQEOq2f4DIR9azq1grbj86hTPjmvLZV7M5H5/odHgiAIwbN44qVarQu3dvmjRpAsCJEyeYMGHCpWVSTvvq2WefZcyYMekWa3o4dOgQderU4amnnqJr164kJSU5HZJIlqNkTbKd3NdcS5WhMznS4UOKhcdyx8a+fPnyfSz4eTd6Yoc4bcKECcybN4/p06ezatUqIP2StWC0bt06evXqxejRoylevDhHj+qm1iL+UrIm2VbRup25ZvhPHL6pJ3clfk3lr9rwwvj32HZAzxkVZwwcOJDdu3fTsWNHXn/9dfLlywfAk08+ya5du4iKiuLxxx+/Yhpg2rRpNGjQgKioKB588EESE12jxaNGjaJSpUq0atWK7du3e/zcTZs2ERMTQ9WqVQkJCcEYw8iRIwPahlmzZtGoUSNq1apFs2bNOHz4MABdunThmWeeITo6muuuu46FCxcCrmStVq1aAJw8eZJixYoF9LkiOZq1Vi+9/H7VrVvXZiUJO5faU/+uZu3IAnb6M53t87NW2aNnLjgdlmSirVu3Oh2Ctdba0qVL28OHD1trrc2bN6+11to//vjDVqtW7dIyKae3bt1q27dvb+Pi4qy11g4aNMh++OGHdv369bZ69er27Nmz9uTJk7Z8+fL21VdfvezzYmNjbaVKleyaNWustdY+88wzdvjw4TYpKemy5Zo1a2Zr1ap1xev777+/bLkjR45c+vvZZ5+148ePt9ZaW6FChUuf/cUXX9i+fftaa63t2bOnHTp0qB04cKBduHBhgLWWNXnqc8B6GwTHcL2y1ivM6WRRJDOElm9O/mFrOf/9i/Rc9w5/b97IyF8GULd1T+5uVJqwUA0yS/BatGgRGzZsoH79+gDExsZSvHhxjh07RpcuXciTJw8AHTt2vGLdhQsXUqdOHRo0aABAzZo1WbBgAcaYy5Zbvny5T7FMnTqVGTNmcOHCBQ4ePMhLL73EuXPnOHnyJI8++igACQkJFCpUCICwsDDeeuutgLZbRFyUrEnOEZGHyNtfgqhuFP5iMG8de5mvFyyj1+pBPNKxCc0qFnU6QhGPrLXce++9jB49+rL333jjjSuSrpS2bNlCjRo1Lk3/9NNP1KlT54rloqOjOX369BXvjxkzhlatWgHw0UcfsXbtWhYvXky+fPmIiYmhWrVq/Prrr9StW5fQ0FAANm/eTPXq1QH4+OOP/dtYEbmChhMk5ylRl1yDl2NbPEWHsHVMOj2EmVNeZ8CH6/jv0XNORyc5UP78+S9LlFJO33LLLcyaNYtDhw4BcOzYMfbs2UNMTAxfffUVsbGxnD59mjlz5lxRdpEiRdi8eTMAO3bs4Msvv6Rnz55XLLd8+XI2btx4xetiogbwyy+/0KRJE/Lly8cXX3zBqlWrqFGjBlu2bCEqKurScps3b6ZmzZpXXS8i4qJkTXKmsAhMiycJGbScAjdUZFzEeHrtHkHv17/k1e9+4+wFPQVBMk+RIkVo2rQp1atX5/HHH79iumrVqrz44ovceuut1KxZk9atW3PgwAHq1KlDjx49iIqKolu3bkRHR19Rdq9evThz5gzVq1dnwIABfPrppxQpUiSgOO+9917GjRtHdHQ0O3bsoFy5cuTNm5dffvnlsmRty5Ytl0bWROTqGWt1KwPxX7169ez69eudDiN9JCXCmnexi17gQpLh+Qu9WJynDU+0q0rnqBJpnmaSrGHbtm1UqVLF6TAkB/HU54wxG6y19RwKSbIojayJhIRC4yGYwT8SWboeL4VPZiLP88bM7+j2zio27zvhdIQiIpKDKVkTuahwWejzDXQYR42QPSzK/RQxRz6j69vLePzzTRw6fd7pCEVEJAfSr0FF3BkDde/FVGxN2Nx/MGz7R9xZeD0PbLyXm7cc5OFbKtC3SVkiwvR/TpY2/0k4+Ev6lnldDWj7cvqWKSKCRtZEPCtwA/T8BLpP4QZ7iG9z/R+jCs1hzLxfuO2NZSz+7W+nIxQRkRxCI2si3hgD1btCuRaYBU/SafPHtCr+IyPiB3D/1LO0qFSMf7avSvli+ZyOVPylETARyUI0siaSljyFoetEuOtz8hLL+NgnmFNxLlv/PMBtry/jvR92oV9Vi4hIRlGyJn4xxnQwxkw8efKk06FkvptuhcGrMfXup8be6fxY6BmGltnP6Pm/MXj6T5zRvdnEB7GxsTRv3vzSg9jTy/3330/x4sVTvb/ZiRMn6N69O5UrV6ZKlSr8+OOPqc47f/48DRo0oFatWlSrVi3gh79nhgULFlCpUiUqVKjAyy97HzktU6YMNWrUICoqinr16vm8fmJiIrVr16Z9+/YAxMXFERMTQ0KC9nvJeErWxC/W2jnW2gEFCxZ0OhRnRBaA9mOh7zxCQ8MZ9tdwFpT9nB+37qbT+BXsPHTl43pE3H3wwQd07dr10qOZ0kvfvn1ZsGBBqss88sgjtGnTht9++41NmzZddg8wT/Ny5crF4sWL2bRpExs3bmTBggWsXr06XeNOD4mJiQwZMoT58+ezdetWPv30U7Zu3ep1+SVLlrBx40Yu3ivSl/XffPPNy+orIiKCW265hRkzZmTMRom4UbImEogyTWHQSmj6CJUPfs3agk8TdXYlncavZN4vB5yOToLY9OnT6dSpEwCzZs2iUaNG1KpVi2bNmnH48OGAy42JiaFw4cJe5586dYply5bRr18/wJVsXHzYurd5xhjy5XNdkxkfH098fHyaN4nu2bMnPXr0oGHDhpQuXZq5c+cGvE2+Wrt2LRUqVKBcuXJERETQs2dPvv7663Rbf9++fcydO5f+/ftftl7nzp2ZPn16um2HiDdK1kQCFZ4bWj8P/RcRUaA4ryW9wnu5x/Ov6UsYPW8bCYlJTkcoQSYuLo7du3dTpkwZAFq2bMnq1avZtGkTrVu3ZubMmZctHx0dTVRU1BWvhQsX+v3Zu3fvplixYtx3333Url2b/v37c/bs2TTnJSYmEhUVRfHixWndujUNGzZM9XM2bdpEuXLlWLNmDdOnT+e5557LsG26aP/+/ZQqVerSdMmSJdm/f7/HZY0x3HrrrdStW5eJEyf6tP6wYcN45ZVXCAm5/CuzevXqrFu3LuC4RXylX4OKXK0SdWDAUljxBk2XvcKyvJt4esXd3LO3I2/1rkPRfLmcjlCCxJEjRy6NZgFMnTqVGTNmcOHCBQ4ePMhLL7102fLLly9Pt89OSEjgp59+4q233qJhw4Y88sgjvPzyy7zwwgupzgsNDWXjxo2cOHGCLl26pPrcz9jYWI4cOXLp2raqVaty/Pjxq9qmVq1acfDgwSveHzVq1KURSk8/8PE2Arhy5UpuuOEGDh06ROvWralcuXKq63/77bcUL16cunXrsnTp0suWCQ0NJSIigtOnT5M/f36/tkvEH0rWRNJDaDg0fxxTpQN5vnmIN/ZN4If9q+g/bhAj776N2jde43SEEgRy587N+fOuJ2F89NFHrF27lsWLF5MvXz5iYmKoVq3aZctHR0dz+vSV10GOGTOGVq1a+fXZJUuWpGTJkpdGxrp3737pQvrU5l1UqFAhWrRowYIFC7wma1u2bKFixYpERkYC8NNPP1GrVq2r2iZfRtxKlizJ3r17L03v27ePG264weOyF98vXrw4Xbp0Ye3atTRt2tTr+itXruSbb75h3rx5nD9/nlOnTnH33Xczbdo0AC5cuHBpe0UyjLVWL738ftWtW9eKF4kJ1v74jk184Vp7dmRx+69nhtmPV+22SUlJTkeWo23dutXpEKy11pYsWdLGxsba4cOH2zfeeMNaa+2sWbNsaGioPXPmzFWV/ccff9hq1ap5nd+sWTP722+/WWutHTlypB0+fHiq8w4dOmSPHz9urbX23LlztlmzZnbOnDnWWmtvvvlmu2/fvsvKnzRpki1RooSNjY21Z86csU2aNLErVqy4qm3yRXx8vC1btqzdvXu3vXDhgq1Zs6bdsmXLFcudOXPGnjp16tLfjRs3tvPnz/d5/SVLltjbb7/90vSRI0ds5cqVvcblqc8B620QHMP1ylovXbMmkt5CQqHRQEKGrCa8dEOeC/2AivN78vK0uZyPT9/bNUjWc+utt7JixQruvfdexo0bR3R0NDt27KBcuXLkzZs34HJ79epF48aN2b59OyVLlmTy5MkAtGvXjr/++guAt956i969e1OzZk02btzI008/fWl9T/MOHDhAy5YtqVmzJvXr16d169a0b9+epKQkdu7cecUPGjZt2kTv3r1p0aIF9evXZ9CgQTRt2jTgbfJVWFgY48eP57bbbqNKlSrceeedl41SXqyDv//+m2bNmlGrVi0aNGjA7bffTps2bdJc35slS5bQrl27jNw0EQCMtbqZp/ivXr169uLP3iUV1pL08zTi5j4FCef5JE9vWvd7gVJFCzgdWY6zbdu2y2694JSff/6ZsWPH8vHHHzsdSsC2bNnCBx98wNixYy97PyYmhkmTJlGpUiWHIstcXbt2ZfTo0V6311OfM8ZssNbW87iCiBcaWRPJSMYQUuceIoet51SpFtwfO5XT42NYt/oHpyMTh9SuXZuWLVum+01xM1P16tWvSNQAdu3aRcWKFR2IKPPFxcXRuXPnHJOYirOUrIlkhvzXUbzf5xxuO5HrzXGi5ndh7eRHSYqLdToyccD999+f7jfFDQb79++/4vYW2VVERAR9+vRxOgzJIXLGXiUSDIyhWMMeRD6yno2FWtFg7wccfLUBZ35f6XRkIiISxJSsiWSy3IWKUW/YDBbWmYCNO0ee6bdzbNajcOGM06GJiEgQUrIm4gBjDK069ubQPUuYFdKGwls+4OybDWDXYqdDy9b0gyrJLOprkp6UrIk4qHaFG2nx6FT+WWQMB88kwcddSPxqMMQeT3tl8UtkZCRHjx7Vl6hkOGstR48e1c1yJd3o1h0SEN26I33FJyYxZu4mCqwdy8CwbyFvUUJvfw2qdnQ6tGwjPj6effv2XXqCgEhGioyMpGTJkoSHh1/2vm7dIYFQsiYBUbKWMeZs+oupX8zmpZCJVOIPqNIR2o2B/Nc6HZqIpAMlaxIInQYVCSIdat3A6CH3MDTvGF5N6EHC9gXYtxvAxk9A/1iJiORIStZEgsxN1+bni4ea8/tNA7gtdhS7KQmzB8G0bnDiv06HJyIimUzJmkgQKhAZznv31KX7bbdw68knGR85gKQ9P8LbjWDNREhKcjpEERHJJErWRIKUMYZBLcrz4f2NmRzXmtviX+VI4dow/3GY0haO/O50iCIikgmUrIkEuWYVi/Ltw9HkLlaGensGMbf8v7CHf4N3msLy1yAx3ukQRUQkAylZE8kCShTKzcwHG9OrwY0M+bUyQ695l7jyt8Ki52FSSziwyekQRUQkgyhZE78YYzoYYyaePHnS6VBynMjwUEZ3rcm/u9Xg+73Q9I++LKs9Fnv6b5jYEhY+C/G6h5iISHaj+6xJQHSfNWdt2X+Skd/8yoY9x6lZxPJ20S8otedLKFIBOo6H0o2dDlFEPNB91iQQGlkTyYKqlyjIrIGNmdSnHrGh+Yne3p1/FXjRdXf+KW1g7nC4cNrpMEVEJB0oWRPJoowxtK56LQuGxfBK95p8f6EqdY4+z3f5OmPXvQ8TGsPOhU6HKSIiV0nJmkgWFxpiuLNeKZYMb8GwdlGMONubbhdGcjDWuG6k+9VAOHfM6TBFRCRAStZEsonI8FAGxJRn2YiWNGrelltjX2RCYmcSN80kaXx9+HW20yGKiEgAlKyJZDMFc4czok1lvn/8NvbWHk6n+BfZdjY/fH4vCZ/2htMHnQ5RRET8oF+DSkD0a9CsY9fhM7z+3VZKbPuAR8O/wITlIqTNS4TXvQeMcTo8kRxFvwaVQGhkTSSbK18sH+PvbkDbgS/zVPF32BhXgvBvH+LQhLYkHf3D6fBERCQNStZEcoioUoUYO6gb53t/w/g8g8lz6Gfi3mrI79+8ik1McDo8ERHxQqdBJSA6DZq1JSVZFq5eT/6FI2ic9BM7wquQ2PEtqtSo73RoItmaToNKIDSyJpIDhYQYbm1Sn7pPLWRZ9VEUj99LuVlt+Hrco+w6eNzp8ERExI2SNZEcLCI8lJjuQwl/eD1/FmtJp2MfEDchhremfc7Bk3rOqIhIMFCyJiLkLXw9lYbO4lTnDymZ6xyDfh/AnNf689q8jZyMjXc6PBGRHE3JmohcUiCqM/kf28D5aj15IGQOXVf3YNi/32bisl2cj090OjwRkRxJyZqIXC53IfLd+Q70+ZoSBcOZwkhy/2cEt786j5nr9pKQmOR0hCIiOYqSNRHxrFwLIh5aA42GcHfYIj5LeJR5X31ImzeXs3LnEaejExHJMZSsiYh3EXmhzUuYft9TtEgRpka8yoizrzH0/e95+qtfOH1e17OJiGQ0JWsikrZS9TEPLoPmT9LarmRFvqc4tX4GbV5fxvLfDzsdnYhItqZkTUR8E5YLWj6FeXAZeYuXYXz4W7yS+DL/mPwdT325WaNsIiIZRMmaiPjn2mrQbyHc+iJN2MyyvE9gN3zEbWN/4IcdGmUTEUlvStZExH+hYdDkIcygVUSWjOLl8EmMT3yOf06ZwxOzNnNKo2wiIulGyZqIBK5Iebh3DrR/g9phf7Ao95MU2PgubccuYcn2Q05HJyKSLShZE5GrExIC9e7DDF5DeIWW/F/YdN5P+D9GT/2Sxz/fpCcgiIhcJSVrIpI+CpaAXp9Bt8lUjjzK/Mj/o8SmN2k3diGLf/vb6ehERLIsJWsikn6MgRrdMUPWElq9C8PCvmBa4hO8+eFn/GPmJk6e0yibiIi/lKyJSPrLWxS6vQ+9PqNM3ji+yvUsVX75N+3H/oeFWzXKJiLiDyVrIpJxKrXFDFlDSN176R86lxlJjzF52oc8NmMjJ87FOR2diEiWoGRNRDJWZEHo8Abc+y3XF8zNpxGjqL/leTqPnc/3GmUTEUmTkjURyRxlozGDVkGTh+gZtoRZicP4bNp7DPvsZ46f1SibiIg3StZEJPNE5IFbX8T0X0jhYtcxOeI1bvn1Ke4YO4fvfj3odHQiIkFJyZqIZL4SdQkZ8AO0eJr24ev5ImkYc6eP4+FPfuKYRtlERC6jZE1EnBEWAS2ewAxcTv4bbmJcxNt0+e0x7h77JfN/OeB0dCIiQUPJmog4q3gVQvr9B24bTfOI35iVNIzln73K0OnrOXrmgtPRiYg4TsmaiDgvJBQaDyZk8I9ElmnAS+GTuWf7UPqNncHczRplE5GcTcmaiASPwmUJ6fM1dHyLepH7mZH0DzbNeI6h09ZyRKNsIpJDKVkTAIwx5Ywxk40xs5yORXI4Y6BOH0KHriX8plY8Hf4pD+54kCFjP+LbzX85HZ2ISKZTspYNGGM+MMYcMsZsSfF+G2PMdmPMTmPMk6mVYa3dba3tl7GRivihwPWE9PoEuk+hSp6TTE96gl0zn+aZWes5H5/odHQiIplGyVr2MBVo4/6GMSYUeBtoC1QFehljqhpjahhjvk3xKp75IYv4wBio3pWwh9cTUqM7j4R9RZ/NfXjyzcnsPnzG6ehERDKFkrVswFq7DDiW4u0GwM7kEbM44DOgk7X2F2tt+xSvQ758jjFmgDFmvTFm/eHDh9N5K0RSkacwId0mQu9Z3JgvibFnRrBi/APM3bDT6chERDKckrXsqwSw1216X/J7Hhljihhj3gVqG2Oe8rSMtXaitbaetbZesWLF0jdaEV9UbE3kw2uJrXUvfcw8anzdhskfTdFpURHJ1pSsZV/Gw3vW28LW2qPW2oHW2vLW2tEZGJfI1YksQN4ub5LQ51vy5Ymk3+5hLH21J3v268cHIpI9KVkLEsaYkelc5D6glNt0SUDfZpJthJWLpvA/1rGnygO0iltI7olNWLfgI6fDEhFJd0rWgsdIY8y/jTGTjDGDjDHXXGV564CKxpiyxpgIoCfwzdWHKRJEwnNTuscYjvWaz9nwa6i/+iG2vNGF88d1I10RyT6UrAUPC5wHvsM1IrbKGFPLlxWNMZ8CPwKVjDH7jDH9rLUJwNDk8rYBM621v2ZM6CLOKl6pESVHrGZpyYFUPL6MuHH1ObLyQ7Bez/yLiGQZxupgFhSMMb9aa6u5Td8EvGutvdnBsK5gjOkAdKhQocIDv//+u9PhiFxh1eqV5FkwjCh2cOjaGIr3mgCFSqW9okgmMMZssNbWczoOyVo0shY8jhhj6l6csNbuAILuJ5fW2jnW2gEFCxZ0OhQRj5o0akrRhxYzMd9A8h5cw4VxDYhfPRGSkpwOTUQkIErWgsfDwDRjzDRjzBPGmOnAH04HJZIVlSySn77DRjO55qesiS9P+ILHOf9+Gzii+7KJSNajZC1IWGs3AVHAp8lvLQF6ORaQSBYXERbCw91uIbbH5zzDYOL+2kLihMaw4nVITHA6PBERn+maNQlIvXr17Pr1650OQ8Qne4+d45lpC+l5eBxtQ9eRdF0tQjqNh+trOh2a5DC6Zk0CoZE1Ecn2ShXOw8TBt7Om/psMjBvGyb//i53YAhY9D/HnnQ5PRCRVStZEJEfIFRbKsx2r0anXQNonvcY3thksfw3ei4b/rnE6PBERr5SsiV+MMR2MMRNPnjzpdCgiAWlb43o+ebgNk4o8Tp+4Jzh56hT2g9tg3gi4cMbp8ERErqBkTfyiW3dIdlC6SF6+GNSEMg070uTUKOblbo9dOxEmNIadi5wOT0TkMkrWRCRHyhUWyvOdqvPvu5rwxLl7uI/nOJsUCtO6wuzBcO6Y0yGKiABK1kQkh2tf8wbmPNSMQ9fUoc7hkay8/l7sps9gQiPYqsfpiojzlKyJSI5XtmhevhzchDsaVaD3H7cx/Jo3ictdHGbeAzPugdN/Ox2iiORgStZERIDI8FBe7FyDcb1qs+BIMZoeeZpdtYbDju/g7Qaw8RM9GF5EHKFkTUTETcdartOiRQrm45Y1dZhU/WNsscowe5Drerbje5wOUURyGCVr4hfdukNygnLF8jF7SFN6NbiRUWsS6BH3T060fAn2rnX9YnTNe3owvIhkGj1uSgKix01JTjH75/08/dUvhBjDCy0K0HnfGMyuhVCqEXR8C4rd5HSIkoXocVMSCI2siYikonPtEix4JIaaJQvy6HfH6HH2Hxxq9SYc2Q7vNoVlYyAx3ukwRSQbU7ImIpKGG4vkYXr/hrzSrSbbDp6m2YJrmVJ7Bkk3tYPFL8CklnBgk9Nhikg2pWRNRMQHxhjurF+KRY815+ZKxXlu8RE6/N2fPa0mwplDMLElLHxWD4YXkXSnZE1ExA/FC0Ty7j11ead3Hf4+dYGb5+XnjcrTSKjZE1a87jo1uudHp8MUkWxEyZqISADa1rieRY81p1udEryx4jCtd93JtlYfQWIcTGkDc4fDhdNOhyki2YCSNRGRABXME84r3WsxrV9DEpKSaPttGM+VfJ+4eg/Cuvddt/n4faHTYYpIFqdkTUTkKjWrWJTvhsXQv1lZPtxwhJjNt7Hu5s8gPA9M7wZfDdSD4UUkYErWxC+6Ka6IZ3kiwnimfVW+HNyUgrnDuWNeIo9e8xbnGj0Gv3zuemTVr7P1yCoR8ZtuiisB0U1xRbyLS0jinaW7GL/kd/LlCmNMTAg3b38Bc2AjVG4Pt78G+a9zOkxxgG6KK4HQyJqISDqLCAvhkVYVmftwNGWK5qXfggv0C3+ZE83+CTsXukbZfp6mUTYR8YmSNRGRDHLTtfmZNbAJIztUZfWfJ2myrDpfNpyJLV4Nvh4CH3eG4386HaaIBDklayIiGSg0xHBf07J8NyyGuqWv4bFFZ7jj/P9xKGY07Nvg+sXo6ncgKdHpUEUkSClZExHJBKUK5+Gj+xvw2h21+P3wOZotKsuUqE9JKt0UFjwJH7SBQ785HaaIBCElayIimcQYQ7e6JVn4WHNaV7uW55adot3hh/hvizfg6E54Lxp+eFUPhheRyyhZExHJZMXy5+Ltu+owqU89jsfG0+K74rxe6WMSKrWHJS/CxBbw189OhykiQULJmoiIQ1pXvZbvH2tOj/o38ubqk9z8Zx+2NX8Pzh2FSTfD9/+C+FinwxQRhylZExFxUIHIcEZ3rcGnDzQixEDb7/IzstQHxNXsDSvfhHeawp8rnQ5TRBykZE1EJAg0Ll+EBcNieLB5OaZtPEGzrZ1ZGzMVbCJMbQffPgbnTzkdpog4QMma+EWPmxLJOJHhoTzVtgqzBzelSL5c3PmfCB4qNIHjtQbAhikwoRHs+I/TYYpIJtPjpiQgetyUSMaKT0xi4rLdjF+8k/MJiQwsf5xHzr5J5PEdUONOaPMy5C3idJjiJz1uSgKhZE0ComRNJHMcPXOBKSv/5MNVf3L+wnlevfZ7Op7+jJDIgtDuFajWFYxxOkzxkZI1CYSSNQmIkjWRzHUyNp6Pf/yTySv+oHjsLt7O9wEV4ndgK7XF3P46FLje6RDFB0rWJBBK1iQgStZEnHH2QgKfrv0v7//wO7fHfs2I8FmEhEcQ1mYUpk4fjbIFOSVrEgj9wEBEJAvJmyuM/tHlWPpEK8p2eIJ7Il5n3flSmDkPc2RCGxKP7HY6RBFJZ0rWRESyoMjwUO5uVJrpT/Tir04zeS3XECIObSJ+fEM2z3yR+Hg9skoku9BpUAmIToOKBJfEJMuSdRvJ9/0IGiWsZaupyO6mL9O6RUtyhYU6HZ4k02lQCYSSNQmIkjWR4GSTktjynyncuOZZciedZWpYd8Ji/kHPxuXJExHmdHg5npI1CYROg4qIZCMmJIQabfpRYPjPnCjbngGJM2iyqBsDXp7E20t2cuq8To+KZDVK1kREsiGTtyjF+34Ed82kXL4EPkp6mvBF/+KWl+fz2n+2c+xsnNMhioiPlKyJiGRnN91GxMNrCanXlwFhc5kXNoL1S7+m2b8XM2ruVg6dOu90hCKSBl2zJn4xxnQAOlSoUOGB33//3elwRMQff66Abx6CY7tZVagDg/7uRGxoPnrUK8WDzctR8po8TkeY7emaNQmEkjUJiH5gIJJFxZ2DpaPhx/Ek5CnO9KLDeHFnaayFLrVLMKhFecoVy+d0lNmWkjUJhJI1CYiSNZEsbv9P8PVQOPQr5yp1YXxEfyb/fJr4xCTa1bieIS0rUOX6Ak5Hme0oWZNA6Jo1EZGcqEQdGLAUWj5Dnp1zGbHzHtZ1PM6A6HIs+e0Qbd9czsivtzgdpYigZE1EJOcKi4Dmj8ODy6FIeQrMG8STJ55l1ZDKDGtVkdo3XuN0hCKCkjURESleGe7/Dtq8DH8so+DkZgwrtILOta53OjIRQcmaiIgAhIRCo0EwaJXrFOm3j8KHHeDoLqcjE8nxlKyJiMj/FC4Lfb6GjuPh4C/wThNYOQ4SE5yOTCTHUrImIiKXMwbq3AND1kCFVvD9P2FyKzioHxyIOEHJmoiIeFbgeugxDe6YCif3wcTmsHgUJFxwOjKRHEXJmoiIeGcMVOsCQ9ZCjTtg2SvwXgzsXed0ZCI5hpI1ERFJW57C0OVd6D0LLpyBya1hwVMQd9bpyESyPSVrIiLiu4qtYchqqN8fVk+ACY1h91KnoxLJ1pSsiYiIf3Llh9vHwH3zITQcPurkenRV7AmnIxPJlpSsiYhIYEo3gYErodmjsPETeLshbPvW6ahEsh0layIiErjwSGj1LDywGPIVgxm9Yea9cOaQ05GJZBtK1kRE5OrdEAUPLIGb/wnb58HbDWDTZ2Ct05GJZHlK1sQvxpgOxpiJJ0+edDoUEQk2oeEQM9x1arToTfDVgzD9Djix1+nIRLI0JWviF2vtHGvtgIIFCzodiogEq2I3wX0LoO0rsGcVTGgEaydBUpLTkYlkSUrWREQk/YWEQMMHYfCPULI+zBsOU2+HIzudjkwky1GyJiIiGeea0nDPV9BpAhz61fVg+BWv68HwIn5QsiYiIhnLGKjdG4asg5tug4XPwvs3w4HNTkcmkiUoWRMRkcyR/1ro8THc+RGcOgATW8Ci5yH+vNORiQQ1JWsiIpK5qnaCIWugVk9Y/hq8Fw3/XeN0VCJBS8maiIhkvjyFofMEuPtL18jaB7fBvBGuh8SLyGWUrImIiHMq3OL6xWiDAbB2ouvB8DsXOR2VSFBRsiYiIs7KlQ/avQL3L4CwXDCtK8weDOeOOR2ZSFBQsiYiIsHhxkYwcAVE/8P1qKq3G8LWr52OSsRxStZERCR4hEfCLf+CAUsh/3Uwsw/MuAdO/+10ZCKOUbImIiLB5/qa8MBiaPUs7PjO9WD4n6frwfCSIylZExGR4BQaDs0ehUEroXgV+Hqw63q243ucjkwkUylZExGR4Fa0IvSdB+3GwN61rl+MrnlPD4aXHEPJmoiIBL+QEGjwgOs2H6Ubw/wRMKUNHN7udGQiGU7JmoiIZB2FboTes6DLe3BkB7zbDJaNgcR4pyMTyTBK1kREJGsxxvWoqiFrofLtsPgFmNQS/trodGQiGULJmoiIZE35isMdU6HHdDhzCCbdDAufhfhYpyMTSVdK1kREJGur0t71YPiou2DF665To3tWOR2VSLpRsiYiIllf7mug03i4ZzYkxsGUtjD3H3DhtNORiVw1JWsiIpJ9lG8Jg1dDo8GwbjK83Qh+/97pqESuipI1ERHJXiLyQpvR0O8/rofET+8OXz6oB8NLlqVkTfxijOlgjJl48uRJp0MREUldqQbw4DKIGQFbZsH4+rDlSz2ySrIcJWviF2vtHGvtgIIFCzodiohI2sJywc3/BwN+gIIlYdZ9MONuOHXA6chEfKZkTUREsr/rqkP/RdD6edi5EN5uCD99pFE2yRKUrImISM4QGgZNH4FBq+C6GvDNQ/BRJzj2h9ORiaRKyZqIiOQsRcrDvXOg/euw/yd4pwn8OAGSEp2OTMQjJWsiIpLzhIRAvftdN9MtEw3fPQWTb4VD25yOTOQKStZERCTnKlgC7poBXd+HY7vh3Wj44RVIiHM6MpFLlKyJiEjOZgzUvAOGroOqHWHJKJjYAvZvcDoyEUDJmoiIiEveotD9A+j5KcQeg/dbwX/+CXHnnI5McjglayIiIu4qt3Ndy1anD6waB+82hT+WOx2V5GBK1kRERFKKLAgd3nT9atRa+LA9zBkG5/X0Fsl8StZERES8KRvjui9b46Hw04d6MLw4QsmaiIhIaiLywG2joN9CyF0ITu13OiLJYcKcDkBERCRLKFnX9YzR0HCnI5EcRsmaiIiIr8IinI5AciCdBhUREREJYkrWRERERIKYkjURERGRIKZkTURERCSIKVkTERERCWJK1kRERESCmJI1ERERkSBmrLVOxyBZkDHmMLDHw6yCQMqH56V8ryhwJINCS4un+DKjHF+XT2u51OZ7m+dLm4Bz7eJUm/izTnq3i69tpX0l8OWCdV8pba0tFuC6klNZa/XSK91ewMS03gPWB1N8mVGOr8untVxq873N86VNnGwXp9rEyXbxta20r2Rem/jTVk62i14586XToJLe5vj4nlPSKxZ/y/F1+bSWS22+t3lqk6tfJ73bxZ+2cor2Fd8+RyTD6TSoZDpjzHprbT2n45DLqV2Cj9okOKldJLNpZE2cMNHpAMQjtUvwUZsEJ7WLZCqNrImIiIgEMY2siYiIiAQxJWsiIiIiQUzJmoiIiEgQU7ImjjPGlDPGTDbGzHI6FvkfY0xnY8wkY8zXxphbnY5HwBhTxRjzrjFmljFmkNPxiIsxJq8xZoMxpr3TsUj2pGRNMoQx5gNjzCFjzJYU77cxxmw3xuw0xjwJYK3dba3t50ykOYuf7TLbWvsA0Bfo4UC4OYKfbbLNWjsQuBPQrSMyiD9tkuwJYGbmRik5iZI1yShTgTbubxhjQoG3gbZAVaCXMaZq5oeWo03F/3Z5Jnm+ZIyp+NEmxpiOwApgUeaGmaNMxcc2Mca0ArYCf2d2kJJzKFmTDGGtXQYcS/F2A2Bn8khaHPAZ0CnTg8vB/GkX4/JvYL619qfMjjWn8HdfsdZ+Y61tAvTO3EhzDj/bpCXQCLgLeMAYo+9VSXdhTgcgOUoJYK/b9D6goTGmCDAKqG2MecpaO9qR6HIuj+0CPAS0AgoaYypYa991Irgcytu+0gLoCuQC5mV+WDmaxzax1g4FMMb0BY5Ya5MciE2yOSVrkpmMh/estfYoMDCzg5FLvLXLOGBcZgcjgPc2WQoszdxQJJnHNrn0h7VTMy8UyWk0XCuZaR9Qym26JPCXQ7HI/6hdgo/aJPioTcQxStYkM60DKhpjyhpjIoCewDcOxyRql2CkNgk+ahNxjJI1yRDGmE+BH4FKxph9xph+1toEYCjwHbANmGmt/dXJOHMatUvwUZsEH7WJBBs9yF1EREQkiGlkTURERCSIKVkTERERCWJK1kRERESCmJI1ERERkSCmZE1EREQkiClZExEREQliStZEREREgpiSNREREZEgpmRNRLINY8xXxpgXjTHLjTEHjTGtnI5JRORqKVkTkeykOnDCWhsNDAZ6OxyPiMhVU7ImItmCMSYPUBB4PfmtMOCEYwGJiKQTJWsikl1UAzZYaxOTp2sCWxyMR0QkXShZE5Hsojqw0W26JrDZmVBERNKPkjURyS5qcHmyVh2NrIlINmCstU7HICIiIiJeaGRNREREJIgpWRMREREJYkrWRERERIKYkjURERGRIKZkTURERCSIKVkTERERCWJK1kRERESCmJI1ERERkSD2/5/Iks43N8WrAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -381,14 +382,14 @@ "source": [ "from matplotlib import pyplot as plt\n", "\n", - "data = np.array([[16.0,1.4],[32.0,1.1],[64.0,0.9]])\n", - "a_fit, p_fit = fit_power_law(data)\n", + "a_fit, p_fit = fit_power_law(stddev_data)\n", "\n", "plt.figure()\n", - "plt.title(\"Data versus fit of $\\sigma = an^p$\")\n", - "plt.loglog(*data.T, label=\"data\")\n", - "n_range = np.logspace(1, 2, 10)\n", - "plt.loglog(n_range, a_fit*n_range**p_fit, label=\"fit\")\n", + "plt.title(\"Convergence of standard deviation of direct-sampled $\\pi$ guesses over $n$ throws among $m = 200$ trials\")\n", + "plt.loglog(*stddev_data.T, label=\"data\")\n", + "n_range = np.logspace(1, 4, 10)\n", + "plt.loglog(n_range, a_fit*n_range**p_fit,\n", + " label=\"fitted $\\sigma = an^p$\\n($a = {:.3f}, p = {:.3f})$\".format(a_fit, p_fit))\n", "plt.xlabel(\"$n$\")\n", "plt.ylabel(\"$\\sigma$\")\n", "plt.legend()\n",